From 91bb08ff1a70aa665ca624d2ab01e29f5faf417a Mon Sep 17 00:00:00 2001 From: Wojciech Kozlowski Date: Fri, 1 Jul 2016 17:37:26 +0100 Subject: [PATCH] New stuff in section 2 --- Chapter2/chapter2.tex | 168 ++++++++++++++++++++++++++++++++++++++ References/references.bib | 28 +++++++ 2 files changed, 196 insertions(+) diff --git a/Chapter2/chapter2.tex b/Chapter2/chapter2.tex index 9c92c31..1f69375 100644 --- a/Chapter2/chapter2.tex +++ b/Chapter2/chapter2.tex @@ -193,6 +193,7 @@ detuning. Within this rotating frame we will take $\dot{\tilde{\sigma}}^- \approx 0$ and thus obtain the following equation for the lowering operator \begin{equation} + \label{eq:sigmam} \sigma^- = - \frac{i}{\Delta_a} \sum_l g_l \a_l u_l(\b{r}). \end{equation} Therefore, by inserting this expression into the Heisenberg equation @@ -399,3 +400,170 @@ cavity. Whilst the light amplitude itself is only linear in atomic operators, we can easily have access to higher moments by simply simply considering higher moments of the $\a_l$ such as the photon number $\ad_l \a_l$. + +\subsection{Electric Field Stength} + +The Electric field operator at position $\b{r}$ and at time $t$ is +usually written in terms of its positive and negative components: +\begin{equation} + \b{\hat{E}}(\b{r},t) = \b{\hat{E}}^{(+)}(\b{r},t) + \b{\hat{E}}^{(-)}(\b{r},t), +\end{equation} +where +\begin{subequations} + \begin{equation} + \b{\hat{E}}^{(+)}(\b{r},t) = \sum_{\b{k}} \hat{\epsilon}_{\b{k}} + \mathcal{E}_{\b{k}} \a_{\b{k}} e^{-i \omega_{\b{k}} t + i \b{k} \cdot \b{r}}, + \end{equation} + \begin{equation} + \b{\hat{E}}^{(-)}(\b{r},t) = \sum_{\b{k}} \hat{\epsilon}_{\b{k}} + \mathcal{E}_{\b{k}} \a^\dagger_{\b{k}} e^{i \omega_{\b{k}} t - i \b{k} \cdot \b{r}}, + \end{equation} +\end{subequations} +$\hat{\epsilon}_{\b{k}}$ is a unit polarization vector, $\b{k}$ is the +wave vector, +$\mathcal{E}_{\b{k}} = \sqrt{\hbar \omega_{\b{k}} / 2 \epsilon_0 V}$, +$\epsilon_0$ is the free space permittivity, $V$ is the quantization +volume and $\a_\b{k}$ and $\a_\b{k}^\dagger$ are the annihilation and +creation operators respectively of a photon in mode $\b{k}$, and +$\omega_\b{k}$ is the angular frequency of mode $\b{k}$. + +In Ref. \cite{Scully} it was shown that the operator +$\b{\hat{E}}^{(+)}(\b{r},t)$ due to light scattering from a single +atom located at $\b{r}^\prime$ at the observation point $\b{r}$ is +given by +\begin{equation} + \label{eq:Ep} + \b{\hat{E}}^{(+)}(\b{r},\b{r}^\prime,t) = \frac{\omega_a^2 d \sin \eta}{4 \pi + \epsilon_0 c^2 |\b{r} - \b{r}^\prime|} \hat{\epsilon} \sigma^- + \left( \b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right), +\end{equation} +with a similar expression for +$\b{E}^{(-)}(\b{r},\b{r}^\prime,t)$. Eq. \eqref{eq:Ep} is valid only +in the far field, $\eta$ is the angle the dipole makes with +$\b{r} - \b{r}^\prime$, $\hat{\epsilon}$ is the polarization vector +which is perpendicular to $\b{r} - \b{r}^\prime$ and lies in the plane +defined by $\b{r} - \b{r}^\prime$ and the dipole, $\omega_a$ is the +atomic transition frequency, and $d$ is the dipole matrix element +between the two levels, and $c$ is the speed of light in vacuum. + + +We have already derived an expression for the atomic lowering +operator, $\sigma^-$, in Eq. \eqref{eq:sigmam} and it is given by +\begin{equation} + \sigma^- = - \frac{i} {\Delta_a} \sum_\b{k} g_\b{k} a_\b{k} u_\b{k}(\b{r}). +\end{equation} +We will want to substitute this expression into Eq. \eqref{eq:Ep}, but +first we note that in the setup we consider the coherent probe will be +much stronger than the scattered modes. This in turn implies that the +expression for $\sigma^-$ will be dominated by this external +probe. Therefore, we drop the sum and consider only a single wave +vector, $\b{k}_0$, of the dominant contribution from the external +beam. + +We now use the definititon of the atom-light coupling constant +\cite{Scully} to make the substitution +$g_0 a_0 = -i \Omega_0 e^{-i \omega_0 t} / 2$, where +$\Omega_0$ is the Rabi frequency for the probe-atom system. We now +evaluate the polarisation operator at the retarded time +\begin{equation} + \sigma^- \left(\b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right) = + -\frac{\Omega_0}{2 \Delta_a} u_0 (\b{r}^\prime) \exp \left[-i \omega_0 + \left( t - \frac{|\b{r} - \b{r}^\prime|}{c} \right)\right]. +\end{equation} +We are considering observation in the far field regime so +$|\b{r} - \b{r}^\prime| \approx r - \hat{\b{r}} \cdot +\b{r}^\prime$. We also consider the incoming, $\b{k}_0$, and the +outgoing, $\mathbf{k}_1$, waves to be of the same wavelength, +$|\b{k}_0| = |\b{k}_1| = k = \omega_0 / c$, hence +$(\omega_0 / c) |\b{r} - \b{r}^\prime| \approx k (r - \hat{\b{r}} +\cdot \b{r}^\prime) = \b{k}_1 \cdot (\b{r} - \b{r}^\prime )$ and +\begin{equation} + \sigma^- \left(\b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right) \approx + -\frac{\Omega_0}{2 \Delta_a} u_0 (\b{r}^\prime) \exp \left[i + \b{k}_1 \cdot (\b{r} - \b{r}^\prime ) - i \omega_0 t \right]. +\end{equation} + +The many-body version of the electric field operator is given by +\begin{equation} + \b{\hat{E}}^{(+)}_N(\b{r},t) = \int \mathrm{d}^3 \b{r}^\prime + \Psi^\dagger (\b{r}^\prime) \b{\hat{E}}^{(+)}(\b{r},\b{r}^\prime,t) \Psi(\b{r}^\prime), +\end{equation} +where $\Psi(\b{r})$ is the atomic matter-field operator. As before, we +expand this field operator using localized Wannier functions +corresponding to the lattice potential and keeping only the lowest +vibrational state at each site: +$\Psi(\b{r}) = \sum_i b_i w(\b{r} - \b{r}_i)$, where $b_i$ is the +annihilation operator of an atom at site $i$ with the coordinate +$\b{r}_i$. Thus, the relevant many-body operator is +\begin{subequations} + \begin{equation} + \b{\hat{E}}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E + \sum_{i,j}^K \bd_i b_j \int \mathrm{d}^3 \b{r}^\prime + w^* (\b{r}^\prime - \b{r}_i) \frac{u_0 + (\b{r}^\prime)}{|\b{r} - \b{r}^\prime|} e^ {i \b{k}_1 + \cdot (\b{r} - \b{r}^\prime ) - i \omega_0 t } + w(\b{r}^\prime - \b{r}_j), + \end{equation} + \begin{equation} + C_E = -\frac{\omega_a^2 \Omega_0 d \sin \eta}{8 \pi \epsilon_0 c^2 + \Delta_a} + \end{equation} +\end{subequations} +where $K$ is the number of illuminated sites. We now assume that the +lattice is deep and that the light scattering occurs on time scales +much shorter than atom tunneling. Therefore, we ignore all terms for +which $i \ne j$ and the remaining integrals become $\int \mathrm{d}^3 +\b{r}_0 w^*(\b{r}_0 - \b{r}_i) f (\b{r}) +w(\b{r}_0 - \b{r}_i) = f(\b{r}_i)$. The final form of +the many body operator is then +\begin{equation} + \b{E}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E + \sum_{j = 1}^K \hat{n}_j \frac{u_0 (\b{r}_j)}{|\b{r} - + \b{r}_j|} e^ {i \b{k}_1 \cdot (\b{r} - \b{r}_j + ) - i \omega_0 t }, +\end{equation} +where $\hat{n}_i = b^\dagger_ib_i$ is the atom number operator at site +$i$. We will now consider the incoming probe to be a plane wave, +$u_0(\b{r}) = e^{i \b{k}_0 \cdot \b{r}}$, and we +approximate $|\b{r} - \b{r}_j| \approx r$ in the +denominator. Thus, +\begin{equation} + \b{E}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E \frac{e^ {ikr - i\omega_0t}}{r} + \sum_{j = 1}^K \hat{n}_j e^ {i (\b{k}_0 - \b{k}_1) \cdot \b{r}_j}. +\end{equation} +We note that this is exactly the same form of the optical field as +derived from a generalised Bose-Hubbard model which considers a fully +quantum light-matter interaction Hamiltonian \cite{mekhov2007prl, + mekhov2007pra, mekhov2012}. We can even express the result in terms of +the $\hat{D} = \sum_j^K u_1^*(\b{r}_j) u_0(\b{r}_j) +\hat{n}_j$ formalism used in those works +\begin{equation} + \b{E}^{(+)}_N(\b{r},t) = \hat{\epsilon} C_E \frac{e^ + {ikr - i\omega_0t}}{r} \hat{D}. +\end{equation} + +The average light intensity at point $\b{r}$ at time $t$ is given +by the formula $I = c \epsilon_0 |E|^2/2$ and yields +\begin{equation} + \langle I (\b{r}, t) \rangle = c \epsilon_0 \langle + E^{(-)} (\b{r}, t) E^{(+)} (\b{r}, t) \rangle = + \frac{c \epsilon_0}{r^2} C_E^2 \langle \hat{D}^* \hat{D} \rangle. +\end{equation} +The scattering is dominated by a uniform background for which $\langle +\hat{D}^* \hat{D} \rangle \approx N_K$ for a superfluid +\cite{mekhov2012}, where $N_K$ is the mean number of atoms in the +illuminated volume. Thus, the approximate number of photons scattered +per second can be obtained by integrating over a sphere +\begin{equation} + n_{\Phi} = \frac{4 \pi c \epsilon_0}{3 \hbar \omega_a} \left(\frac{\omega_a^2 + \Omega_0 d}{8 \pi \epsilon_0 c^2 \Delta_a}\right)^2 N_K. +\end{equation} +In the Weisskopf-Wigner approximation it can be shown \cite{Scully} +that for a two level system the decay constant, $\Gamma$, is +\begin{equation} + \Gamma = \frac{\omega_a^3 d^2}{3 \pi \epsilon_0 \hbar c^3}. +\end{equation} +Therefore, we can now express the quantity $n_{\Phi}$ as +\begin{equation} + n_{\Phi} = \frac{1}{8} \left(\frac{\Omega_0}{\Delta_a}\right)^2 \frac{\Gamma}{2} N_K. +\end{equation} diff --git a/References/references.bib b/References/references.bib index 5cee380..c93116f 100644 --- a/References/references.bib +++ b/References/references.bib @@ -35,4 +35,32 @@ author={Mazzucchi, Gabriel and Caballero-Benitez, Santiago F and Mekhov, Igor B}, journal={arXiv preprint arXiv:1510.04883}, year={2015} +} +@inbook{Scully, +author = {Scully, M. and Zubairy, S.}, +title = {{Quantum Optics}}, +publisher = {Cambridge University Press}, +chapter = {10.1}, +pages = {293}, +year = {1997} +} +@article{mekhov2007prl, + title={Cavity-enhanced light scattering in optical lattices to probe atomic quantum statistics}, + author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut}, + journal={Physical review letters}, + volume={98}, + number={10}, + pages={100402}, + year={2007}, + publisher={APS} +} +@article{mekhov2007pra, + title={Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics}, + author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut}, + journal={Physical Review A}, + volume={76}, + number={5}, + pages={053618}, + year={2007}, + publisher={APS} } \ No newline at end of file