From 5953c1a126e32ff6f9ee33c741062c15609f758e Mon Sep 17 00:00:00 2001 From: Wojciech Kozlowski Date: Thu, 23 Jun 2016 15:32:05 +0100 Subject: [PATCH] Further Chapter 2 modifications --- Chapter2/chapter2.tex | 54 +++++++++++++++++++++++++++++++++++++++---- Preamble/preamble.tex | 2 ++ 2 files changed, 52 insertions(+), 4 deletions(-) diff --git a/Chapter2/chapter2.tex b/Chapter2/chapter2.tex index 2a533aa..060f824 100644 --- a/Chapter2/chapter2.tex +++ b/Chapter2/chapter2.tex @@ -99,7 +99,7 @@ geometrical representation. A general many-body Hamiltonian coupled to a quantized light field in second quantized can be separated into three parts, \begin{equation} -\label{eq:TwoH} +\label{eq:FullH} \H = \H_f + \H_a + \H_{fa}. \end{equation} The term $\H_f$ represents the optical part of the Hamiltonian, @@ -211,9 +211,11 @@ $\H^\mathrm{eff}_1 = \H_f + \H^\mathrm{eff}_{1,a} + \H^\mathrm{eff}_{1,fa}$. The effective atomic and interaction Hamiltonians are \begin{equation} +\label{eq:aeff} \H^\mathrm{eff}_{1,a} = \frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}), \end{equation} \begin{equation} +\label{eq:faeff} \H^\mathrm{eff}_{1,fa} = \frac{\hbar}{\Delta_a} \sum_{l,m} u_l^*(\b{r}) u_m(\b{r}) g_l g_m \ad_l \a_m, \end{equation} @@ -222,6 +224,50 @@ $V_\mathrm{cl}(\b{r}) = \hbar g_\mathrm{cl}^2 |a_\mathrm{cl} u_\mathrm{cl}(\b{r})|^2 / \Delta_{\mathrm{cl},a}$, the classical trapping potential, from the interaction terms. However, we consider the trapping beam to be sufficiently detuned from the other light -modes that we can neglect any scattering between them. However, a -later inclusion of this scattered light would not be difficult due to -the linearity of the dipoles we assumed. +modes that we can neglect any scattering between them. A later +inclusion of this scattered light would not be difficult due to the +linearity of the dipoles we assumed. + +Normally we will consider scattering of modes $a_l$ much weaker than +the field forming the lattice potential $V_\mathrm{cl}(\b{r})$. We now +proceed in the same way as when deriving the conventional Bose-Hubbard +Hamiltonian in the zero temperature limit. The field operators +$\Psi(\b{r})$ can be expanded using localised Wannier functions of +$V_\mathrm{cl}(\b{r})$ and by keeping only the lowest vibrational +state we get +\begin{equation} + \Psi(\b{r}) = \sum_i^M b_i w(\b{r} - \b{r}_i), +\end{equation} +where $b_i$ ($\bd_i$) is the annihilation (creation) operator of an +atom at site $i$ with coordinate $\b{r}_i$ and $M$ is the number of +lattice sites. Substituting this expression in Eq. \eqref{eq:FullH} +with $\H_{1,a} = \H_{1,a}^\mathrm{eff}$ and +$\H_{1,fa} = \H_{1,fa}^\mathrm{eff}$ given by Eq. \eqref{eq:aeff} and +\eqref{eq:faeff} respectively yields the following generalised +Bose-Hubbard Hamiltonian, $\H = \H_f + \H_a + \H_{fa}$, +\begin{equation} + \H = \H_f + \sum_{i,j}^M J^\mathrm{cl}_{i,j} \bd_i b_j + + \sum_{i,j,k,l}^M \frac{U_{ijkl}}{2} \bd_i \bd_j b_k b_l + + \frac{\hbar}{\Delta_a} \sum_{l,m} g_l g_m \ad_l \a_m + \left( \sum_{i,j}^K J^{l,m}_{i,j} \bd_i b_j \right). +\end{equation} +The optical field part of the Hamiltonian, $\H_f$, has remained +unaffected by all our approximations and is given by +Eq. \eqref{eq:Hf}. The matter-field Hamiltonian is now given by the +well known Bose-Hubbard Hamiltonian +\begin{equation} + \H_a = \sum_{i,j}^M J^\mathrm{cl}_{i,j} \bd_i b_j + + \sum_{i,j,k,l}^M \frac{U_{ijkl}}{2} \bd_i \bd_j b_k b_l, +\end{equation} +where the first term represents atoms tunnelling between sites with a +hopping rate given by +\begin{equation} + J^\mathrm{cl}_{i,j} = \int \mathrm{d}^3 \b{r} w (\b{r} - \b{r}_i ) + \left( -\frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}) \right) w(\b{r} + - \b{r}_i), +\end{equation} +and $U_{ijkl}$ is the interaction strength given by +\begin{equation} + U_{ijkl} = \frac{4 \pi a_s \hbar^2}{m_a} \int \mathrm{d}^3 \b{r} + w(\b{r} - \b{r}_i) w(\b{r} - \b{r}_j) w(\b{r} - \b{r}_k) w(\b{r} - \b{r}_l). +\end{equation} diff --git a/Preamble/preamble.tex b/Preamble/preamble.tex index 35701bb..8bd434a 100644 --- a/Preamble/preamble.tex +++ b/Preamble/preamble.tex @@ -204,6 +204,8 @@ % ***************************** Shorthand operator notation ******************** \renewcommand{\H}{\hat{H}} +\newcommand{\n}{\hat{n}} \newcommand{\ad}{a^\dagger} +\newcommand{\bd}{b^\dagger} \renewcommand{\a}{a} % in case we decide to put hats on \renewcommand{\b}[1]{\mathbf{#1}} \ No newline at end of file