Finished section on electric field strength
This commit is contained in:
parent
91bb08ff1a
commit
85bc2f1d0e
@ -450,7 +450,8 @@ between the two levels, and $c$ is the speed of light in vacuum.
|
||||
We have already derived an expression for the atomic lowering
|
||||
operator, $\sigma^-$, in Eq. \eqref{eq:sigmam} and it is given by
|
||||
\begin{equation}
|
||||
\sigma^- = - \frac{i} {\Delta_a} \sum_\b{k} g_\b{k} a_\b{k} u_\b{k}(\b{r}).
|
||||
\sigma^-(\b{r}, t) = - \frac{i} {\Delta_a} \sum_\b{k} g_\b{k}
|
||||
a_\b{k}(t) u_\b{k}(\b{r}).
|
||||
\end{equation}
|
||||
We will want to substitute this expression into Eq. \eqref{eq:Ep}, but
|
||||
first we note that in the setup we consider the coherent probe will be
|
||||
@ -458,7 +459,7 @@ much stronger than the scattered modes. This in turn implies that the
|
||||
expression for $\sigma^-$ will be dominated by this external
|
||||
probe. Therefore, we drop the sum and consider only a single wave
|
||||
vector, $\b{k}_0$, of the dominant contribution from the external
|
||||
beam.
|
||||
beam corresponding to the mode $\a_0$.
|
||||
|
||||
We now use the definititon of the atom-light coupling constant
|
||||
\cite{Scully} to make the substitution
|
||||
@ -567,3 +568,51 @@ Therefore, we can now express the quantity $n_{\Phi}$ as
|
||||
\begin{equation}
|
||||
n_{\Phi} = \frac{1}{8} \left(\frac{\Omega_0}{\Delta_a}\right)^2 \frac{\Gamma}{2} N_K.
|
||||
\end{equation}
|
||||
Estimates of the scattering rate using real experimental parameters
|
||||
are given in Table \ref{tab:photons}.
|
||||
|
||||
\begin{table}[!htbp]
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|}
|
||||
\hline
|
||||
Value & Miyake \emph{et al.} & Weitenberg \emph{et al.} \\ \hline
|
||||
$\omega_a$ & \multicolumn{2}{|c|}{$2 \pi \cdot 384$ THz}\\ \hline
|
||||
$\Gamma$ & \multicolumn{2}{|c|}{$2 \pi \cdot 6.07$ MHz} \\ \hline
|
||||
$\Delta_a$ & $2\pi \cdot 30$ MHz & $2 \pi \cdot 85$ MHz \\ \hline
|
||||
$I$ & $4250$ Wm$^{-2}$ & N/A \\ \hline
|
||||
$\Omega_0$ & 293$\times 10^6$ s$^{-1}$ & 42.5$\times 10^6$ s$^{-1}$ \\ \hline
|
||||
$N_K$ & 10$^5$ & 147 \\ \hline \hline
|
||||
$n_{\Phi}$ & $6 \times 10^{11}$ s$^{-1}$ & $2 \times 10^6$ s$^{-1}$ \\ \hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\caption{ Rubidium data taken from Ref. \cite{steck}; Miyake
|
||||
\emph{et al.}: based on Ref. \cite{miyake2011}. The $5^2S_{1/2}$,
|
||||
$F=2 \rightarrow 5^2P_{3/2}$, $F^\prime = 3$ transition of
|
||||
$^{87}$Rb is considered. For this transition the Rabi frequency is
|
||||
actually larger than the detuning and and effects of saturation
|
||||
should be taken into account in a more complete analysis. However,
|
||||
it is included for discussion. The detuning is said to be a few
|
||||
natural linewidths. Note that it is much smaller than
|
||||
$\Omega_0$. The Rabi fequency is $\Omega_0 =
|
||||
(d_\mathrm{eff}/\hbar)\sqrt{2 I / c \epsilon_0}$ which is obtained
|
||||
from definition of Rabi frequency, $\Omega = \mathbf{d} \cdot
|
||||
\mathbf{E} / \hbar$, assuming the electric field is parallel to
|
||||
the dipole, and the relation $I = c \epsilon_0 |E|^2 /2$. We used
|
||||
$d_\mathrm{eff} = 1.73 \times 10^{-29}$ Cm \cite{steck};
|
||||
Weitenberg \emph{et al.}: based on Ref. \cite{weitenberg2011,
|
||||
weitenbergThesis}. The $5^2S_{1/2} \rightarrow 5^2P_{3/2}$
|
||||
transition of $^{87}$Rb is used. Ref. \cite{weitenberg2011} gives
|
||||
the free space detuning to be $\Delta_\mathrm{free} = - 2 \pi
|
||||
\cdot 45$ MHz. Ref. \cite{weitenbergThesis} clarifies that the
|
||||
relevant detuning is $\Delta = \Delta_\mathrm{free} +
|
||||
\Delta_\mathrm{lat}$, where $\Delta_\mathrm{lat} = - 2 \pi \cdot
|
||||
40$ MHz. Ref. \cite{weitenbergThesis} uses a saturation parameter
|
||||
$s_\mathrm{tot}$ to quantify the intensity of the beams which is
|
||||
related to the Rabi frequency, $s_\mathrm{tot} = 2 \Omega^2 /
|
||||
\Gamma^2$ \cite{steck,foot}. We can extract $s_\mathrm{tot}$ for
|
||||
the experiment from the total scattering rate by
|
||||
$\Gamma_\mathrm{sc} = (\Gamma/2) (s_\mathrm{tot}) /
|
||||
(1+s_\mathrm{tot}+(2 \Delta / \Gamma)^2)$. A scattering rate of 60
|
||||
kHz per atom \cite{weitenberg2011} gives $s_\mathrm{tot} =
|
||||
2.5$.\label{tab:photons}}
|
||||
\end{table}
|
||||
|
@ -1,3 +1,40 @@
|
||||
@book{foot,
|
||||
author = {Foot, C. J.},
|
||||
title = {{Atomic Physics}},
|
||||
publisher = {Oxford University Press},
|
||||
year = {2005}
|
||||
}
|
||||
@phdthesis{weitenbergThesis,
|
||||
author = {Weitenberg, Christof},
|
||||
number = {April},
|
||||
title = {{Single-Atom Resolved Imaging and Manipulation in an Atomic Mott Insulator}},
|
||||
year = {2011}
|
||||
}
|
||||
@article{steck,
|
||||
author = {Steck, Daniel Adam},
|
||||
title = {{Rubidium 87 D Line Data Author contact information :}},
|
||||
url = {http://steck.us/alkalidata}
|
||||
}
|
||||
@article{weitenberg2011,
|
||||
title={Coherent light scattering from a two-dimensional Mott insulator},
|
||||
author={Weitenberg, Christof and Schau{\ss}, Peter and Fukuhara, Takeshi and Cheneau, Marc and Endres, Manuel and Bloch, Immanuel and Kuhr, Stefan},
|
||||
journal={Physical review letters},
|
||||
volume={106},
|
||||
number={21},
|
||||
pages={215301},
|
||||
year={2011},
|
||||
publisher={APS}
|
||||
}
|
||||
@article{miyake2011,
|
||||
title={Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices},
|
||||
author={Miyake, Hirokazu and Siviloglou, Georgios A and Puentes, Graciana and Pritchard, David E and Ketterle, Wolfgang and Weld, David M},
|
||||
journal={Physical review letters},
|
||||
volume={107},
|
||||
number={17},
|
||||
pages={175302},
|
||||
year={2011},
|
||||
publisher={APS}
|
||||
}
|
||||
@article{mekhov2012,
|
||||
title={Quantum optics with ultracold quantum gases: towards the full quantum regime of the light--matter interaction},
|
||||
author={Mekhov, Igor B and Ritsch, Helmut},
|
||||
|
Reference in New Issue
Block a user