Finished for the day
This commit is contained in:
parent
85bc2f1d0e
commit
3719e20e6a
@ -70,12 +70,12 @@ quantum potential in contrast to the classical lattice trap.
|
||||
\begin{figure}[htbp!]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{LatticeDiagram}
|
||||
\caption[LatticeDiagram]{Atoms (green) trapped in an optical lattice
|
||||
are illuminated by a coherent probe beam (red). The light scatters
|
||||
(blue) in free space or into a cavity and is measured by a
|
||||
detector. If the experiment is in free space light can scatter in
|
||||
any direction. A cavity on the other hand enhances scattering in
|
||||
one particular direction.}
|
||||
\caption[Experimental Setup]{Atoms (green) trapped in an optical
|
||||
lattice are illuminated by a coherent probe beam (red). The light
|
||||
scatters (blue) in free space or into a cavity and is measured by
|
||||
a detector. If the experiment is in free space light can scatter
|
||||
in any direction. A cavity on the other hand enhances scattering
|
||||
in one particular direction.}
|
||||
\label{fig:LatticeDiagram}
|
||||
\end{figure}
|
||||
|
||||
@ -401,6 +401,38 @@ operators, we can easily have access to higher moments by simply
|
||||
simply considering higher moments of the $\a_l$ such as the photon
|
||||
number $\ad_l \a_l$.
|
||||
|
||||
\subsection{Simplifications for Two Modes and Linear Coupling}
|
||||
|
||||
So far we have derived a general Hamiltonian for an arbitrary number
|
||||
of light modes. However, most of the time we will be considering a
|
||||
much simpler setup, namely the case with a coherent probe beam and a
|
||||
single scattered mode as shown in Fig. \ref{fig:LatticeDiagram}. We
|
||||
can use this fact to simplify our equations. Even though we consider
|
||||
only one scattered mode, this treatment is also applicable to free
|
||||
space scattering where the atoms can emit light in any direction. We
|
||||
will simply neglect multiple scattering events, thus we can simply
|
||||
vary the scattered mode's angle to obtain results for all possible
|
||||
directions.
|
||||
|
||||
We consider the two modes indexed with $l = 0$ and $1$, $\a_0$ and $\a_1$. We
|
||||
will take $\a_0$ to be the external probe beam which is incident on the
|
||||
quantum gas (it is not pumped into the cavity via $\eta_0$).
|
||||
Furthermore, we will consider it to be in a coherent state. Therefore,
|
||||
we can treat $a_0$ in our equations like a complex number instead of a
|
||||
full operator. This leaves $\a_1$ as our scattered light mode. We can
|
||||
now simplify the Hamiltonian to
|
||||
\begin{align}
|
||||
\H = & \hbar \left( \omega_1 + U_{1,1} \hat{F}_{1,1} \right) \ad_1
|
||||
\a_1 -J^\mathrm{cl} \sum_{\langle i,j \rangle}^M \bd_i b_j +
|
||||
\frac{U}{2} \sum_{i}^M \hat{n}_i (\hat{n}_i - 1) \nonumber \\ &
|
||||
+ \hbar U_{0,0} |a_0|^2 \hat{F}_{0,0} + \hbar U_{0,1} \left[ a_0^*
|
||||
\a_1 \hat{F}_{0,1} + \ad_1 a_0 \hat{F}_{1,0} \right] - i \kappa
|
||||
\ad_1 \a_1,
|
||||
\end{align}
|
||||
|
||||
\subsection{Density and Phase Observables}
|
||||
|
||||
|
||||
\subsection{Electric Field Stength}
|
||||
|
||||
The Electric field operator at position $\b{r}$ and at time $t$ is
|
||||
@ -572,7 +604,7 @@ Estimates of the scattering rate using real experimental parameters
|
||||
are given in Table \ref{tab:photons}.
|
||||
|
||||
\begin{table}[!htbp]
|
||||
\begin{center}
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|}
|
||||
\hline
|
||||
Value & Miyake \emph{et al.} & Weitenberg \emph{et al.} \\ \hline
|
||||
@ -584,35 +616,35 @@ are given in Table \ref{tab:photons}.
|
||||
$N_K$ & 10$^5$ & 147 \\ \hline \hline
|
||||
$n_{\Phi}$ & $6 \times 10^{11}$ s$^{-1}$ & $2 \times 10^6$ s$^{-1}$ \\ \hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\caption{ Rubidium data taken from Ref. \cite{steck}; Miyake
|
||||
\emph{et al.}: based on Ref. \cite{miyake2011}. The $5^2S_{1/2}$,
|
||||
$F=2 \rightarrow 5^2P_{3/2}$, $F^\prime = 3$ transition of
|
||||
$^{87}$Rb is considered. For this transition the Rabi frequency is
|
||||
actually larger than the detuning and and effects of saturation
|
||||
should be taken into account in a more complete analysis. However,
|
||||
it is included for discussion. The detuning is said to be a few
|
||||
natural linewidths. Note that it is much smaller than
|
||||
$\Omega_0$. The Rabi fequency is $\Omega_0 =
|
||||
(d_\mathrm{eff}/\hbar)\sqrt{2 I / c \epsilon_0}$ which is obtained
|
||||
from definition of Rabi frequency, $\Omega = \mathbf{d} \cdot
|
||||
\mathbf{E} / \hbar$, assuming the electric field is parallel to
|
||||
the dipole, and the relation $I = c \epsilon_0 |E|^2 /2$. We used
|
||||
$d_\mathrm{eff} = 1.73 \times 10^{-29}$ Cm \cite{steck};
|
||||
Weitenberg \emph{et al.}: based on Ref. \cite{weitenberg2011,
|
||||
weitenbergThesis}. The $5^2S_{1/2} \rightarrow 5^2P_{3/2}$
|
||||
transition of $^{87}$Rb is used. Ref. \cite{weitenberg2011} gives
|
||||
the free space detuning to be $\Delta_\mathrm{free} = - 2 \pi
|
||||
\cdot 45$ MHz. Ref. \cite{weitenbergThesis} clarifies that the
|
||||
relevant detuning is $\Delta = \Delta_\mathrm{free} +
|
||||
\Delta_\mathrm{lat}$, where $\Delta_\mathrm{lat} = - 2 \pi \cdot
|
||||
40$ MHz. Ref. \cite{weitenbergThesis} uses a saturation parameter
|
||||
\caption[Photon Scattering Rates]{ Rubidium data taken from
|
||||
Ref. \cite{steck}; Miyake \emph{et al.}: based on
|
||||
Ref. \cite{miyake2011}. The $5^2S_{1/2}$, $F=2 \rightarrow
|
||||
5^2P_{3/2}$, $F^\prime = 3$ transition of $^{87}$Rb is
|
||||
considered. For this transition the Rabi frequency is actually
|
||||
larger than the detuning and and effects of saturation should be
|
||||
taken into account in a more complete analysis. However, it is
|
||||
included for discussion. The detuning is said to be a few natural
|
||||
linewidths. Note that it is much smaller than $\Omega_0$. The Rabi
|
||||
fequency is $\Omega_0 = (d_\mathrm{eff}/\hbar)\sqrt{2 I / c
|
||||
\epsilon_0}$ which is obtained from definition of Rabi
|
||||
frequency, $\Omega = \mathbf{d} \cdot \mathbf{E} / \hbar$,
|
||||
assuming the electric field is parallel to the dipole, and the
|
||||
relation $I = c \epsilon_0 |E|^2 /2$. We used $d_\mathrm{eff} =
|
||||
1.73 \times 10^{-29}$ Cm \cite{steck}; Weitenberg \emph{et al.}:
|
||||
based on Ref. \cite{weitenberg2011, weitenbergThesis}. The
|
||||
$5^2S_{1/2} \rightarrow 5^2P_{3/2}$ transition of $^{87}$Rb is
|
||||
used. Ref. \cite{weitenberg2011} gives the free space detuning to
|
||||
be $\Delta_\mathrm{free} = - 2 \pi \cdot 45$
|
||||
MHz. Ref. \cite{weitenbergThesis} clarifies that the relevant
|
||||
detuning is $\Delta = \Delta_\mathrm{free} + \Delta_\mathrm{lat}$,
|
||||
where $\Delta_\mathrm{lat} = - 2 \pi \cdot 40$
|
||||
MHz. Ref. \cite{weitenbergThesis} uses a saturation parameter
|
||||
$s_\mathrm{tot}$ to quantify the intensity of the beams which is
|
||||
related to the Rabi frequency, $s_\mathrm{tot} = 2 \Omega^2 /
|
||||
\Gamma^2$ \cite{steck,foot}. We can extract $s_\mathrm{tot}$ for
|
||||
the experiment from the total scattering rate by
|
||||
$\Gamma_\mathrm{sc} = (\Gamma/2) (s_\mathrm{tot}) /
|
||||
(1+s_\mathrm{tot}+(2 \Delta / \Gamma)^2)$. A scattering rate of 60
|
||||
kHz per atom \cite{weitenberg2011} gives $s_\mathrm{tot} =
|
||||
2.5$.\label{tab:photons}}
|
||||
kHz per atom \cite{weitenberg2011} gives $s_\mathrm{tot} = 2.5$.}
|
||||
\label{tab:photons}
|
||||
\end{table}
|
||||
|
15
Chapter3/chapter3.tex
Normal file
15
Chapter3/chapter3.tex
Normal file
@ -0,0 +1,15 @@
|
||||
%*******************************************************************************
|
||||
%*********************************** Third Chapter *****************************
|
||||
%*******************************************************************************
|
||||
|
||||
\chapter{Probing Matter-Field and Atom-Number Correlations in Optical Lattices
|
||||
by Global Nondestructive Addressing} %Title of the Third Chapter
|
||||
|
||||
\ifpdf
|
||||
\graphicspath{{Chapter3/Figs/Raster/}{Chapter3/Figs/PDF/}{Chapter3/Figs/}}
|
||||
\else
|
||||
\graphicspath{{Chapter3/Figs/Vector/}{Chapter3/Figs/}}
|
||||
\fi
|
||||
|
||||
|
||||
%********************************** %First Section **************************************
|
@ -1,7 +1,7 @@
|
||||
% ******************************* PhD Thesis Template **************************
|
||||
% Please have a look at the README.md file for info on how to use the template
|
||||
|
||||
\documentclass[a4paper,12pt,times,numbered,print,index,draft,chapter]{Classes/PhDThesisPSnPDF}
|
||||
\documentclass[a4paper,12pt,times,numbered,print,index,draft]{Classes/PhDThesisPSnPDF}
|
||||
|
||||
% ******************************************************************************
|
||||
% ******************************* Class Options ********************************
|
||||
@ -101,7 +101,7 @@
|
||||
% To use choose `chapter' option in the document class
|
||||
|
||||
\ifdefineChapter
|
||||
\includeonly{Chapter2/chapter2}
|
||||
\includeonly{Chapter3/chapter3}
|
||||
\fi
|
||||
|
||||
% ******************************** Front Matter ********************************
|
||||
@ -137,7 +137,7 @@
|
||||
|
||||
\include{Chapter1/chapter1}
|
||||
\include{Chapter2/chapter2}
|
||||
%\include{Chapter3/chapter3}
|
||||
\include{Chapter3/chapter3}
|
||||
%\include{Chapter4/chapter4}
|
||||
%\include{Chapter5/chapter5}
|
||||
%\include{Chapter6/chapter6}
|
||||
|
Reference in New Issue
Block a user