Further Chapter 2 modifications

This commit is contained in:
Wojciech Kozlowski 2016-06-23 15:32:05 +01:00
parent e5e5558084
commit 5953c1a126
2 changed files with 52 additions and 4 deletions

View File

@ -99,7 +99,7 @@ geometrical representation.
A general many-body Hamiltonian coupled to a quantized light field in
second quantized can be separated into three parts,
\begin{equation}
\label{eq:TwoH}
\label{eq:FullH}
\H = \H_f + \H_a + \H_{fa}.
\end{equation}
The term $\H_f$ represents the optical part of the Hamiltonian,
@ -211,9 +211,11 @@ $\H^\mathrm{eff}_1 = \H_f + \H^\mathrm{eff}_{1,a} +
\H^\mathrm{eff}_{1,fa}$. The effective atomic and interaction
Hamiltonians are
\begin{equation}
\label{eq:aeff}
\H^\mathrm{eff}_{1,a} = \frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}),
\end{equation}
\begin{equation}
\label{eq:faeff}
\H^\mathrm{eff}_{1,fa} = \frac{\hbar}{\Delta_a} \sum_{l,m}
u_l^*(\b{r}) u_m(\b{r}) g_l g_m \ad_l \a_m,
\end{equation}
@ -222,6 +224,50 @@ $V_\mathrm{cl}(\b{r}) = \hbar g_\mathrm{cl}^2 |a_\mathrm{cl}
u_\mathrm{cl}(\b{r})|^2 / \Delta_{\mathrm{cl},a}$, the classical
trapping potential, from the interaction terms. However, we consider
the trapping beam to be sufficiently detuned from the other light
modes that we can neglect any scattering between them. However, a
later inclusion of this scattered light would not be difficult due to
the linearity of the dipoles we assumed.
modes that we can neglect any scattering between them. A later
inclusion of this scattered light would not be difficult due to the
linearity of the dipoles we assumed.
Normally we will consider scattering of modes $a_l$ much weaker than
the field forming the lattice potential $V_\mathrm{cl}(\b{r})$. We now
proceed in the same way as when deriving the conventional Bose-Hubbard
Hamiltonian in the zero temperature limit. The field operators
$\Psi(\b{r})$ can be expanded using localised Wannier functions of
$V_\mathrm{cl}(\b{r})$ and by keeping only the lowest vibrational
state we get
\begin{equation}
\Psi(\b{r}) = \sum_i^M b_i w(\b{r} - \b{r}_i),
\end{equation}
where $b_i$ ($\bd_i$) is the annihilation (creation) operator of an
atom at site $i$ with coordinate $\b{r}_i$ and $M$ is the number of
lattice sites. Substituting this expression in Eq. \eqref{eq:FullH}
with $\H_{1,a} = \H_{1,a}^\mathrm{eff}$ and
$\H_{1,fa} = \H_{1,fa}^\mathrm{eff}$ given by Eq. \eqref{eq:aeff} and
\eqref{eq:faeff} respectively yields the following generalised
Bose-Hubbard Hamiltonian, $\H = \H_f + \H_a + \H_{fa}$,
\begin{equation}
\H = \H_f + \sum_{i,j}^M J^\mathrm{cl}_{i,j} \bd_i b_j +
\sum_{i,j,k,l}^M \frac{U_{ijkl}}{2} \bd_i \bd_j b_k b_l +
\frac{\hbar}{\Delta_a} \sum_{l,m} g_l g_m \ad_l \a_m
\left( \sum_{i,j}^K J^{l,m}_{i,j} \bd_i b_j \right).
\end{equation}
The optical field part of the Hamiltonian, $\H_f$, has remained
unaffected by all our approximations and is given by
Eq. \eqref{eq:Hf}. The matter-field Hamiltonian is now given by the
well known Bose-Hubbard Hamiltonian
\begin{equation}
\H_a = \sum_{i,j}^M J^\mathrm{cl}_{i,j} \bd_i b_j +
\sum_{i,j,k,l}^M \frac{U_{ijkl}}{2} \bd_i \bd_j b_k b_l,
\end{equation}
where the first term represents atoms tunnelling between sites with a
hopping rate given by
\begin{equation}
J^\mathrm{cl}_{i,j} = \int \mathrm{d}^3 \b{r} w (\b{r} - \b{r}_i )
\left( -\frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}) \right) w(\b{r}
- \b{r}_i),
\end{equation}
and $U_{ijkl}$ is the interaction strength given by
\begin{equation}
U_{ijkl} = \frac{4 \pi a_s \hbar^2}{m_a} \int \mathrm{d}^3 \b{r}
w(\b{r} - \b{r}_i) w(\b{r} - \b{r}_j) w(\b{r} - \b{r}_k) w(\b{r} - \b{r}_l).
\end{equation}

View File

@ -204,6 +204,8 @@
% ***************************** Shorthand operator notation ********************
\renewcommand{\H}{\hat{H}}
\newcommand{\n}{\hat{n}}
\newcommand{\ad}{a^\dagger}
\newcommand{\bd}{b^\dagger}
\renewcommand{\a}{a} % in case we decide to put hats on
\renewcommand{\b}[1]{\mathbf{#1}}