Further Chapter 2 modifications
This commit is contained in:
parent
e5e5558084
commit
5953c1a126
@ -99,7 +99,7 @@ geometrical representation.
|
|||||||
A general many-body Hamiltonian coupled to a quantized light field in
|
A general many-body Hamiltonian coupled to a quantized light field in
|
||||||
second quantized can be separated into three parts,
|
second quantized can be separated into three parts,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:TwoH}
|
\label{eq:FullH}
|
||||||
\H = \H_f + \H_a + \H_{fa}.
|
\H = \H_f + \H_a + \H_{fa}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
The term $\H_f$ represents the optical part of the Hamiltonian,
|
The term $\H_f$ represents the optical part of the Hamiltonian,
|
||||||
@ -211,9 +211,11 @@ $\H^\mathrm{eff}_1 = \H_f + \H^\mathrm{eff}_{1,a} +
|
|||||||
\H^\mathrm{eff}_{1,fa}$. The effective atomic and interaction
|
\H^\mathrm{eff}_{1,fa}$. The effective atomic and interaction
|
||||||
Hamiltonians are
|
Hamiltonians are
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:aeff}
|
||||||
\H^\mathrm{eff}_{1,a} = \frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}),
|
\H^\mathrm{eff}_{1,a} = \frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:faeff}
|
||||||
\H^\mathrm{eff}_{1,fa} = \frac{\hbar}{\Delta_a} \sum_{l,m}
|
\H^\mathrm{eff}_{1,fa} = \frac{\hbar}{\Delta_a} \sum_{l,m}
|
||||||
u_l^*(\b{r}) u_m(\b{r}) g_l g_m \ad_l \a_m,
|
u_l^*(\b{r}) u_m(\b{r}) g_l g_m \ad_l \a_m,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -222,6 +224,50 @@ $V_\mathrm{cl}(\b{r}) = \hbar g_\mathrm{cl}^2 |a_\mathrm{cl}
|
|||||||
u_\mathrm{cl}(\b{r})|^2 / \Delta_{\mathrm{cl},a}$, the classical
|
u_\mathrm{cl}(\b{r})|^2 / \Delta_{\mathrm{cl},a}$, the classical
|
||||||
trapping potential, from the interaction terms. However, we consider
|
trapping potential, from the interaction terms. However, we consider
|
||||||
the trapping beam to be sufficiently detuned from the other light
|
the trapping beam to be sufficiently detuned from the other light
|
||||||
modes that we can neglect any scattering between them. However, a
|
modes that we can neglect any scattering between them. A later
|
||||||
later inclusion of this scattered light would not be difficult due to
|
inclusion of this scattered light would not be difficult due to the
|
||||||
the linearity of the dipoles we assumed.
|
linearity of the dipoles we assumed.
|
||||||
|
|
||||||
|
Normally we will consider scattering of modes $a_l$ much weaker than
|
||||||
|
the field forming the lattice potential $V_\mathrm{cl}(\b{r})$. We now
|
||||||
|
proceed in the same way as when deriving the conventional Bose-Hubbard
|
||||||
|
Hamiltonian in the zero temperature limit. The field operators
|
||||||
|
$\Psi(\b{r})$ can be expanded using localised Wannier functions of
|
||||||
|
$V_\mathrm{cl}(\b{r})$ and by keeping only the lowest vibrational
|
||||||
|
state we get
|
||||||
|
\begin{equation}
|
||||||
|
\Psi(\b{r}) = \sum_i^M b_i w(\b{r} - \b{r}_i),
|
||||||
|
\end{equation}
|
||||||
|
where $b_i$ ($\bd_i$) is the annihilation (creation) operator of an
|
||||||
|
atom at site $i$ with coordinate $\b{r}_i$ and $M$ is the number of
|
||||||
|
lattice sites. Substituting this expression in Eq. \eqref{eq:FullH}
|
||||||
|
with $\H_{1,a} = \H_{1,a}^\mathrm{eff}$ and
|
||||||
|
$\H_{1,fa} = \H_{1,fa}^\mathrm{eff}$ given by Eq. \eqref{eq:aeff} and
|
||||||
|
\eqref{eq:faeff} respectively yields the following generalised
|
||||||
|
Bose-Hubbard Hamiltonian, $\H = \H_f + \H_a + \H_{fa}$,
|
||||||
|
\begin{equation}
|
||||||
|
\H = \H_f + \sum_{i,j}^M J^\mathrm{cl}_{i,j} \bd_i b_j +
|
||||||
|
\sum_{i,j,k,l}^M \frac{U_{ijkl}}{2} \bd_i \bd_j b_k b_l +
|
||||||
|
\frac{\hbar}{\Delta_a} \sum_{l,m} g_l g_m \ad_l \a_m
|
||||||
|
\left( \sum_{i,j}^K J^{l,m}_{i,j} \bd_i b_j \right).
|
||||||
|
\end{equation}
|
||||||
|
The optical field part of the Hamiltonian, $\H_f$, has remained
|
||||||
|
unaffected by all our approximations and is given by
|
||||||
|
Eq. \eqref{eq:Hf}. The matter-field Hamiltonian is now given by the
|
||||||
|
well known Bose-Hubbard Hamiltonian
|
||||||
|
\begin{equation}
|
||||||
|
\H_a = \sum_{i,j}^M J^\mathrm{cl}_{i,j} \bd_i b_j +
|
||||||
|
\sum_{i,j,k,l}^M \frac{U_{ijkl}}{2} \bd_i \bd_j b_k b_l,
|
||||||
|
\end{equation}
|
||||||
|
where the first term represents atoms tunnelling between sites with a
|
||||||
|
hopping rate given by
|
||||||
|
\begin{equation}
|
||||||
|
J^\mathrm{cl}_{i,j} = \int \mathrm{d}^3 \b{r} w (\b{r} - \b{r}_i )
|
||||||
|
\left( -\frac{\b{p}^2}{2 m_a} + V_\mathrm{cl}(\b{r}) \right) w(\b{r}
|
||||||
|
- \b{r}_i),
|
||||||
|
\end{equation}
|
||||||
|
and $U_{ijkl}$ is the interaction strength given by
|
||||||
|
\begin{equation}
|
||||||
|
U_{ijkl} = \frac{4 \pi a_s \hbar^2}{m_a} \int \mathrm{d}^3 \b{r}
|
||||||
|
w(\b{r} - \b{r}_i) w(\b{r} - \b{r}_j) w(\b{r} - \b{r}_k) w(\b{r} - \b{r}_l).
|
||||||
|
\end{equation}
|
||||||
|
@ -204,6 +204,8 @@
|
|||||||
% ***************************** Shorthand operator notation ********************
|
% ***************************** Shorthand operator notation ********************
|
||||||
|
|
||||||
\renewcommand{\H}{\hat{H}}
|
\renewcommand{\H}{\hat{H}}
|
||||||
|
\newcommand{\n}{\hat{n}}
|
||||||
\newcommand{\ad}{a^\dagger}
|
\newcommand{\ad}{a^\dagger}
|
||||||
|
\newcommand{\bd}{b^\dagger}
|
||||||
\renewcommand{\a}{a} % in case we decide to put hats on
|
\renewcommand{\a}{a} % in case we decide to put hats on
|
||||||
\renewcommand{\b}[1]{\mathbf{#1}}
|
\renewcommand{\b}[1]{\mathbf{#1}}
|
Reference in New Issue
Block a user