New stuff in section 2
This commit is contained in:
parent
00c09dda60
commit
91bb08ff1a
@ -193,6 +193,7 @@ detuning. Within this rotating frame we will take
|
|||||||
$\dot{\tilde{\sigma}}^- \approx 0$ and thus obtain the following
|
$\dot{\tilde{\sigma}}^- \approx 0$ and thus obtain the following
|
||||||
equation for the lowering operator
|
equation for the lowering operator
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:sigmam}
|
||||||
\sigma^- = - \frac{i}{\Delta_a} \sum_l g_l \a_l u_l(\b{r}).
|
\sigma^- = - \frac{i}{\Delta_a} \sum_l g_l \a_l u_l(\b{r}).
|
||||||
\end{equation}
|
\end{equation}
|
||||||
Therefore, by inserting this expression into the Heisenberg equation
|
Therefore, by inserting this expression into the Heisenberg equation
|
||||||
@ -399,3 +400,170 @@ cavity. Whilst the light amplitude itself is only linear in atomic
|
|||||||
operators, we can easily have access to higher moments by simply
|
operators, we can easily have access to higher moments by simply
|
||||||
simply considering higher moments of the $\a_l$ such as the photon
|
simply considering higher moments of the $\a_l$ such as the photon
|
||||||
number $\ad_l \a_l$.
|
number $\ad_l \a_l$.
|
||||||
|
|
||||||
|
\subsection{Electric Field Stength}
|
||||||
|
|
||||||
|
The Electric field operator at position $\b{r}$ and at time $t$ is
|
||||||
|
usually written in terms of its positive and negative components:
|
||||||
|
\begin{equation}
|
||||||
|
\b{\hat{E}}(\b{r},t) = \b{\hat{E}}^{(+)}(\b{r},t) + \b{\hat{E}}^{(-)}(\b{r},t),
|
||||||
|
\end{equation}
|
||||||
|
where
|
||||||
|
\begin{subequations}
|
||||||
|
\begin{equation}
|
||||||
|
\b{\hat{E}}^{(+)}(\b{r},t) = \sum_{\b{k}} \hat{\epsilon}_{\b{k}}
|
||||||
|
\mathcal{E}_{\b{k}} \a_{\b{k}} e^{-i \omega_{\b{k}} t + i \b{k} \cdot \b{r}},
|
||||||
|
\end{equation}
|
||||||
|
\begin{equation}
|
||||||
|
\b{\hat{E}}^{(-)}(\b{r},t) = \sum_{\b{k}} \hat{\epsilon}_{\b{k}}
|
||||||
|
\mathcal{E}_{\b{k}} \a^\dagger_{\b{k}} e^{i \omega_{\b{k}} t - i \b{k} \cdot \b{r}},
|
||||||
|
\end{equation}
|
||||||
|
\end{subequations}
|
||||||
|
$\hat{\epsilon}_{\b{k}}$ is a unit polarization vector, $\b{k}$ is the
|
||||||
|
wave vector,
|
||||||
|
$\mathcal{E}_{\b{k}} = \sqrt{\hbar \omega_{\b{k}} / 2 \epsilon_0 V}$,
|
||||||
|
$\epsilon_0$ is the free space permittivity, $V$ is the quantization
|
||||||
|
volume and $\a_\b{k}$ and $\a_\b{k}^\dagger$ are the annihilation and
|
||||||
|
creation operators respectively of a photon in mode $\b{k}$, and
|
||||||
|
$\omega_\b{k}$ is the angular frequency of mode $\b{k}$.
|
||||||
|
|
||||||
|
In Ref. \cite{Scully} it was shown that the operator
|
||||||
|
$\b{\hat{E}}^{(+)}(\b{r},t)$ due to light scattering from a single
|
||||||
|
atom located at $\b{r}^\prime$ at the observation point $\b{r}$ is
|
||||||
|
given by
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:Ep}
|
||||||
|
\b{\hat{E}}^{(+)}(\b{r},\b{r}^\prime,t) = \frac{\omega_a^2 d \sin \eta}{4 \pi
|
||||||
|
\epsilon_0 c^2 |\b{r} - \b{r}^\prime|} \hat{\epsilon} \sigma^-
|
||||||
|
\left( \b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right),
|
||||||
|
\end{equation}
|
||||||
|
with a similar expression for
|
||||||
|
$\b{E}^{(-)}(\b{r},\b{r}^\prime,t)$. Eq. \eqref{eq:Ep} is valid only
|
||||||
|
in the far field, $\eta$ is the angle the dipole makes with
|
||||||
|
$\b{r} - \b{r}^\prime$, $\hat{\epsilon}$ is the polarization vector
|
||||||
|
which is perpendicular to $\b{r} - \b{r}^\prime$ and lies in the plane
|
||||||
|
defined by $\b{r} - \b{r}^\prime$ and the dipole, $\omega_a$ is the
|
||||||
|
atomic transition frequency, and $d$ is the dipole matrix element
|
||||||
|
between the two levels, and $c$ is the speed of light in vacuum.
|
||||||
|
|
||||||
|
|
||||||
|
We have already derived an expression for the atomic lowering
|
||||||
|
operator, $\sigma^-$, in Eq. \eqref{eq:sigmam} and it is given by
|
||||||
|
\begin{equation}
|
||||||
|
\sigma^- = - \frac{i} {\Delta_a} \sum_\b{k} g_\b{k} a_\b{k} u_\b{k}(\b{r}).
|
||||||
|
\end{equation}
|
||||||
|
We will want to substitute this expression into Eq. \eqref{eq:Ep}, but
|
||||||
|
first we note that in the setup we consider the coherent probe will be
|
||||||
|
much stronger than the scattered modes. This in turn implies that the
|
||||||
|
expression for $\sigma^-$ will be dominated by this external
|
||||||
|
probe. Therefore, we drop the sum and consider only a single wave
|
||||||
|
vector, $\b{k}_0$, of the dominant contribution from the external
|
||||||
|
beam.
|
||||||
|
|
||||||
|
We now use the definititon of the atom-light coupling constant
|
||||||
|
\cite{Scully} to make the substitution
|
||||||
|
$g_0 a_0 = -i \Omega_0 e^{-i \omega_0 t} / 2$, where
|
||||||
|
$\Omega_0$ is the Rabi frequency for the probe-atom system. We now
|
||||||
|
evaluate the polarisation operator at the retarded time
|
||||||
|
\begin{equation}
|
||||||
|
\sigma^- \left(\b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right) =
|
||||||
|
-\frac{\Omega_0}{2 \Delta_a} u_0 (\b{r}^\prime) \exp \left[-i \omega_0
|
||||||
|
\left( t - \frac{|\b{r} - \b{r}^\prime|}{c} \right)\right].
|
||||||
|
\end{equation}
|
||||||
|
We are considering observation in the far field regime so
|
||||||
|
$|\b{r} - \b{r}^\prime| \approx r - \hat{\b{r}} \cdot
|
||||||
|
\b{r}^\prime$. We also consider the incoming, $\b{k}_0$, and the
|
||||||
|
outgoing, $\mathbf{k}_1$, waves to be of the same wavelength,
|
||||||
|
$|\b{k}_0| = |\b{k}_1| = k = \omega_0 / c$, hence
|
||||||
|
$(\omega_0 / c) |\b{r} - \b{r}^\prime| \approx k (r - \hat{\b{r}}
|
||||||
|
\cdot \b{r}^\prime) = \b{k}_1 \cdot (\b{r} - \b{r}^\prime )$ and
|
||||||
|
\begin{equation}
|
||||||
|
\sigma^- \left(\b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right) \approx
|
||||||
|
-\frac{\Omega_0}{2 \Delta_a} u_0 (\b{r}^\prime) \exp \left[i
|
||||||
|
\b{k}_1 \cdot (\b{r} - \b{r}^\prime ) - i \omega_0 t \right].
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The many-body version of the electric field operator is given by
|
||||||
|
\begin{equation}
|
||||||
|
\b{\hat{E}}^{(+)}_N(\b{r},t) = \int \mathrm{d}^3 \b{r}^\prime
|
||||||
|
\Psi^\dagger (\b{r}^\prime) \b{\hat{E}}^{(+)}(\b{r},\b{r}^\prime,t) \Psi(\b{r}^\prime),
|
||||||
|
\end{equation}
|
||||||
|
where $\Psi(\b{r})$ is the atomic matter-field operator. As before, we
|
||||||
|
expand this field operator using localized Wannier functions
|
||||||
|
corresponding to the lattice potential and keeping only the lowest
|
||||||
|
vibrational state at each site:
|
||||||
|
$\Psi(\b{r}) = \sum_i b_i w(\b{r} - \b{r}_i)$, where $b_i$ is the
|
||||||
|
annihilation operator of an atom at site $i$ with the coordinate
|
||||||
|
$\b{r}_i$. Thus, the relevant many-body operator is
|
||||||
|
\begin{subequations}
|
||||||
|
\begin{equation}
|
||||||
|
\b{\hat{E}}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E
|
||||||
|
\sum_{i,j}^K \bd_i b_j \int \mathrm{d}^3 \b{r}^\prime
|
||||||
|
w^* (\b{r}^\prime - \b{r}_i) \frac{u_0
|
||||||
|
(\b{r}^\prime)}{|\b{r} - \b{r}^\prime|} e^ {i \b{k}_1
|
||||||
|
\cdot (\b{r} - \b{r}^\prime ) - i \omega_0 t }
|
||||||
|
w(\b{r}^\prime - \b{r}_j),
|
||||||
|
\end{equation}
|
||||||
|
\begin{equation}
|
||||||
|
C_E = -\frac{\omega_a^2 \Omega_0 d \sin \eta}{8 \pi \epsilon_0 c^2
|
||||||
|
\Delta_a}
|
||||||
|
\end{equation}
|
||||||
|
\end{subequations}
|
||||||
|
where $K$ is the number of illuminated sites. We now assume that the
|
||||||
|
lattice is deep and that the light scattering occurs on time scales
|
||||||
|
much shorter than atom tunneling. Therefore, we ignore all terms for
|
||||||
|
which $i \ne j$ and the remaining integrals become $\int \mathrm{d}^3
|
||||||
|
\b{r}_0 w^*(\b{r}_0 - \b{r}_i) f (\b{r})
|
||||||
|
w(\b{r}_0 - \b{r}_i) = f(\b{r}_i)$. The final form of
|
||||||
|
the many body operator is then
|
||||||
|
\begin{equation}
|
||||||
|
\b{E}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E
|
||||||
|
\sum_{j = 1}^K \hat{n}_j \frac{u_0 (\b{r}_j)}{|\b{r} -
|
||||||
|
\b{r}_j|} e^ {i \b{k}_1 \cdot (\b{r} - \b{r}_j
|
||||||
|
) - i \omega_0 t },
|
||||||
|
\end{equation}
|
||||||
|
where $\hat{n}_i = b^\dagger_ib_i$ is the atom number operator at site
|
||||||
|
$i$. We will now consider the incoming probe to be a plane wave,
|
||||||
|
$u_0(\b{r}) = e^{i \b{k}_0 \cdot \b{r}}$, and we
|
||||||
|
approximate $|\b{r} - \b{r}_j| \approx r$ in the
|
||||||
|
denominator. Thus,
|
||||||
|
\begin{equation}
|
||||||
|
\b{E}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E \frac{e^ {ikr - i\omega_0t}}{r}
|
||||||
|
\sum_{j = 1}^K \hat{n}_j e^ {i (\b{k}_0 - \b{k}_1) \cdot \b{r}_j}.
|
||||||
|
\end{equation}
|
||||||
|
We note that this is exactly the same form of the optical field as
|
||||||
|
derived from a generalised Bose-Hubbard model which considers a fully
|
||||||
|
quantum light-matter interaction Hamiltonian \cite{mekhov2007prl,
|
||||||
|
mekhov2007pra, mekhov2012}. We can even express the result in terms of
|
||||||
|
the $\hat{D} = \sum_j^K u_1^*(\b{r}_j) u_0(\b{r}_j)
|
||||||
|
\hat{n}_j$ formalism used in those works
|
||||||
|
\begin{equation}
|
||||||
|
\b{E}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E \frac{e^
|
||||||
|
{ikr - i\omega_0t}}{r} \hat{D}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The average light intensity at point $\b{r}$ at time $t$ is given
|
||||||
|
by the formula $I = c \epsilon_0 |E|^2/2$ and yields
|
||||||
|
\begin{equation}
|
||||||
|
\langle I (\b{r}, t) \rangle = c \epsilon_0 \langle
|
||||||
|
E^{(-)} (\b{r}, t) E^{(+)} (\b{r}, t) \rangle =
|
||||||
|
\frac{c \epsilon_0}{r^2} C_E^2 \langle \hat{D}^* \hat{D} \rangle.
|
||||||
|
\end{equation}
|
||||||
|
The scattering is dominated by a uniform background for which $\langle
|
||||||
|
\hat{D}^* \hat{D} \rangle \approx N_K$ for a superfluid
|
||||||
|
\cite{mekhov2012}, where $N_K$ is the mean number of atoms in the
|
||||||
|
illuminated volume. Thus, the approximate number of photons scattered
|
||||||
|
per second can be obtained by integrating over a sphere
|
||||||
|
\begin{equation}
|
||||||
|
n_{\Phi} = \frac{4 \pi c \epsilon_0}{3 \hbar \omega_a} \left(\frac{\omega_a^2
|
||||||
|
\Omega_0 d}{8 \pi \epsilon_0 c^2 \Delta_a}\right)^2 N_K.
|
||||||
|
\end{equation}
|
||||||
|
In the Weisskopf-Wigner approximation it can be shown \cite{Scully}
|
||||||
|
that for a two level system the decay constant, $\Gamma$, is
|
||||||
|
\begin{equation}
|
||||||
|
\Gamma = \frac{\omega_a^3 d^2}{3 \pi \epsilon_0 \hbar c^3}.
|
||||||
|
\end{equation}
|
||||||
|
Therefore, we can now express the quantity $n_{\Phi}$ as
|
||||||
|
\begin{equation}
|
||||||
|
n_{\Phi} = \frac{1}{8} \left(\frac{\Omega_0}{\Delta_a}\right)^2 \frac{\Gamma}{2} N_K.
|
||||||
|
\end{equation}
|
||||||
|
@ -36,3 +36,31 @@
|
|||||||
journal={arXiv preprint arXiv:1510.04883},
|
journal={arXiv preprint arXiv:1510.04883},
|
||||||
year={2015}
|
year={2015}
|
||||||
}
|
}
|
||||||
|
@inbook{Scully,
|
||||||
|
author = {Scully, M. and Zubairy, S.},
|
||||||
|
title = {{Quantum Optics}},
|
||||||
|
publisher = {Cambridge University Press},
|
||||||
|
chapter = {10.1},
|
||||||
|
pages = {293},
|
||||||
|
year = {1997}
|
||||||
|
}
|
||||||
|
@article{mekhov2007prl,
|
||||||
|
title={Cavity-enhanced light scattering in optical lattices to probe atomic quantum statistics},
|
||||||
|
author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut},
|
||||||
|
journal={Physical review letters},
|
||||||
|
volume={98},
|
||||||
|
number={10},
|
||||||
|
pages={100402},
|
||||||
|
year={2007},
|
||||||
|
publisher={APS}
|
||||||
|
}
|
||||||
|
@article{mekhov2007pra,
|
||||||
|
title={Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics},
|
||||||
|
author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut},
|
||||||
|
journal={Physical Review A},
|
||||||
|
volume={76},
|
||||||
|
number={5},
|
||||||
|
pages={053618},
|
||||||
|
year={2007},
|
||||||
|
publisher={APS}
|
||||||
|
}
|
Reference in New Issue
Block a user