Finished for the day
This commit is contained in:
parent
85bc2f1d0e
commit
3719e20e6a
@ -70,12 +70,12 @@ quantum potential in contrast to the classical lattice trap.
|
|||||||
\begin{figure}[htbp!]
|
\begin{figure}[htbp!]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=1.0\textwidth]{LatticeDiagram}
|
\includegraphics[width=1.0\textwidth]{LatticeDiagram}
|
||||||
\caption[LatticeDiagram]{Atoms (green) trapped in an optical lattice
|
\caption[Experimental Setup]{Atoms (green) trapped in an optical
|
||||||
are illuminated by a coherent probe beam (red). The light scatters
|
lattice are illuminated by a coherent probe beam (red). The light
|
||||||
(blue) in free space or into a cavity and is measured by a
|
scatters (blue) in free space or into a cavity and is measured by
|
||||||
detector. If the experiment is in free space light can scatter in
|
a detector. If the experiment is in free space light can scatter
|
||||||
any direction. A cavity on the other hand enhances scattering in
|
in any direction. A cavity on the other hand enhances scattering
|
||||||
one particular direction.}
|
in one particular direction.}
|
||||||
\label{fig:LatticeDiagram}
|
\label{fig:LatticeDiagram}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -401,6 +401,38 @@ operators, we can easily have access to higher moments by simply
|
|||||||
simply considering higher moments of the $\a_l$ such as the photon
|
simply considering higher moments of the $\a_l$ such as the photon
|
||||||
number $\ad_l \a_l$.
|
number $\ad_l \a_l$.
|
||||||
|
|
||||||
|
\subsection{Simplifications for Two Modes and Linear Coupling}
|
||||||
|
|
||||||
|
So far we have derived a general Hamiltonian for an arbitrary number
|
||||||
|
of light modes. However, most of the time we will be considering a
|
||||||
|
much simpler setup, namely the case with a coherent probe beam and a
|
||||||
|
single scattered mode as shown in Fig. \ref{fig:LatticeDiagram}. We
|
||||||
|
can use this fact to simplify our equations. Even though we consider
|
||||||
|
only one scattered mode, this treatment is also applicable to free
|
||||||
|
space scattering where the atoms can emit light in any direction. We
|
||||||
|
will simply neglect multiple scattering events, thus we can simply
|
||||||
|
vary the scattered mode's angle to obtain results for all possible
|
||||||
|
directions.
|
||||||
|
|
||||||
|
We consider the two modes indexed with $l = 0$ and $1$, $\a_0$ and $\a_1$. We
|
||||||
|
will take $\a_0$ to be the external probe beam which is incident on the
|
||||||
|
quantum gas (it is not pumped into the cavity via $\eta_0$).
|
||||||
|
Furthermore, we will consider it to be in a coherent state. Therefore,
|
||||||
|
we can treat $a_0$ in our equations like a complex number instead of a
|
||||||
|
full operator. This leaves $\a_1$ as our scattered light mode. We can
|
||||||
|
now simplify the Hamiltonian to
|
||||||
|
\begin{align}
|
||||||
|
\H = & \hbar \left( \omega_1 + U_{1,1} \hat{F}_{1,1} \right) \ad_1
|
||||||
|
\a_1 -J^\mathrm{cl} \sum_{\langle i,j \rangle}^M \bd_i b_j +
|
||||||
|
\frac{U}{2} \sum_{i}^M \hat{n}_i (\hat{n}_i - 1) \nonumber \\ &
|
||||||
|
+ \hbar U_{0,0} |a_0|^2 \hat{F}_{0,0} + \hbar U_{0,1} \left[ a_0^*
|
||||||
|
\a_1 \hat{F}_{0,1} + \ad_1 a_0 \hat{F}_{1,0} \right] - i \kappa
|
||||||
|
\ad_1 \a_1,
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\subsection{Density and Phase Observables}
|
||||||
|
|
||||||
|
|
||||||
\subsection{Electric Field Stength}
|
\subsection{Electric Field Stength}
|
||||||
|
|
||||||
The Electric field operator at position $\b{r}$ and at time $t$ is
|
The Electric field operator at position $\b{r}$ and at time $t$ is
|
||||||
@ -572,47 +604,47 @@ Estimates of the scattering rate using real experimental parameters
|
|||||||
are given in Table \ref{tab:photons}.
|
are given in Table \ref{tab:photons}.
|
||||||
|
|
||||||
\begin{table}[!htbp]
|
\begin{table}[!htbp]
|
||||||
\begin{center}
|
\centering
|
||||||
\begin{tabular}{|c|c|c|}
|
\begin{tabular}{|c|c|c|}
|
||||||
\hline
|
\hline
|
||||||
Value & Miyake \emph{et al.} & Weitenberg \emph{et al.} \\ \hline
|
Value & Miyake \emph{et al.} & Weitenberg \emph{et al.} \\ \hline
|
||||||
$\omega_a$ & \multicolumn{2}{|c|}{$2 \pi \cdot 384$ THz}\\ \hline
|
$\omega_a$ & \multicolumn{2}{|c|}{$2 \pi \cdot 384$ THz}\\ \hline
|
||||||
$\Gamma$ & \multicolumn{2}{|c|}{$2 \pi \cdot 6.07$ MHz} \\ \hline
|
$\Gamma$ & \multicolumn{2}{|c|}{$2 \pi \cdot 6.07$ MHz} \\ \hline
|
||||||
$\Delta_a$ & $2\pi \cdot 30$ MHz & $2 \pi \cdot 85$ MHz \\ \hline
|
$\Delta_a$ & $2\pi \cdot 30$ MHz & $2 \pi \cdot 85$ MHz \\ \hline
|
||||||
$I$ & $4250$ Wm$^{-2}$ & N/A \\ \hline
|
$I$ & $4250$ Wm$^{-2}$ & N/A \\ \hline
|
||||||
$\Omega_0$ & 293$\times 10^6$ s$^{-1}$ & 42.5$\times 10^6$ s$^{-1}$ \\ \hline
|
$\Omega_0$ & 293$\times 10^6$ s$^{-1}$ & 42.5$\times 10^6$ s$^{-1}$ \\ \hline
|
||||||
$N_K$ & 10$^5$ & 147 \\ \hline \hline
|
$N_K$ & 10$^5$ & 147 \\ \hline \hline
|
||||||
$n_{\Phi}$ & $6 \times 10^{11}$ s$^{-1}$ & $2 \times 10^6$ s$^{-1}$ \\ \hline
|
$n_{\Phi}$ & $6 \times 10^{11}$ s$^{-1}$ & $2 \times 10^6$ s$^{-1}$ \\ \hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{center}
|
\caption[Photon Scattering Rates]{ Rubidium data taken from
|
||||||
\caption{ Rubidium data taken from Ref. \cite{steck}; Miyake
|
Ref. \cite{steck}; Miyake \emph{et al.}: based on
|
||||||
\emph{et al.}: based on Ref. \cite{miyake2011}. The $5^2S_{1/2}$,
|
Ref. \cite{miyake2011}. The $5^2S_{1/2}$, $F=2 \rightarrow
|
||||||
$F=2 \rightarrow 5^2P_{3/2}$, $F^\prime = 3$ transition of
|
5^2P_{3/2}$, $F^\prime = 3$ transition of $^{87}$Rb is
|
||||||
$^{87}$Rb is considered. For this transition the Rabi frequency is
|
considered. For this transition the Rabi frequency is actually
|
||||||
actually larger than the detuning and and effects of saturation
|
larger than the detuning and and effects of saturation should be
|
||||||
should be taken into account in a more complete analysis. However,
|
taken into account in a more complete analysis. However, it is
|
||||||
it is included for discussion. The detuning is said to be a few
|
included for discussion. The detuning is said to be a few natural
|
||||||
natural linewidths. Note that it is much smaller than
|
linewidths. Note that it is much smaller than $\Omega_0$. The Rabi
|
||||||
$\Omega_0$. The Rabi fequency is $\Omega_0 =
|
fequency is $\Omega_0 = (d_\mathrm{eff}/\hbar)\sqrt{2 I / c
|
||||||
(d_\mathrm{eff}/\hbar)\sqrt{2 I / c \epsilon_0}$ which is obtained
|
\epsilon_0}$ which is obtained from definition of Rabi
|
||||||
from definition of Rabi frequency, $\Omega = \mathbf{d} \cdot
|
frequency, $\Omega = \mathbf{d} \cdot \mathbf{E} / \hbar$,
|
||||||
\mathbf{E} / \hbar$, assuming the electric field is parallel to
|
assuming the electric field is parallel to the dipole, and the
|
||||||
the dipole, and the relation $I = c \epsilon_0 |E|^2 /2$. We used
|
relation $I = c \epsilon_0 |E|^2 /2$. We used $d_\mathrm{eff} =
|
||||||
$d_\mathrm{eff} = 1.73 \times 10^{-29}$ Cm \cite{steck};
|
1.73 \times 10^{-29}$ Cm \cite{steck}; Weitenberg \emph{et al.}:
|
||||||
Weitenberg \emph{et al.}: based on Ref. \cite{weitenberg2011,
|
based on Ref. \cite{weitenberg2011, weitenbergThesis}. The
|
||||||
weitenbergThesis}. The $5^2S_{1/2} \rightarrow 5^2P_{3/2}$
|
$5^2S_{1/2} \rightarrow 5^2P_{3/2}$ transition of $^{87}$Rb is
|
||||||
transition of $^{87}$Rb is used. Ref. \cite{weitenberg2011} gives
|
used. Ref. \cite{weitenberg2011} gives the free space detuning to
|
||||||
the free space detuning to be $\Delta_\mathrm{free} = - 2 \pi
|
be $\Delta_\mathrm{free} = - 2 \pi \cdot 45$
|
||||||
\cdot 45$ MHz. Ref. \cite{weitenbergThesis} clarifies that the
|
MHz. Ref. \cite{weitenbergThesis} clarifies that the relevant
|
||||||
relevant detuning is $\Delta = \Delta_\mathrm{free} +
|
detuning is $\Delta = \Delta_\mathrm{free} + \Delta_\mathrm{lat}$,
|
||||||
\Delta_\mathrm{lat}$, where $\Delta_\mathrm{lat} = - 2 \pi \cdot
|
where $\Delta_\mathrm{lat} = - 2 \pi \cdot 40$
|
||||||
40$ MHz. Ref. \cite{weitenbergThesis} uses a saturation parameter
|
MHz. Ref. \cite{weitenbergThesis} uses a saturation parameter
|
||||||
$s_\mathrm{tot}$ to quantify the intensity of the beams which is
|
$s_\mathrm{tot}$ to quantify the intensity of the beams which is
|
||||||
related to the Rabi frequency, $s_\mathrm{tot} = 2 \Omega^2 /
|
related to the Rabi frequency, $s_\mathrm{tot} = 2 \Omega^2 /
|
||||||
\Gamma^2$ \cite{steck,foot}. We can extract $s_\mathrm{tot}$ for
|
\Gamma^2$ \cite{steck,foot}. We can extract $s_\mathrm{tot}$ for
|
||||||
the experiment from the total scattering rate by
|
the experiment from the total scattering rate by
|
||||||
$\Gamma_\mathrm{sc} = (\Gamma/2) (s_\mathrm{tot}) /
|
$\Gamma_\mathrm{sc} = (\Gamma/2) (s_\mathrm{tot}) /
|
||||||
(1+s_\mathrm{tot}+(2 \Delta / \Gamma)^2)$. A scattering rate of 60
|
(1+s_\mathrm{tot}+(2 \Delta / \Gamma)^2)$. A scattering rate of 60
|
||||||
kHz per atom \cite{weitenberg2011} gives $s_\mathrm{tot} =
|
kHz per atom \cite{weitenberg2011} gives $s_\mathrm{tot} = 2.5$.}
|
||||||
2.5$.\label{tab:photons}}
|
\label{tab:photons}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
15
Chapter3/chapter3.tex
Normal file
15
Chapter3/chapter3.tex
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
%*******************************************************************************
|
||||||
|
%*********************************** Third Chapter *****************************
|
||||||
|
%*******************************************************************************
|
||||||
|
|
||||||
|
\chapter{Probing Matter-Field and Atom-Number Correlations in Optical Lattices
|
||||||
|
by Global Nondestructive Addressing} %Title of the Third Chapter
|
||||||
|
|
||||||
|
\ifpdf
|
||||||
|
\graphicspath{{Chapter3/Figs/Raster/}{Chapter3/Figs/PDF/}{Chapter3/Figs/}}
|
||||||
|
\else
|
||||||
|
\graphicspath{{Chapter3/Figs/Vector/}{Chapter3/Figs/}}
|
||||||
|
\fi
|
||||||
|
|
||||||
|
|
||||||
|
%********************************** %First Section **************************************
|
@ -1,7 +1,7 @@
|
|||||||
% ******************************* PhD Thesis Template **************************
|
% ******************************* PhD Thesis Template **************************
|
||||||
% Please have a look at the README.md file for info on how to use the template
|
% Please have a look at the README.md file for info on how to use the template
|
||||||
|
|
||||||
\documentclass[a4paper,12pt,times,numbered,print,index,draft,chapter]{Classes/PhDThesisPSnPDF}
|
\documentclass[a4paper,12pt,times,numbered,print,index,draft]{Classes/PhDThesisPSnPDF}
|
||||||
|
|
||||||
% ******************************************************************************
|
% ******************************************************************************
|
||||||
% ******************************* Class Options ********************************
|
% ******************************* Class Options ********************************
|
||||||
@ -101,7 +101,7 @@
|
|||||||
% To use choose `chapter' option in the document class
|
% To use choose `chapter' option in the document class
|
||||||
|
|
||||||
\ifdefineChapter
|
\ifdefineChapter
|
||||||
\includeonly{Chapter2/chapter2}
|
\includeonly{Chapter3/chapter3}
|
||||||
\fi
|
\fi
|
||||||
|
|
||||||
% ******************************** Front Matter ********************************
|
% ******************************** Front Matter ********************************
|
||||||
@ -137,7 +137,7 @@
|
|||||||
|
|
||||||
\include{Chapter1/chapter1}
|
\include{Chapter1/chapter1}
|
||||||
\include{Chapter2/chapter2}
|
\include{Chapter2/chapter2}
|
||||||
%\include{Chapter3/chapter3}
|
\include{Chapter3/chapter3}
|
||||||
%\include{Chapter4/chapter4}
|
%\include{Chapter4/chapter4}
|
||||||
%\include{Chapter5/chapter5}
|
%\include{Chapter5/chapter5}
|
||||||
%\include{Chapter6/chapter6}
|
%\include{Chapter6/chapter6}
|
||||||
|
Reference in New Issue
Block a user