
Chapter 6

Nucleon-Nucleon Interaction,

Deuteron

Protons and neutrons are the lowest-energy bound states of quarks and gluons. When we put two
or more of these particles together, they interact, scatter and sometimes form bound states due
to the strong interactions. If one is interested in the low-energy region where the nucleons hardly
get excited internally, we can treat the nucleons as inert, structureless elementary particles, and
we can understand many of the properties of the multi-nucleon systems by the nucleon-nucleon
interactions. If the nucleons are non-relativistic, the interaction can be described by a potential.
Since the fundamental theory governing the nucleon-nucleon interactions is QCD, the interactions
shall be calculable from the physics of quarks and gluons. Nonetheless, the problem is quite
complicated and only limited progress has been made from the first principles so far. Therefore,
the approach we are going take is a phenomenological one: One first tries to extract the nucleon-
nucleon interaction from the nucleon-nucleon scattering data or few nucleon properties, and then
one tries to use these interactions to make predictions for the nuclear many-body system. In this
and the following few chapters, we are going to discuss some of results of this approach.

6.1 Yukawa Interaction and One-Pion Exchange at Long Distance

If we consider the nucleons as elementary particles, their strong interactions are known have a short
range from α particle scattering experiments of Rutherford. In fact, the range of the interaction is
roughly the size of the atomic nuclei, namely on the order of a few fermis (fm) (1 fm = 10−15m).

The first theory of the nucleon force was put forward by H. Yukawa, who suggested that the
interaction between two nucleons is effected by the exchange of a particle, just like the interaction
between the electric charges by the exchange of a photon. However, because the nucleon interactions
appear to be short-ranged, the particle must have a finite mass. In fact, one can correlate the range
and mass roughly by the quantum uncertainty principle

r ∼ 1/m , (6.1)

therefore, the mass of the quanta exchanged is about 1/fm which is about 200 MeV. The particle
was discovered almost 20 years later and was identified as π meson (140 MeV). The most significant
aspect of the Yukawa theory is generalizing the relation between particles and forces—-the existence
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100 CHAPTER 6. NUCLEON-NUCLEON INTERACTION, DEUTERON

of strong interactions implies the existence of a new particle! This was considered a novel and radical
idea at that time.

The modern theory of interactions through particle exchanges is made possible by the de-
velopment of quantum field theory. However, at low-energy, one can assume the interactions is
instantaneous and therefore the concept of interaction potential becomes useful. To illustrate the
derivation of a potential through particle exchange, consider the interaction of a scalar particle
with the nucleons. Introducing a quantum field φ to represent the particle, the Yukawa interaction
has the form,

L = gφψ̄ψ . (6.2)

The scattering S-matrix between two nucleon states with momentum p1 and p2 is

S = (2π)4δ4(p1 + p2 − p′1 − p′2)igU (p′1)U(p1)
i

(p1 − p′1)
2 −m2 + iǫ

igU (p′2)U(p2) (6.3)

An interacting potential can be derived with the following approximation: Since particles are non-
relativistic, their energy is dominated by the rest mass, and therefore

(p1 − p′1)
2 = −(~p− ~p′)2 + O(1/M) , (6.4)

where M is the nucleon mass. The propagator is now energy-independent, and the interac-
tion is instantaneous and can be represented by a potential. The on-shell Dirac spinor is U =
√

Ep +M(χ,~σ ·~p/(Ep +M)χ) which to the leading order can be approximated by U =
√

2M(χ, 0).
Therefore the S-matrix can be approximated by

S ∼ −i(2π)4δ4(p1 + p2 − p′1 − p′2)(2M)2χ†
2′χ2χ

†
1′χ1

−g2

~q2 +m2
(6.5)

where we introduce the center-of-mass and relative variables,

~R = (~r1 + ~r2)/2, ~r = ~r1 − ~r2;

~P = ~p1 + ~p2, ~p = (~p1 − ~p2)/2; (6.6)

and assume ~P = 0. Therefore, ~q = ~p− ~p′ is the relative momentum.
The relationship between the interaction potential V and the S-matrix is

S = exp(−i
∫

dtV ) ∼ −i
∫

dtV = −i(2π)δ(0)V (6.7)

Therefore, we find

〈~p′1~p′2|V |~p1~p2〉 = (2π)3δ(~p2 + ~p1 − ~p2 − ~p1)χ
†
2′χ2χ

†
1′χ1

−g2

~q2 +m2
(6.8)

where the states are normalized according to 〈~p|~p〉 = χ†χ(2π)3δ(~p − ~p′). The δ-function in the
above matrix element indicates that the interaction is translational-invariant, and V is a function
of the relative coordinate ~r. The above matrix element is then

∫

e−~q·~rV (r)d3~r =
−g2

~q2 +m2
. (6.9)
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Making an inverse Fourier transformation, one gets

V (r) = − g2

4π

e−mr

r
, (6.10)

which is an attractive interaction, independent of the spin of the nucleon. When m = 0, the
interaction is Coulomb-like and is long range. For a finite m, the interaction is negligible beyond
the distance r ∼ 1/m.

Pi-meson is the lightest meson because of the spontaneous chiral symmetry breaking. It is
responsible to the longest range nucleon-nucleon force. One of the important new features here is
isospin symmetry. Pi-meson has iso-spin 1, and can be represented by a vector ~π = (π1, π2, π3)
in isospin space. Combinations of π1,2 generate positive and negative charged pions π±, and π3

corresponds to a neutral pion π0. Using ψ to represent the nucleon field, a spinor in the isospin
space ψ = (p, n), a isospin symmetric Yukawa interaction is

LY = gπNNψiγ5~τψ · ~φ (6.11)

where ~π is the isovector pion field.
We can again consider the nucleon-nucleon interaction through one-pion exchange. Because the

pion is a pseudo-scalar particle, parity conservation requires that it be emitted or absorbed in the
p-wave. Therefore there is a factor of ~p associated with the interaction vertex in the momentum
space. This factor is multiplied by the spin operator ~sigma forms a pseudo-scalar. Going through
the same derivation as the scalar case, we find the following potential,

V (~r) =
g2

4M2
N

(~τ1 · ~τ2)(~σ1 · ~∇)(~σ2 · ~∇)
e−mπr

r
. (6.12)

where the isospin factor ~τ1 · ~τ2 depends on the isospin states of the two nucleons.
For a system of two interacting nucleons the total isospin operator is given by

~T = ~t1 + ~t2 . (6.13)

If we ignore the EM interaction and the mass difference of up and down quarks, the interaction
Hamiltonian conserves isospin and so commutes with all components of isospin

[Ĥ, ~T ] = 0 . (6.14)

Then since Ĥ is invariant under rotations in isospin space, it can only depend on the isospin through
~T 2, where

~T 2 = (~t1 + ~t2)
2 (6.15)

= ~t21 + ~t22 + 2~t1 · ~t2 (6.16)

=
3

4
+

3

4
+

1

2
~τ1 · ~τ2 (6.17)

So Ĥ or potential can be a function of the quantity ~τ1 · ~τ2.
The states of good total T̂ 2 are also eigenstates of Ĥ. Then we expect the following properties

of a system of 2 nucleons:
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• The eigenstates with T = 1 will be degenerate (just as the S = 1 states for a system of 2 spin
1
2 objects with a rotationally symmetric Hamiltonian), i.e., the states

pp nn
1√
2
(pn+ np) (6.18)

all have identical interactions and will be degenerate in energy.

• The T = 0 combination 1√
2
(pn − np) can be different (and generally is), i.e, its energy is

different from the 3 T = 1 states and the interaction differs in this channel.

It is therefore advantageous to form states of good isospin to describe a system of 2 nucleons. Note
the combination ~τ1 · ~τ2 is given by

~τ1 · ~τ2 = 4~T1 · ~T2 = 2

[

T (T + 1) − 3

2

]

=

{−3, T = 0
1, T = 1

. (6.19)

Going back to the one-pion exchange potential, it can be shown that

(~σ1 · ~∇)(~σ2 · ~∇)
e−mπr

mπr
=

1

3
m2

π

[

~σ1 · ~σ2 + Ŝ12

(

1 +
3

mπr
+

3

m2
πr

2

)]

e−mπr

mπr
. (6.20)

where S12 is called tensor operator, defined as

S12 = 2

[

3
(~S · ~r)2
r2

− ~S2

]

(6.21)

where ~S is the total spin.

Putting together all the factors, one finds that the nucleon-nucleon potential from one pion
exchange as,

V = V0(~τ1 · ~τ2)
[

~σ1 · ~σ2 + S12

(

1 +~3mπr +~3(mπr)
2
)] e−mπr

mπr
(6.22)

where V0 = g2m2
π/12M

2. This potential matches the phenomenological forms extracted from
experimental data at large N -N separations (∼ 2 − 3 fm).

At smaller distance, there is also exchanges from scalar meson (isospin 0) of about 500 MeV. The
interaction is attractive as we seen above, corresponding to a medium range attraction. Finally
there are also exchanges from vector mesons, ω (isospin-0) meson and ρ meson (spin-1). The
interactions from the ρ and ω meson are short-range repulsive. One can build a phenomenological
nucleon-nucleon interaction based on the meson exchanges. The so-called Nijmegen potential and
Bonn potential are generated through this approach. The short range interactions are model
dependent by nature, there is no unique picture for them. This is so because only in the low-energy
processes, potentials are useful concept, however, the short range interactions are not so sensitive
to the low-energy observables. Therefore, either one can adopt a more phenomenological approach
in which some “educated” functional forms are assumed or use the so-called effective field theory
approach to parameterize the unknowns systematically.
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6.2 General Aspects of the Two-Body Interactions

For the two-nucleon system, the experimental information consists of two particle scattering phase
shifts in various partial waves, and the bound state properties of the deuteron. From data, one
learns that the nuclear force has the following the main features:

• Attractive: to form nuclear bound states

• Short Range: of order 1 fm

• Spin-Dependent:

• Noncentral: there is a tensor component)

• Isospin Symmetric:

• Hard Core: so that the nuclear matter does not collapse

• Spin-Orbit Force

• Parity Conservation

In phenomenology, one tries to come up with the forms of the forces which will satisfy the above
properties. In particular, one parametrize the short distance potentials consistent with fundamental
symmetries and fit the parameters to experimental data.

For the system of two nucleons, use ~r = ~r1−~r2 to represent relative position and ~p = (~p1−~p2)/2
relative momentum, ~s1 and ~s2 their respective spins. The relative orbital angular momentum is
~L = ~r × ~p and the total spin is ~S = ~s1 + ~s2. When the spins are coupled, the total spin can either
be 0 or 1. For the case of S = 0, we have a single spin state which is called singlet. For the case
of S = 1, we have three spin states which are called triplet. The total angular momentum is the
sum of orbital angular momentum and total spin: ~J = ~L+ ~S, which involves the coupling of three
angular momenta ~s1, ~s2 and ~L.

The orbital angular momentum quantum number is L. In the singlet spin case, we have J = L
because S = 0. For the triplet states, J = L − 1, L, L + 1 if L 6= 0, and J = 1 if L = 0. A state
with (S,L, J) is usually labelled as 2S+1LJ , where L = 0, 1, 2, 3, are usually called S,P,D,F,G...
states. Therefore, we can make the following table for the angular momentum states,

J = 0 3P0
1S0

J = 1 3S1
3D1

3P1
1P1

J = 2 3P2
3F2

3D2
1D2

J = 3 3D3
3G3

3F3
1F3

(6.23)

Because of SO(3) symmetry, no nuclear interactions can couple states with different total angular
momenta. We say J is a good quantum number. Only the states in the first two columns can mix
because they have the same parity and angular momentum. We choose the basis states with good
J , |n(LS)JM〉 where,

|(LS)JM〉 =
∑

mL

YLmL
|SmS〉〈LmSmS |JM〉 (6.24)
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where 〈LmSmS|JM〉 is the Clebsch-Gordon coefficient. In the coordinate representation, we use
YM

LSJ to label the above total angular momentum eigenstates. Therefore, the eigenfunction can be
written as

ψnLSJM = Rn(SL)J(r)YM
LSJ . (6.25)

where Rn(SL)J(r) is the corresponding radial wave function.

Let us consider the constraint from Pauli principle. For the two nucleon system, the isospin T
can either be 1 or 0. Since the total wave function has to be antisymmetric, let us consider what
are the possible value of T , S, and L to make that happen. If we use +1 to represent symmetric
wave function and −1 to represent antisymmetric, then the spin wave function is (−1)S+1 and the
isospin wave function has symmetry factor (−1)T+1 and the orbital wave function is (−1)L. The
total symmetry factor is (−1)L+S+T which has to be −1. Therefore L+ T + S has to be odd. For
deuteron, S = 0, L = 0 and therefore T = 1.

What are the possible forms of the nuclear force? The simplest is a central force which just
dependent on the relative distance VC(r). In this case, different L states have different energies.
For every L, the singlet and triplet spin states have the same energy. The eigen-functions of the
system can chosen to be |nLmLSmS〉 ∼ RnL(r)YLML

χSMS
.

There could be also a pure spin-dependence force. The most general form is VS(r)~σ1 · ~σ2. In
fact, we can write

~σ1 · ~σ2 = 2~S2 − 3 . (6.26)

Therefore the matrix element of the spin operator depends on the total spin of the two particles. In
the singlet state, we have ~σ1 ·~σ2 = −3, the potential is VC −3VS ; in the triplet state (S=1), we have
~σ1 ·~σ2 = 1, and the potential is VC +VS . Now, the energy not only depends on the quantum number
L but also on S. However, the eigen-function of the system can still be chosen as |nLmLSmS〉; the
radial wave function depends on S, RnLS(r), because the potential does.

There can be also a pure iso-spin-dependence force. The most general form is VI(r)~τ1 ·~τ2; There
can be a spin-isospin dependent force. The most general form is VSI(r)~σ1 · ~σ2~τ1 · ~τ2.

The spin-order force can be written as VLS(r)~L · ~S. There can be higher-order spin-orbit terms
like (~L · ~S)n as well. From the angular momentum addition, we can write

~L · ~S =
1

2
( ~J2 − ~L2 − ~S2) . (6.27)

Therefore the matrix element of the operator is simple in the basis which is formed by the common
eigenstates of ~J2, J3, ~L

2, ~S2. The potential used for solving the radial Schroedinger equation is
VLSJ(r) = VC(r) + [2S(S + 1) − 3]VS(r) + +[2T (T + 1) − 3]VI(r) + [2S(S + 1) − 3][2T (T + 1) −
3]VSI(r) + 1

2 [J(J + 1) − L(L+ 1) − S(S + 1)]VLS(r).

Finally, there is an interaction of the type

VT (r)

[

3
(σ1 · ~r)(σ2 · ~r)

r2
− ~σ1 · ~σ2

]

(6.28)

which is called the tensor interaction and the associated structure is often denoted as S12. Using
the total spin operator, we can write

(~σ1 · ~r)(~σ2 · ~r) = 2(~S · ~r)2 − r2 (6.29)
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which can be proved by evaluating (~S·~r)2. Then the tensor structure becomes S12 = 2

[

3 (~S·~r)2
r2 − ~S2

]

.

It is not difficult to see that S12 is a scalar tensor operator arising from the coupling of the second

rank tensors (S(1) ⊗ S(1))
(2)
m and Y2m.

To determine how does S12 act on the angular momentum states, let us first show Q = (~S·~r)2
r2 is

a projection operator. It is easy to show

Q =
1

2
(1 + ~σ1 · r̂~σ2 · r̂)

Q2 = Q (6.30)

Then the tensor operator S12 = 2[3Q− ~S2] satisfies the following equation,

S2
12 = 4~S2 − 2S12 . (6.31)

Therefore, its possible eigenvalues are 0, 2, −4. The action of Q̂ on the total angular momentum
eigenstates are then

Q YM
J0J = 0

Q YM
J1J = YM

J1J

(2J + 1)Q YM
J+11J = JYM

J+11J +
√

J(J + 1)YM
J−11J

(2J + 1)Q YM
J−11J =

√

J(J + 1)YM
J+11J + (J + 1)YM

J−11J (6.32)

There equations are nontrivial to show but are important for deriving the solution of the Schrodinger
equation.

In the presence of the tensor interaction, ~L2 and ~S2 no longer commute with the hamiltonian.
The states with the same J but different L can mix under the interaction. However, parity is still
conserved, therefore, the states can mix only when their orbital angular momenta differ by 2 unit.
The parity of an orbital angular momentum eigenstate is (−)L, and is +1 when L is even and −1
when L is odd.

6.3 S-Wave Scattering

At low-energy (below 10 MeV or so), the dominant nucleon-nucleon scattering happens in the S-
wave. In the zero-energy limit, the nucleon scattering cross section is huge, on the order of 20b or
so. In this section, we consider the physics of the S-wave scattering.

In the region outside of the nuclear interaction, the S-wave scattering state is described by the
solution of the free Schrodinger equation,

ψ = A sin(kr + δ) ∼ (e2iδeikr − e−ikr) (6.33)

where δ is the S-wave scattering phase-shift. Here the first exponential represents the outgoing
wave and the first represents the incoming one. The total scattering cross section is

σ =
4π

k2
sin2 δ . (6.34)
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Since the cross section shall be finite as k → 0 (the nuclear force has finite range), the phase shift
shall vanish as k → 0. In fact, at low-energy one can make the expansion according to the unitary
condition,

k cot δ = −1

a
+

1

2
r0k

2 + ... (6.35)

where a is the scattering length and r0 is the effective range, which roughly corresponds to the size
range of the potential. At low-energy, the nuclear scattering can effectively determined by these
two numbers. In fact the zero-energy cross section

σ = 4πa2 . (6.36)

which is completely determined by the scattering length.
The scattering lengths for nucleons have been extracted from scattering of neutron on proton

and proton on proton. In the former case, there are both T = 1, 0 channels. The experimental
result is

aS=0 = −23.7 fm , (6.37)

aS=1 = 5.38 fm . (6.38)

Therefore the experimental cross section is very large at zero-energy. In fact, the total neutron
scattering cross section is 20b! The result for T = 1, S = 0 channel obtained for the proton-proton
scattering gives −17 fm, which is relatively close.

The large scattering length in fact indicates there is a two-body bound state, or quasi-bound
state. Indeed for small but finite k, one has

f = − 1

1/a+ ik
, σ =

4π

1/a2 + k2
(6.39)

The scattering matrix has a pole at E = −h̄2/2a2m2. If a is positive, this is a real bound state;
if a is negative, the state is a virtual, sitting on the second sheet in the complex energy plane.
Therefore, in the S = 1 channel, there must be a bound state, which is the deuteron. For T = 1,
one has a virtual state: the potential is attractive but not attractive enough. A slight change of
the potential might lead to a bound state.

6.4 Deuteron Structure

The deuteron is the only bound state of 2 nucleons, with isospin T = 0, spin-parity Jπ = 1+, and
binding energy EB=2.225 MeV. For two spin 1

2 nucleons, only total spins S = 0, 1 are allowed.
Then the orbital angular momentum is restricted to J − 1 < l < J + 1, i.e., l = 0, 1 or 2. Since the
parity is π = (−)l = +, only l = 0 and l = 2 are allowed; this also implies that we have S = 1.

If the hamiltonian is

H = − h̄
2

M

1

r

d2

dr2
r +

h̄2

M

L2

r2
+ VC(r) + VT (r)S12 (6.40)

using the following relation,

S12YM
001 =

√
8YM

211; S12YM
211 =

√
8YM

011 − 2YM
211

L2YM
011 = 0; ~L2YM

211 = 6YM
211 (6.41)
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we find the radial equations
[

h̄2

M

d2

dr2
+ E − Vc(r)

]

uS =
√

8VT (r)uD

[

h̄2

M

(

d2

dr2
− 6

r2

)

+ E + 2VT (r) − Vc(r)

]

uD =
√

8VT (r)uS (6.42)

These equations can be solved numerically.
Other important information on the structure of the deuteron comes from the values of the

magnetic moment µ and quadrupole moment Q:

µ = 0.8574 µN (6.43)

Q = 0.2857 e−fm2 (6.44)

Since Q 6=0, the deuteron cannot be pure l = 0. But generally l = 0 is energetically favored for
a central potential. Therefore, we write the deuteron wave function as a linear combination of S-
and D- waves

ψ(~r) = aψ3S1
(~r) + bψ3D1

(~r) (6.45)

= [aR0(r)Y1
011 + bR2(r)Y1

211]ψ
T
00 (6.46)

where a and b are constants with
√
a2 + b2 = 1. R0 and R2 are the radial wave functions, the

isospin wave function is written as

ψT
00 =

1√
2
[χp(1)χn(2) − χn(1)χp(2)] (6.47)

6.4.1 Magnetic Moment

We first consider the implications of the magnetic moment. The magnetic moment operator is

µ = µN

∑

i

(gsszi + gllzi) (6.48)

where gs = 4.7τi + 0.88, where the first term is isovector, and the second term is isoscalar. gl =
(τi + 1)/2. Since the deuteron is an iso-scalar particle, let us consider only the iso-scalar magnetic
moment. Then, the above equation becomes, µ = µN

∑

i(0.88szi + 0.5lzi).
Note that since T = 0 only the isoscalar magnetic moment operator contributes to µ:

µ = µN

2
∑

i=1

[

0.88〈Sz
i 〉M=1 +

1

2
〈lzi 〉M=1

]

(6.49)

= µN

[

0.88〈Sz〉 +
1

2
〈Lz〉

]

= µ0

[

0.38〈Sz〉 +
M

2

]

= µN

[

0.38〈Sz〉 +
1

2

]

. (6.50)

where we have used the fact that the sum of the two orbital angular momenta can be decomposed
into the sum of the center-of-mass angular momentum and relative angular momentum. The
center-of-mass angular momentum give no contribution.



108 CHAPTER 6. NUCLEON-NUCLEON INTERACTION, DEUTERON

Let us now calculate the matrix element of Sz

〈Y1
011|SZ |Y1

011〉 = 1

〈Y1
211|SZ |Y1

011〉 = 0

〈Y1
211|SZ |Y1

211〉 =
∑

MS

|〈2(1 −MS)1MS |11〉|2

= −1/2 (6.51)

Thus, for pure l = 0 or l = 2 states we would have the values µ = 0.88µN , 0.31µN . More generally
we obtain the relation

µ = [a2(0.88) + b2(0.31)]µ0 = (0.88 − 0.57b2)µ0 . (6.52)

Therefore, the experimental value µD = 0.857µN implies that b2 = 0.04. However, in more sophis-
ticated treatments one finds that it is quantitatively important to explicitly include the effects of
meson exchanges on the magnetic moment. For example, the virtual photon can couple to the pion
in flight between the nucleons and convert it to a ρ meson. (These effects are clearly observed in
elastic electron deuteron scattering at higher momentum transfers, as discussed below.) Including
the effects of these “meson-exchange” currents on the deuteron’s magnetic moment yields values of
b2 = .05 − .07.

6.4.2 Quadrupole Moment

Next we consider the quadrupole moment of the deuteron. Using the definition ofQ =
√

16π
5 〈J(M =

J)|Q̂20|J(M = J)〉, we can write

Q = e

√

16π

5

∫

ψ∗
J=M=1(~r)

[ 2
∑

i=1

τ3i + 1

2
r2i Y20(r̂i)

]

ψJ=M=1(~r)d
3~r (6.53)

= e

√

16π

5

∫

ψ∗
J=M=1(~r)

r2

4
Y20(r̂)ψJ=M=1(~r)d

3r . (6.54)

Here we have used the fact that for each nucleon the distance from the center of mass is only half
the distance between them, ri = r

2 . Now using the expressions for the wave function introduced
above

Q = e

√

16π

5

{

|a2|
(
∫

r2

4
R2

0r
2dr

)
∫

Y ∗
00Y20Y00dΩ + 2Re(ab∗)

(
∫

r2

4
R0R2r

2dr

)

(6.55)

×
∑

M

〈S = 1,MS = 1|S = 1,MS = 1 −M〉
∫

Y ∗
00Y20Y2MdΩ × 〈1(1 −M)2M |11〉(6.56)

+|b|2
(
∫

r2

4
R2

2r
2dr

)

×
∑

M

|〈1(1 −M)2M |11〉|2〉
∫

Y ∗
2MY20Y2MdΩ

}

. (6.57)

After evaluating the angular integrals and putting in the CG coefficients, one finds

Q = e

{

√
2

10
Re(ab∗)

(
∫

r4R0R2

)

− |b|2
20

(
∫

r4R2
2

)}

. (6.58)
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To proceed further we need to evaluate the radial integrals, so we would need to solve the radial
Schrodinger equation and obtain the radial wave functions. Clearly, for a given potential model
this is (in principle) possible. For our purposes, we will use our knowledge that b = 0.2 ≪ 1 from
the magnetic moment analysis and keep only the first term. This will give us an approximate
expression that we can set equal to the experimental value Qexp = 0.286e fm2 to obtain the result

Q ∼= e
(0.2) ·

√
2

10

∫

r4R0R2dr = 0.286 e fm2 (6.59)

Solving for the unknown radial integral yields
∫

r4R0R2dr ∼= 10.1 fm2 (6.60)

for the radial integral. This value seems quite reasonable given that the mean squared charge radius
of the deuteron is 4.0 fm2. [Note: 〈r2ch〉 = 1

4

∫

R2
0r

4dr.]

1

2

1 2

(a) (b)

Figure 6.1: (a) r̂‖ẑ (b) r̂ ⊥ ẑ

To elucidate the effect of the tensor force on the structure of the deuteron let’s consider the
quadrupole moment, for which we need to use the M = 1 state. The dominant S-D interference
term in the quadrupole moment has MS = 1. So the spins of both the two nucleons are predomi-
nantly aligned parallel to ẑ. Let’s simply take ~σ1 = ~σ2 = +ẑ, and then ~σ1 ·~σ2 = +1. Then we need
to consider the relative orientation of r̂, and we will focus (see Fig. 1.1 on two extreme cases: (a)
r̂‖ẑ and (b) r̂ ⊥ ẑ.

In case (a) ~σ1 · r̂ = ~σ2 · r̂ = 1, so we have S12 = +2 for this geometrical arrangement. This is
a prolate configuration so we expect Q > 0 for case (a). In case (b) we have ~σ1 · r̂ = ~σ2 · r̂ = 0 so
S12 = −1 and the oblate shape relative to the ẑ axis would imply Q < 0.

Since experimentally Q > 0, case (a) must be energetically favored which corresponds to VT (r) <
0. This then gives an attractive force when the configuration is such that S12 > 0 (case (a)) and a
repulsive force when S12 < 0 (case (b)).
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Given VC(r) and VT (r), this is an eigenvalue problem for k2 with a free parameter to be
determined: the ratio b

a . It was shown by Rarita and Schwinger that large class of potentials can
solve these equations with the constraints EB=2.225 MeV and Q = 0.286e-fm2.

6.5 Elastic Electron-Deuteron Scattering and Meson Exchange

Current

Much more detailed information about the structure of the deuteron is obtained from elastic elec-
tron deuteron scattering. At high momentum transfers this reaction probes the effects of meson
exchanges and special relativity, and provides some of the most important constraints on our un-
derstanding of this simple nuclear system.

Figure 6.2: Experimental data for A(Q2) in elastic e-deuteron scattering compared with a theoret-
ical calculations showing the sensitivity to meson exchange currents.

Deuteron has three form factors: C0 and C2, M1. In the Breit frame, we have

FC =
1

3η1e

(

〈0|J0|0〉 + 2〈+1|J0| + 1〉
)

FQ =
1

2ηη1e

(

〈0|J0|0〉 − 〈+1|J0| + 1〉
) 1

M2
D

FM =
−1√
2ηη1e

〈+1|J+|0〉 (6.61)

where J+ = J1 + iJ2, η = q2/4M2
D, and η1 =

√
1 + η. At Q2 = 0, there form factors are normalized

according to FC(0) = 1, FQ(0) = Qd, and FM (0) = µdMD/mN .
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Figure 6.3: Experimental data for B(q2) from elastic e-deuteron scattering compared with theoret-
ical calculations without (IA) and with (IA+MEC) meson exchange currents.

With elastic electron scattering on unpolarized deuterons, we can determine the following form
factors,

A = F 2
C +

8

9
η2(FQM

2
D)2 +

2

3
ηF 2

M

B =
4

3
η(1 + η)F 2

M (6.62)

The scattering cross section is

dσ

dΩe
= σMott

(

A(q2) +B(q2) tan2(
θ

2
)

)

(6.63)

Define

x =
2η(F 2

QM
2
D)

3Fc

y =
2η

3

(

1

2
+ (1 + η) tan2(

θ

2
)

)(

FM

FC

)2

(6.64)

Then the tensor polarization is defined as

t20 = −
√

2
x(x+ 2) + y/2

1 + 2(x2 + y)
(6.65)
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The electron-deuteron cross section depends on three elastic form factors of the deuteron: the
charge form factor GC(Q2) (monopole), the quadrupole form factor GQ(Q2), and the magnetic
form factor GM (Q2).

dσ

dΩ
=

(

dσ

dΩ

)

Mott

{

A(q2) +B(q2) tan2 θ

2

}

, (6.66)

where

A(q2) = G2
C(q2) +

8

9
τ2G2

Q(q2) +
2

3
τG2

M (q2) (6.67)

B(q2) =
4

3
(1 + τ)τG2

M (q2) (6.68)

τ =
−q2
4M2

D

(6.69)

A(q2) and B(q2) can be separated by a series of measurements at forward and backward scattering
angles and the magnetic form factor GM (q2) can be uniquely determined from B(q2) without using
additional measurements. (The separation of the charge and the quadrupole form factors is not
possible without an measurement involving polarization.) Figures 1.2 and ?? show a comparison of
experimental data for A(q2) and GM (q2) with theoretical calculations based on a phenomenological
N -N interaction (“Paris potential”).

Figure 6.4: Meson exchange current diagrams required to produce the elastic form factors in e-
deuteron scattering.

The graph of A(q2) in Figure 1.2shows the sensitivity to meson exchange currents. Data and
calculations for B(q2) are shown in Figure 1.3. Obtaining agreement of experiment and theory in
the region q2 > 10 fm−2 requires the inclusion of meson exchange currents. While it was mentioned
earlier that these effects can affect the deuteron magnetic moment at the few percent level, they
become the dominant effect on B(q2) at q2 > 35 fm−2.
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The meson exchange currents arise from processes such as those illustrated in the Feynman
diagrams in Figure 1.4. Generally, one finds that at q2 < 30 fm−2 these effects contribute mostly
to isovector magnetic transitions. Of course, for elastic scattering from the deuteron only isoscalar
effects contribute.

Much of the structure of the deuteron, with its rather large mean charge radius of 2 fm, is
governed by the pion exchange force between the two nucleons as shown in the previous section.

6.6 Problems

1. Derive the pole of the scattering amplitude f at low energy and show that it is E = −h̄2/2a2m2.
2. Calculate the magnetic moment of the deuteron assuming it is either in pure S state or pure D
state.
3. Derive the quadrupole moment of the deuteron in terms of the radial wave function integrals.



Chapter 7

Bulk Nuclear Properties and Nuclear

Matter

The universe contains a remarkably wide variety of atomic nuclei, with mass numbers A (the sum of
the numbers of proton Z and the neutron N) up to 250. While there are many interesting properties
details that differentiate these nuclei from each other, there is also a powerful set of systematic
trends and general properties that provide an important and useful framework for understanding
the basic structure of nuclei. There properties are essentially determined by the so-called mean-field
approach, in which one nucleon experiences a field which is the sum of the interaction with many
other nucleons. This mean field property is a reflection that the density of the nucleons are relatively
low and the interaction between the nucleons are relatively week. As such, the nucleon-nucleon
correlation is small. The Hartree-Fock Mean field theory is main theoretical tool for dealing with
systems with little correlations. Beyond that, the nucleon-nucleon correlations can be calculated
using Bethe-Goldstone equations. These equations differ from free-space Schrodinger equation in
that many-body Pauli blocking effects are taken into account. These theoretical tools are best
illustrated in the example of nuclear matter in which the Coulomb potential is turned off and there
are equal number of protons and neutrons. The finite size effect of the nuclear system will be taken
up in the next Chapter.

7.1 Nuclear Radii and Densities

One of the first relevant properties of the nucleus was determined by Rutherford: the radius is only
of order a few fm. The next major step was the use of electron scattering to accurately characterize
the charge distribution of nucleons and nuclei. This technique was pioneered by Hofstadter in the
1950’s. In Chapter 4, we considered the elastic scattering of electrons from nucleons. For spinless
(i.e., J = 0) nuclei, elastic electron scattering is even simpler. The nuclear matrix element for this
process is just

〈0|Ĵµ|0〉 , (7.1)

where Jµ is the electromagnetic current operator. For elastic scattering from a J = 0 nucleus we
find

〈0|Ĵµ|0〉 = δµ0〈0|ρ̂|0〉 , (7.2)
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so that only the charge operator contributes. The electron scattering cross section is then

dσ

dΩ
= σMOTT · |F (~q)|2 ; (J = 0 → J = 0) (7.3)

where

σMOTT ≡ Z2e4 cos2 θ
2

4k2 sin4 θ
2

frec . (7.4)

An example of this cross section is shown in Figure 2.1.

Figure 7.1: Cross section for elastic electron scattering from lead as a function of momentum
transfer q along with a theoretical calculation.

The form factor F (q) is directly related to the Fourier transform of the nuclear charge distri-
bution. First define

ρ(q) ≡
∫

〈ρ(x)〉e−i~q·~xd3~x , (7.5)

where for a spin 0 nucleus 〈ρ(x)〉 is spherically symmetric. Then use the identity

e−i~q·~x =
∞
∑

l=0

(2l + 1)iljl(qr)Pl(cos θ) (7.6)
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Figure 7.2: Charge density distributions for nuclei as determined from elastic electron scattering
along with theoretical calculations.

and the definition

j0(qr) =
sin qr

qr
. (7.7)

Only the l = 0 term survives due to the spherical symmetry of 〈ρ(x)〉

ρ(q) =
4π

q

∫ ∞

0
ρ(r) sin(qr)rdr . (7.8)

We can then expand sin(qr) and obtain the relation:

ρ(q) =
4π

q

∫

ρ(r)[qr − 1

6
q3r3 + ...]rdr (7.9)

= 4π

∫

ρ(r)r2dr − 1

6
q2
∫

r2ρ(r)4πr2dr + ... (7.10)

= Ze(1 − 1

6
q2〈r2〉 + ...) (7.11)

We should note two important properties of ρ(q):

lim
q→0

ρ(q) = Ze (total charge) (7.12)
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lim
q2→0

dF

dq2
=

1

Ze
lim

q2→0

dρ

dq2
= −1

6
〈r2〉 (7.13)

or

〈r2〉 = −6
dF

dq2

∣

∣

∣

∣

q2=0
(mean square charge radius) (7.14)

The general strategy is to measure ρ(q) and Fourier transform to obtain ρ(r). As shown in
Figure 2.2, one finds a nuclear charge distribution that is well described by a Fermi distibution

ρ(r) =
ρ0

1 + e(r−c)/a
. (7.15)

The basic properties of this distribution are the following.

• (a)ρ0=constant∼ 0.08 efm−3

• (b)c = r0A
1

3 ; r0 ∼= 1.2fm.

Therefore, as one adds nucleons the nuclear volume simply grows with the number of nucleons in
such a way that the density of nucleons (per unit volume) is constant. That is, nuclei seem to
behave like an incompressible fluid of constant density. This property is very different than that of
atoms.

Figure 7.3: Binding energy per nucleon for stable nuclei as a function of nuclear mass number A.
The binding energy saturates at the value B/A ∼ 8 MeV/nucleon. The most stable nucleus is 56Fe.


