diff --git a/Chapter2/Figs/BDiagram.pdf b/Chapter2/Figs/BDiagram.pdf index 79378b7..e7a797a 100644 Binary files a/Chapter2/Figs/BDiagram.pdf and b/Chapter2/Figs/BDiagram.pdf differ diff --git a/Chapter2/Figs/Diagrams.nb b/Chapter2/Figs/Diagrams.nb new file mode 100644 index 0000000..06c2edd --- /dev/null +++ b/Chapter2/Figs/Diagrams.nb @@ -0,0 +1,15827 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 9.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 157, 7] +NotebookDataLength[ 836439, 15818] +NotebookOptionsPosition[ 833997, 15742] +NotebookOutlinePosition[ 834332, 15757] +CellTagsIndexPosition[ 834289, 15754] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"GradientDisk", "[", + RowBox[{"f_", ",", + RowBox[{"{", + RowBox[{"x_", ",", "y_"}], "}"}], ",", + RowBox[{"{", + RowBox[{"Rx_", ",", "Ry_"}], "}"}]}], "]"}], ":=", + RowBox[{"Graphics", "[", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"RGBColor", "[", + RowBox[{"0", ",", + RowBox[{"1", "-", + RowBox[{"f", " ", "r"}]}], ",", "0"}], "]"}], ",", + RowBox[{"Circle", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"x", ",", "y"}], "}"}], ",", + RowBox[{"r", + RowBox[{"{", + RowBox[{"Rx", ",", "Ry"}], "}"}]}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "0", ",", "1", ",", "0.01"}], "}"}]}], "]"}], + "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.618907162403962*^9, 3.618907247743578*^9}, { + 3.618907379051866*^9, 3.618907423899909*^9}, {3.6189074727727423`*^9, + 3.618907520700222*^9}, {3.618907552844253*^9, 3.6189075648236628`*^9}, { + 3.618907602587791*^9, 3.618907699005301*^9}, {3.6189080253790293`*^9, + 3.6189080302464037`*^9}, {3.619170901761644*^9, 3.619170920659051*^9}, { + 3.6673057249316587`*^9, 3.667305727467821*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SetDirectory", "[", + RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"fname", "=", "\"\\""}], ";"}]], "Input", + CellChangeTimes->{{3.6660922771450644`*^9, 3.666092283320794*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.666092296089016*^9, 3.6660922965127068`*^9}}], + +Cell[BoxData[ + RowBox[{"(*", " ", + RowBox[{"Import", " ", "data"}], " ", "*)"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"mesh", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.6660923238330383`*^9, 3.6660923388258057`*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"WCenter", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092354436602*^9, 3.6660923671135683`*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"WCenterPoints", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"WCenter", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092610366231*^9, 3.666092640833498*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"WLeft", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092378121726*^9, 3.666092382249052*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"WLeftPoints", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"WLeft", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092675409822*^9, 3.666092680441383*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"WRight", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092388225877*^9, 3.666092393481628*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"WRightPoints", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"WRight", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092686161655*^9, 3.666092691185588*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"W0", "=", + RowBox[{"WCenter", "*", "WCenter"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666092776943801*^9, 3.666092803016481*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"W0Points", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"W0", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.6660928494895067`*^9, 3.666092854489476*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"W1", "=", + RowBox[{"WLeft", "*", "WRight"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666092834980007*^9, 3.666092840760541*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"W1Points", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"W1", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092861105315*^9, 3.666092864473168*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"kmesh", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666095605153339*^9, 3.666095608113118*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"FW0", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092979650405*^9, 3.666092985904653*^9}, { + 3.666094960795518*^9, 3.6660950025613747`*^9}, {3.6660950675709133`*^9, + 3.666095104505926*^9}, {3.666095559642132*^9, 3.6660955649373198`*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"FW0Points", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"kmesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"FW0", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092988388874*^9, 3.6660929977846212`*^9}, + 3.666095594098195*^9}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"FW1", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"{", "\"\\"", "}"}], "/.", + RowBox[{"Import", "[", + RowBox[{"fname", ",", "\"\\""}], "]"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092979650405*^9, 3.66609300875237*^9}, { + 3.6660955768812447`*^9, 3.666095580232688*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"FW1Points", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"kmesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{"FW1", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666092988388874*^9, 3.6660930130490713`*^9}, + 3.666095615522574*^9}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"FW0I", "=", + RowBox[{"Interpolation", "[", "FW0Points", "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666096176169345*^9, 3.666096199225369*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"FW1I", "=", + RowBox[{"Interpolation", "[", "FW1Points", "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666096176169345*^9, 3.666096199225369*^9}, { + 3.666096241490382*^9, 3.6660962415458403`*^9}, {3.666096281914757*^9, + 3.666096281993774*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Phi", "=", + RowBox[{ + RowBox[{"ArcCos", "[", + RowBox[{ + RowBox[{"-", + RowBox[{"FW0I", "[", "2", "]"}]}], "/", + RowBox[{"FW0I", "[", "0", "]"}]}], "]"}], "/", "2"}]}], ";"}]], "Input",\ + + CellChangeTimes->{{3.666096422182324*^9, 3.66609645459455*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"pattern", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"2", "*", "\[Pi]", "*", + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "+", "Phi", "-", + RowBox[{"\[Pi]", "/", "2"}]}], "]"}], "*", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"2", "*", "\[Pi]", "*", + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "+", "\[Pi]", "-", "Phi", "-", + RowBox[{"\[Pi]", "/", "2"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.6660967105736732`*^9, 3.66609677255649*^9}, { + 3.666096902140465*^9, 3.666096924149231*^9}, {3.6660977473438263`*^9, + 3.666097749990548*^9}, {3.666101108684566*^9, 3.666101133021064*^9}, { + 3.666102226342464*^9, 3.666102229350111*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"W0L", "=", + RowBox[{"WLeft", "*", "WLeft"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666100832544744*^9, 3.6661008395846577`*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"JInt0Points", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{ + RowBox[{"W0L", "[", + RowBox[{"[", "i", "]"}], "]"}], "*", + RowBox[{"pattern", "[", + RowBox[{"[", "i", "]"}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666097944687215*^9, 3.666097952854121*^9}, { + 3.666098013750815*^9, 3.666098019556047*^9}, {3.666098053495408*^9, + 3.666098073319643*^9}, 3.666100851771677*^9}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"JInt0", "=", + RowBox[{"Interpolation", "[", "JInt0Points", "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666097400620858*^9, 3.6660974267975187`*^9}, { + 3.666097617310587*^9, 3.666097622013988*^9}, {3.666097957502493*^9, + 3.666097959164907*^9}, 3.666098077318594*^9}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"JInt0", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"mesh", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"Last", "[", "mesh", "]"}]}], "}"}]}], "]"}], + "arduino"}]], "Input", + CellChangeTimes->{{3.666097430083674*^9, 3.666097483869855*^9}, { + 3.666097521230492*^9, 3.6660975502938557`*^9}, {3.6660976023585577`*^9, + 3.6660976096200113`*^9}, {3.66609796983892*^9, 3.666097977502487*^9}, + 3.6664280601279373`*^9}], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{"NIntegrate", "::", "ncvb"}], "MessageName"], + RowBox[{ + ":", " "}], "\<\"NIntegrate failed to converge to prescribed accuracy after \ +\[NoBreak]\\!\\(9\\)\[NoBreak] recursive bisections in \[NoBreak]\\!\\(x\\)\ +\[NoBreak] near \[NoBreak]\\!\\({x}\\)\[NoBreak] = \ +\[NoBreak]\\!\\({\\(-0.1397339165229281`\\)}\\)\[NoBreak]. NIntegrate \ +obtained \[NoBreak]\\!\\(9.407472312782106`*^-8\\)\[NoBreak] and \ +\[NoBreak]\\!\\(3.692172036276525`*^-8\\)\[NoBreak] for the integral and \ +error estimates. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\ +\"Link\\\", ButtonFrame->None, \ +ButtonData:>\\\"paclet:ref/message/NIntegrate/ncvb\\\", ButtonNote -> \ +\\\"NIntegrate::ncvb\\\"]\\)\"\>"}]], "Message", "MSG", + CellChangeTimes->{{3.666101119679779*^9, 3.666101141073901*^9}, + 3.666102241700556*^9, 3.666102936075356*^9, 3.666355888021254*^9, + 3.666428205635859*^9, 3.667305750034153*^9, 3.6694686656718893`*^9, + 3.6694691999611692`*^9, 3.677416360757347*^9, 3.67741643180511*^9}], + +Cell[BoxData[ + RowBox[{"9.407472312782106`*^-8", " ", "arduino"}]], "Output", + CellChangeTimes->{{3.666097461461669*^9, 3.666097486758052*^9}, { + 3.666097544995922*^9, 3.666097552631032*^9}, {3.666097603112288*^9, + 3.666097631277574*^9}, 3.6660977613278093`*^9, {3.6660979616506166`*^9, + 3.6660979788145313`*^9}, 3.666098016920603*^9, 3.666098060462316*^9, + 3.666100854605014*^9, {3.6661011196813087`*^9, 3.666101141076305*^9}, + 3.666102241703493*^9, 3.666102936091427*^9, 3.6663558880235767`*^9, + 3.6664282056376953`*^9, 3.6673057500362873`*^9, 3.669468665707939*^9, + 3.669469199974188*^9, 3.6774163607743063`*^9, 3.677416431807208*^9}] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"JInt1Points", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"mesh", "[", + RowBox[{"[", "i", "]"}], "]"}], ",", + RowBox[{ + RowBox[{"W1", "[", + RowBox[{"[", "i", "]"}], "]"}], "*", + RowBox[{"pattern", "[", + RowBox[{"[", "i", "]"}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "[", "mesh", "]"}]}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.666098087182601*^9, 3.66609809006956*^9}}], + +Cell[BoxData[ + RowBox[{ + RowBox[{"JInt1", "=", + RowBox[{"Interpolation", "[", "JInt1Points", "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.666098095509781*^9, 3.666098097934033*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"JInt1", "[", "x", "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"mesh", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"Last", "[", "mesh", "]"}]}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.66609810321443*^9, 3.666098103285646*^9}}], + +Cell[BoxData["0.01716581411668148`"], "Output", + CellChangeTimes->{ + 3.666098103667337*^9, {3.6661011263039*^9, 3.6661011438401127`*^9}, + 3.666102245890465*^9, 3.666102936181427*^9, 3.666355891245413*^9, + 3.666428205771907*^9, 3.667305752022361*^9, 3.6694686658341*^9, + 3.6694692000688353`*^9, 3.677416360910894*^9, 3.677416435556209*^9}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"B1", "=", + RowBox[{"Show", "[", + RowBox[{ + RowBox[{"Graphics", "[", + RowBox[{"{", + RowBox[{"Dashed", ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.35"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1.35", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}], + ",", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"0.25", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "]"}], "2"], "-", + RowBox[{"1", "/", "2"}]}], ")"}]}], ",", + RowBox[{"0.25", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "+", "Phi", "-", + RowBox[{"\[Pi]", "/", "2"}]}], "]"}]}], ",", + RowBox[{"0.25", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "+", "\[Pi]", "-", "Phi", + "-", + RowBox[{"\[Pi]", "/", "2"}]}], "]"}]}], ",", + RowBox[{"0.25", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "+", "Phi", "-", + RowBox[{"\[Pi]", "/", "2"}]}], "]"}], "*", + RowBox[{"Cos", "[", + RowBox[{ + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "+", "\[Pi]", "-", "Phi", + "-", + RowBox[{"\[Pi]", "/", "2"}]}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", + RowBox[{"Axes", "\[Rule]", "None"}], ",", + RowBox[{"Mesh", "\[Rule]", "None"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], "\[Pi]"}], ",", + RowBox[{"2", "\[Pi]"}]}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"Thickness", "[", "0.002", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"Red", ",", + RowBox[{"Thickness", "[", "0.002", "]"}], ",", + RowBox[{"Dashing", "[", "Small", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"Blue", ",", + RowBox[{"Thickness", "[", "0.002", "]"}], ",", + RowBox[{"Dashing", "[", "Small", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"Orange", ",", + RowBox[{"Thickness", "[", "0.005", "]"}]}], "}"}]}], "}"}]}], ",", + + RowBox[{"AspectRatio", "\[Rule]", "0.2"}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "1"}], "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"3", "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"5", "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "5"}], "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.35"}], ",", "1.35"}], "}"}], ",", + RowBox[{"0.28", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", "1"}], "}"}]}]}], "}"}]}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.618909212259066*^9, 3.618909212264264*^9}, { + 3.618915417050008*^9, 3.6189154687855177`*^9}, {3.618915583609157*^9, + 3.61891583904104*^9}, {3.6189160323142233`*^9, 3.6189160861621027`*^9}, { + 3.618916126826824*^9, 3.618916146940048*^9}, {3.6189161769868507`*^9, + 3.618916222978557*^9}, {3.618916720086752*^9, 3.618916764531268*^9}, { + 3.618924249903578*^9, 3.618924261542033*^9}, {3.6189253626819143`*^9, + 3.6189254131203623`*^9}, {3.61892544429895*^9, 3.6189254696329327`*^9}, { + 3.618925509018732*^9, 3.618925638361683*^9}, {3.618925690763092*^9, + 3.618925750364738*^9}, {3.6189258005418577`*^9, 3.6189258904230413`*^9}, { + 3.618925922822584*^9, 3.6189259430855503`*^9}, {3.618926132995098*^9, + 3.618926149590506*^9}, {3.618926253886015*^9, 3.618926253936824*^9}, { + 3.618926794944457*^9, 3.618926806719592*^9}, {3.6189268470500107`*^9, + 3.61892688958956*^9}, {3.6189269797774153`*^9, 3.618927168533698*^9}, { + 3.618927200533393*^9, 3.6189272339294033`*^9}, {3.61916802547829*^9, + 3.619168028047802*^9}, 3.619170835188006*^9, {3.6191710621725407`*^9, + 3.619171141434751*^9}, {3.6191712055699253`*^9, 3.6191712073287563`*^9}, { + 3.6191715236822987`*^9, 3.6191715341237288`*^9}, {3.619171582114469*^9, + 3.619171608637179*^9}, {3.6191716882133427`*^9, 3.619171697566176*^9}, { + 3.622544257394746*^9, 3.622544308371953*^9}, {3.6225443609789143`*^9, + 3.622544361264048*^9}, {3.6241900905264606`*^9, 3.624190090798047*^9}, { + 3.6405929326392403`*^9, 3.640592935514936*^9}, {3.640593013749288*^9, + 3.640593164730246*^9}, {3.64059856211208*^9, 3.6405986112517357`*^9}, { + 3.640598749695518*^9, 3.640598789547817*^9}, {3.640598909035676*^9, + 3.6405989437458067`*^9}, {3.640599192071294*^9, 3.640599218566629*^9}, { + 3.651583282840117*^9, 3.651583303838236*^9}, {3.6515833683620367`*^9, + 3.651583390897582*^9}, {3.651583467640593*^9, 3.651583475425366*^9}, + 3.6515835662803288`*^9, {3.651583710065086*^9, 3.651583760014598*^9}, { + 3.65158380313273*^9, 3.651583807693907*^9}, {3.651583845355905*^9, + 3.651583877638234*^9}, {3.651584057019896*^9, 3.651584312788494*^9}, { + 3.651584712279354*^9, 3.651584733421917*^9}, {3.651584765024015*^9, + 3.65158477613491*^9}, {3.651584822353538*^9, 3.651584861400754*^9}, { + 3.6515849597670517`*^9, 3.6515849668582773`*^9}, {3.651585057074895*^9, + 3.651585188550085*^9}, {3.651585411380828*^9, 3.651585434876614*^9}, { + 3.651585587906207*^9, 3.651585595102662*^9}, {3.651585638731038*^9, + 3.6515857342455463`*^9}, {3.65158609810035*^9, 3.651586117826033*^9}, { + 3.651586207476685*^9, 3.651586216228159*^9}, {3.651586267839033*^9, + 3.651586376677536*^9}, {3.6660913657776213`*^9, 3.66609140024778*^9}, { + 3.666091453466714*^9, 3.666091657881235*^9}, {3.666091739576599*^9, + 3.666091868767332*^9}, {3.666091918505898*^9, 3.66609191938326*^9}, { + 3.6660921963137007`*^9, 3.66609219652102*^9}, {3.666096532698316*^9, + 3.666096535986443*^9}, {3.666098260768079*^9, 3.666098264023046*^9}, { + 3.666098298333638*^9, 3.66609832206586*^9}, {3.666098390993369*^9, + 3.666098391737967*^9}, {3.666099233977759*^9, 3.6660992423104477`*^9}, { + 3.666099297358159*^9, 3.666099331350637*^9}, 3.666099734936625*^9, { + 3.666099774056624*^9, 3.666099864329652*^9}, {3.666100200364725*^9, + 3.6661002035597353`*^9}, 3.6661003646727343`*^9, {3.666100900195786*^9, + 3.666100926596607*^9}, 3.666100961774467*^9, 3.666100994156473*^9, { + 3.66610104383677*^9, 3.666101051981525*^9}, {3.666101165262595*^9, + 3.66610116785361*^9}, {3.666101219389928*^9, 3.666101254052621*^9}, { + 3.66610187182673*^9, 3.666101882213616*^9}, {3.666102054605948*^9, + 3.6661020554718447`*^9}, {3.666103223277606*^9, 3.666103242971799*^9}, { + 3.6663585864926443`*^9, 3.666358601744975*^9}, {3.667305886820918*^9, + 3.667305902097907*^9}, {3.667305938191765*^9, 3.667305955125792*^9}, { + 3.6694688788049107`*^9, 3.669468892906761*^9}, {3.6694689284625673`*^9, + 3.6694690078635*^9}, {3.6694690400479593`*^9, 3.669469100614396*^9}}], + +Cell[BoxData[ + GraphicsBox[{ + {Dashing[{Small, Small}], LineBox[{{-1.35, 0}, {1.35, 0}}]}, {{}, {}, + {GrayLevel[0], Thickness[0.002], Opacity[1.], LineBox[CompressedData[" +1:eJwUmnc81d8fx21SZFWSihSSpJIkdYSskCQhUVZCRlS+EUKRnays7L0yL3e8 +P8nMCNl777233/3df+7j9Tjnc96v9/t87nk/z+NxeQ2tNUyoKCgoaOkpKP7/ +bZQTOL+/T49pt+2TP4CwgJP8N3foMcnZE1J/dwFx26Trvd2gx9T4XxjdWgf0 +n/r1bz9X6DHfEi69ezOA2kTLa2YW6LGe0MqkrR5AV1gfUAjO0mMtI9w6qjWA +AhZ7xY0m6TGtL6kC8j8BzTSZv4oZpcciKqyeTAQDUsxbT+gcpMcUlx3brtsD +Sgry6OLoo8eWbJ+w3bgPiMqOlVW9izze/v704jlA+g9jFHza6DE9B4dEkw0S +wl+94FzZTI8VGT3tjaokIU4OXAHlX3qsbKwsIjqQhOxX5KalaumxHeKwtLUW +CYkU6mvn/ybn80C2IKmViLxDpv3ngB7zUvpxhjuAiMbfOFScJ9BjdXKeJZ/l +iChWPOhKbAE9Fu+x9vt5AgHtHj39sjuXHrs94iI/oUJAuusZP45m0WNbjsGH +ApbwiB1XccgviR5jeNjy3PoKHtmEa8hWx9FjAxBz63ddKapz6P+POoYemzjz +fcnCqBR9vrE59l8oPSbBE8ux9qkEbZQK/zL1pMca/mPK+hFXjDQjS9bj3Okx +y9Gpy0o8xeino7xIrws9Vu2EVKsji5C51LPIhw70GEnt9J3AL4Wol/jtjfRL +eqxrbOLEU5l8VIZtnee6R491NPkE5b/JRKfiPJ89UqDHzN6xHLbmyUCOHznC +AmXpMan59AW7qjQkJiNCQy9FrrdTtuyxgyko5ffzvmVhegwreWl+0CoO+VZW +B9Uz02OxYtYG7yQ8UZfAnfhiRnpM1HI0IqTZFQl+KfkZR0fOV/b62u4/e1Rx +L73xzR4dhnHDU1Odh7DX6MN8ao4O42mQfh7O4Au23WreVvV0WOn3868+eCcA +JlX1XbuGDpubW8+mYEkC5hiUJlNBh+2kWbzhCUqG9Gei1UeJdJjzr2Ppt3zS +YGSUlQ4y6TChnCPyyso5oLXQ8vGwLx02DAfNnUYKIPGB6tdNTzqM6oNGmbZz +ISzlVcQOu9Nh3ImRfcBRBAFviqDYkQ5TEva80CBeDH1tIn/j3tFhY3rjP+XL +ikFYIqXPx44c30shZ0YJB9VbYbsGFnTY55QsY3PVEjiqx8Kk/IIOs/NSespZ +UwImRC9uMSM6zCG7WjNWuhSoXP+7yfCEDrt6RpNq6Qwe1AcXlZe06LA/6Zfu +h/nhIUbGXLdHgw6b8jNrqF/Gw03aJ//lKtNh3dMXtbLyCOBt+s8rQp4OU2Yw +T7t+kAgdVffCPWTosHduD2uOGBCB/3x5itVtOuzMe8J1yWwi2HtLFWtL0mFv +A4/cCN8gQtl0QaWMOB3mrf6+je82CVhVL7YJXyGPL0f3NzmT4Fl20uhRETrs +yZXwmbBSEmQfPrVKIUSHve78amC5SIIdm1Ca6XN02HKnuqk8H4ByMzNHKy8d +5vQ9YfukOkD4VU8+OEmHcdzNmJh+BzAevH8l7TgdhpZoKtMiAMTX3sl8O0KH +PTRo2nmAA/B4vPDgAysdRiEQWdXfCNCMM3v+gokOi5I9cfX+CAAP16DNgwN0 +WMyv7lPRSwBpQ4aNrrR02MW0GDfNbYArGSOXcinpsBdsAY4B+wAEO9OA/l1a +zJilwlaVrO9KTcwxb9FiLRvuVv5bAA005mq312ix58ducD9cBNCun856tUSL +7VcYVUYNAwyGvGKKnqPFLs6a6rxqAjDXn7esm6LFpJdlDatKAZb5beu2x2ix +Pj7EnP0DwGl+6cKFYVoMi3oldM4VgA5n76PbT4vt/BXmu6wHEOC6NvWlmxY7 +mO1O3X4VgFPJQbmknRZ7EvDKnpseIJ51K23iHy2mvspMoG8jQUH8rplCHS3W +4fB+ZdqUBLcsXKrfVtNiVzSoHFcESVB5lVIwuZwWo/jsR1k2RoTOcppxGiIt +xnnQvqbpEREM/T7Li5XQYj1fNQ0E6Ykw84gh2aiQFhtrN4u0LCDA3thBk7Is +WizIjJNqlooAnjl+5YtptJjg5gs2mUQ8sDgcPsubTIsVNbQGFt3BA98B9mGX +GFqM9wYp45ptKShe4Hp+K4AW2zBsxIkm4qBpORKz9CH7P9lfwiuIA13CSZ4o +T1psKnTzXk5qMbxS5e3fciH7G73GPfGjCIKsBZ/ibGgxsx/WpYNmBdCTL65z +VYMWEz19UKhsNhtMnHA4QzXyfgVzGHVHZsGcnCRnkDK5HnSYaf3dTKBsu9W+ +IEOLeZtwKOz4pQH/htyj7Ku0mFdzquHYSgLYSD18cP4ILSZVGavcEBQI3H/O +d1qw0mISFKbjF9V9oPoxxfNsJlosVvm4L8u7T3DaLsvmKh3ZP/805/B/dtCQ +Rh94a50Ge6bFsGr10REJHyM0POikwTqaA+N1OWNQR2KQVnArDYaxnDMLdYhF +Hlde9rU10WA7Ivdoq4biULfq0bknf2gwvSX8P3xOIvL2sGEyxdNgLPeCLfL4 +09HE4lmV99E0GKnpofRx0TwU7LL9j/CdBpO60EjpXZOHpJman+yH0GCWrVna +r5/lozBBFwsPfxqM+8Nt0P5cgOQNOr39XWiw263CPjq5RWhpJoetyZEGM/R8 +hj2/Woxi3n+OYHegwap3d68r5Rej1ZCr6eE2NNjE4X1D2zQcSqzzq4l/ToOZ +ylXaG7wqReq6xg9Gn5LXdz+UGNZainbGJTsFdGmwoSv1mZcl8egh9cREpgYN +xpk75fVoA4/2Akk282o0WKNYd0nFAwJKPxWycfkeDdbyaMjNOIWAqCRlGIpl +aTDB3rviFApElF3FGbiJaLCGpc3I8UAi0n00f0xKigZzy9H91txGRHTDFT+c +JWgwq1GlnGJOEvppEyXwS4wGk/n4kcmf3J/19l7nUF+mwTwEKh+rkvs3g6/S +dfmLNFjwAl3FbAUJFRznAa/zNNgYtzmX2ToJPUtZk689R4NpRMlnFp4FtFeI +SyHw0mBiNwNTuB4Aiix/z5B9kqztU+o9HQBJ/JN6+eM42Q+PQe9aBJlfBvdq +Ao+Q4/vfe2aIA2S/gAm5sZL9a8dmVDQCYt1387FjosFwy7MD3COAspnuzhgf +oMGE/pDmjJcAqXDTq2rRkuvfyf41chvQlFBNlgIlDfa5EHsAZJ7yvOHDfGOX +Gns2mOz1dw/QWUVVa6FNaozZufFJ3QagMq3DjSdWqTFhaXMomgVkYNIkyrRI +jdXlR70J7AW0Y/ft694MNVbQLMesVw0owu3R0vwENZa74TPGnQ3o+tdjDwdH +qLFD8gaC7f6AWn505jcPUGPenytrAswBvc6O5CjvocYYi7l8Ve4AOkx8+qaw +gxoTV+beZmcHlFl7ui25hawfTFrM9pOQctegeHgjNRac9297IIWExicSwr7U +UWNqMccC1s1J6AydoI5lOTU29jBCqHCIiDCOqZKnGDX2Njy00TaMiJ7yZXLd +J1Bj7z9s/nQivw/h0qI9lwuoMcuht7G53wlI/P6SFF8uNeakUoNWbxLQv6cF +0RyZ1JiQfZAkdOIRs6OEwXoCNRb1kkPxDAMeZX7Zgokf1BjV/tfInvBSpBRO +4OmKpMZMzWsq9c+VIo9C6SHCN2rMvpE3lOZKCdqaVzRxc6fG4u01hvZPFKPw +PcZKOxdyfqC1etKvCF1jquc3caTGbAIDLqVuFSIboQcTCnbU2N64TJh+bQEa +NdaxYDIi+zNVrdq/m4fc7E7U7emT/Y9c+CoQ/RPxuPUKL+hSY0XnWOg8FnOR +7o/nc80a1JgcR1Zg4Nkc1Nj50jZchrwfzNkbZ63SEEHt/Tu+M9TYxLHE8f7o +CBRcfldQ9xQ1JqrPfsMuPwy9kmTtDOSixgQ/LFzEKoLRKf5UyT02amyAOszj +Xrkfctlt3e2gpsYwAXap+8JmSCbzsof/KBVW53n6hm1WMHCd2RWrGKTChC86 +pt+KDIPlsOrR7V4qrNw68ljVpwhIdDdQeNlGha0FlZiUCsQC7RM/RrkqKmxq +xkT4YGsSVB+YDNxMpcLeO57ytVTKhViXgjuiSVTY7XHyGTGTC/+tuiyZxlFh +A7Qu+m99f4LQ4FHNlu9UmPgFpq/1FXngg5M7luNNhWEWsqKFnIVgLMJSPfqZ +CguMn5l5nFwIUondDtzuVJjmW43uHdEimAl43fXFkQr7+ITxOOWtYlB7ERtt +bEmFjbjcXl69WAL8vRZqkWZUWAGLiFx6XAnsaVzfbzKmwoxpl+f+sZZCzu2G +Z+gpFXam3OOf0ngpeBV8Z32rQ4XB+zx/BxU8PBMyKct8RIUdKvVOH8wi97ej +O3xcalSY6dBEwUUTAkz4VLWoK1Nhrr7l99dLCfCL8tsnT3kqrITnbUr1ISJE +vNMXJ8lQYR5+o69CdYnwevb8+MptKoz50drQo0QiKButhl24SYX9bKJu25kk +wplOTNHwOhUWmqqU8vECCf6VP07/e4kKE6gtuEMZT4IYPLNY4QUqDB8d81Kw +mwRmeRXECAEqzO7bfpHqYTLPpDkpuPJRYaOTfvlmtwF2flxtMjlNru8ro1Jb +M4DK0CndeyeosEf0Nzef+wEE+sWNiB4j7w+vr+3VLABdD22ro+xUGGeq++ZA +FcBZx8Mb28xUGM6vS8q0F2DOtvLjICMVVh33hQizADizDwer6KgwrWTdlqkN +ADcDsZBMKirMyEvr5+gegIrW9KmgPUpMNZ1FL4fMU0dV41PfbVFifGJ/8xXI +/DUgq3Pl6Roldt4o0DqHzFPpkiwEmSVKrLJ95uTEEID95aq7gnOUWPJY29mV +BoDbgs5/maYoMZ918V9thQAMp6/pLI9SYvuUJnTBYWT+OzIz1DFIiZXdcukV +tQeIOpRgSeqlxB6eiaHJvwdgSq27ltBJibW2jTLxngIQ3WJx/dJK1hJv9N2m +SbC1UHXAuokSC06+crE/nwTl487fNOspMW7S24/S70jg33ftpGQNJXZJKeRy +7jUSaLfOJJ+uoMReBMkNSsyTealMt3SKQInV0cVU/n5IhKISVrlGHCXW9vy1 +eP8eAVxzq+sLCygx2Xb2o/JJBOCIER90zaTE3OX8mC+P4KEveNbcNJUSM5SP +cGpxwkOqT+LKvURKbKK+ep+SFQ9S/7ExHIuixBpuMWzeES4FY805kSwfSox4 +jWnQQhQHIveScEGelJgYj/aGTUoxbNzRk3Fwp8Tej3wz/cFVDL6X/jySdaTE +XA+W3GtZLYQCxmSnTnNKrKqU11/WLR+cKZ/SgSklpn+SR0KsNw8UN9gDEw0p +sa2ySPEj1/KgZ/RjgrUuJXb0am3dkZ5coPn19A+tMiVmXyC3rsmRCY/eHeG8 +cp68f8W81e8pY0HmKu8foXPk+r12VlZeiAKReWEnPl5KLDGoU46z8zswvJAb +4DhOiendqoo5/OMblGrZpa4zUGKBEUVShoJOcEq8SYI4QYFJMAs/oboWhBiX +eqYKRygwnmNtQdKPQtB61kRU9gAFph11PkTwdThqPEdBGdtBgXEmyuxSx8Yg +tyOXatyqKTBcscVRCYMkNLbiq6OYSoG9PlWRpfUiFzXnhh+8k0iBcdHY5Y6z +/0RgmUi8EUuBpa5SDtYRf6LwETzvhXAK7G2d7vz5A/lIuWVqksmLAis1cJs2 +dCxE4oFrkXQeFFjfn4uFlYeLEJ8Kldq+CwX2zPQPd3FsEdr5fTxv4R05np1I +0nBxMcrJV3z/7wXZzzv7NxwlJSjKWlO4zogCGzvx9LHbpVLkdeFZX7kBBcbg +tF7YHleKDBPeyRQ9psAUG9Ppl/7DIzUD95Xsh+R426kXQ/rx6OaJgOSU+xTY +QIXlzR5pAuL4lsz4XYECMz31Y+j4GgFR3M8jfJWlwLxGB86sKBHRLCPJyhtR +YFGdu1E3vhNRV2UNj/tNsr93DVO9w0RU6dba7HidAit38DFoPU9CebcHPeyv +UmC+9+MOHLEgoR9bM+KvLpHj6ZgWBJH7uW/RxoTJBQrs1Jf8STlyv3d4TROp +L0B+Xspg+QwboNiQ49FRfBQYzS1DK7FbgKpwIj+6TlNgZ3stPGmNAc11y8Zx +clNgC3bH1gI/Azq6r52gxUneX+4OuuZEQLfPWCUFc5D9ukZFlpMAmdx1T2lm +ocBc1fWFTVoA+ZqFp7EwkeMpRFfljgIq8MnKUDtAgXngK9iSyDzVk12W5UtL +fh+i3JSlyTxF3dye84eSAosY3JL5SOapR1OdRqw7+1Cmu/XiBVknitKY+a3s +g14HLXFpC9DyWxHLA7P7gMvT7eUjrydD1Lb5NLoPDGmd29tkfvtK7W5P2bcP +6Sd7h5z+ARpQynL40LYP1QVby6lEQJcC2502G/bhtX6ugHsCIOc2yo9vqvbB +qW3n0OFPgOq5hT8tksGOP224Wt0QELeR1pdXuH04VN9zRPUmIIs0V7/JXHL8 +0UuyB1gAlc6nfzVJ24e2uzfFfAZISNtp//vTiH1wTnFr2LInoZSy8zGdQfsw +oqZxYl2ChNYYNOMf+eyDoRu1bdsGEQWHpKarOu1DptLR7OeWRDTc3ZxdY78P +qV40+Tw8RHTlzG7e3Vf7QJH1cHPiLwH9zX6Av6VPzi98/cMvPgI6teoIJVr7 +0Hf/htBkFR5Z3kz+fe3+Psx8/LSgaIZHjNVbtRel94FbqurJaHQpkh9M6Dl5 +Zh/8faWTTvbhUIhAw8B3rn34I9Vo42+CQyOvNkaOsO9DNu3X21mTxchtS2WW +iWYfOLq5yyQmihCJfW13l9xIbj/52f0eK0BMujxU7/v2YG6uee7epQKkF6tM +t9a2B5rVF34/jcxHW8I/mOeq9sD+r2ow+caExOUVT/el7UGg6emky705KNsh +Qpr0ag8G3komp51NQgNY5FqYyR54CTN+0I9NQGwHojNtn+7Bhoa62jxnPHr3 +/QfnOdU9CH/r+QdRxyDp0sQFH+E9wJTzvIxsvqJ/29mxOtO7YOP6TY/3mivQ +yeVqXR3ehY5XSz6LoZ9BwvfnIabuXRA0bn1wdtUXorgLHLA/uxBYqWh7vykY +TG+VqAuk74Ix1t5vkhYLG86/KVbNduH1tVd3rCIzQaiqvKjh2S44Y9UffOiz +Qe9wpWWq9i5whCt7dVnlwK8f1R1PFHchc6TDguPYT/DG6nPLBHaBRirbD1eQ +DwSGv6ZRp3eBZeSNyEfNAphXb+R+e2wXVgUk1xgWC0BzsNnrPP0uXP0toLF0 +ughOUnU8CxzbgT0GvOtXDRyoK3ceNe/bgXs2y6yFrThwC+qqk23bAe5Dlahf +swTGzvRKrFfsgIygzc81+VLgtOibayTugMjLvOvEklK4l9+fmF64Aw2vwkal +BPGQKzvEop+0A2Z1tjm8G3gY8hmuvB69A8FyVZ9NdMj9sGXEiTVkB2wjmyl5 +igggzz12Zdp3Bz4atyvJMBPhP+PxiXKPHSBmPJAjPSdCZuZETIzTDsSXXg/5 +nEuEvpVJTQf7HdAxPBnnv0UEmU8z2AXjHZBllr93yZUEU5EUxwL1duAP2zfB +0WISBOVxvFrR3IFFvUMKGuT+L1kj+FtbdQcMGaLeW3MBDPdLHSfeJftP570s +fhfAd03dmvf2Dryc1bOLtQAQYzKp+CS+A3W+ZaOpZJ7q4fvvxJTIDvjH3axR +zgDwkPSzVRPYgfWjf7c/lgMIP4iryju9A0wS1zaVOwFaXhSePMa5A5G3H3XH +TwI4OdfYObLsgHVzpq7nKpm/Qnpr+hl24JN5XMPaDkBdxuJpOcodaPLAX1wg +85R9Ge3b1M1tkMmsZbIj8xZ35/G6Q0vbMKuwmeBC5rGK+YtnbKe2QeEyvvzo +HIAVnYxD69A2OLOVDt/oJ/PYSa2GG93bsBMYxT5dC0C6an425t82eNwj0l4s +IPOSsvN7qrptmCj8c4A6HID5eVCjafk2MA+oM9m+Ayh6l8xfS9iGXImLkY4a +APr+pU6XCreB22CmS+A8AF1SQ/O3rG24eIIt0HGbBNn4IcGNpG14Hnzv+Ica +Emg1rznrxWyD7aiP9dVvJNibYGzFQrdh4AL7uWRtEqTsn7pwLmAbhq49M+49 +TgL1o1c/fvHchv2VQ/ODbUTYEFZon3XZhge9IdzEACIo6lq7F9lsg3FsQcLp +VQIs2Lh3cr3cBmXw9yPEESDcM+ySy/NtsMmsvf5EmQCTBdCtoLENYzit438D +8BBU++9ypvI23Pizp0kSxoPk0Lgni+w2mKVxaw1XlIL3YRaxzqvbYKB5LoBh +tgSu8J/1viW8DW7hjrQCjiXQJSUxEHd2G+7Xj5UU05aAkPkzX/Mj29AnVd9j +y4KD2vLcke21LaiLeFZxea8Q7LvLJZ/Nb0GZ+cqTKttC4F7qCCwf34Kofzb3 +DYYKwPI05S2/ji04PPO6cKw0Hw69fxByqnQL3KT030bd+wlql5bu3vmwBcp6 +qtSieylwszFnpvbNFnAr4uSY4pJB0PbVNy2rLWDRcmUZkk4C6vyJAQuDLTja +v/zukkM84MT7HUPvbIHgGfPsqyHfgfd23c9p2i1wLQtvsfpuCMz9X7Tf7m0C +xbT/8RoNWbTjorBPsU7W1Jo/LspYorZfZSpHJzbBNZ6XPu23G/K+WzIu/WcT +FrzK3+KpQtCKSvLJUP9NkLKlY7NvTkKDs0blPJ6bEChuWm98OQU1+PNaZLhs +gr2beekNv1SU1hiFw2w2QUzB+VSbZAbS1/z2cFpjEza4VF9YieWie6vqW2/u +bcIYRxbjRksukghljqOQI88vGjkjbfcTsXd8mTtybRPkPSn5i1PzUPUT1y/S +x8jzm9vqqVYLUOHOLdHaw5sgsXzISPpjIYqP3m57xED2Y4kdiWIsQh/63561 +2NwAV4kfwcYcxcjcVax2dXEDjj7n+ZUVXIy0eZdsXckXHb2RwMZ6Vhy6YvQK +Qro3oLHLZ/E+VQk6TXPBlKdlA4KOpVd+fVOCDiVNHMqo24BS3cuM5qMlaGzM +SBcjbkCf/pRefGkp+ufJS3mvaIP8O6DuGD2NR5hgf0pr9gYsKQlFf/6IR5Hm +uqtTPzbAQadAOPMGAVkyzav+C9uAKTvdadkwApLKdU/GB5Djn5uv1F4gIKaH +nPsJnhuQacr7s0eOiPpWMx/7kg+C97OsmmXBRJQdfifX/h05ftcrjt1+InK5 +2cbw1Jqc34oF+0d+EuL5uF9y0WADev5uHLyRREILfMFsRx9vAMeFKTqdXhL6 +VSlosae2Afbe5vIRZB4Jekn8PSa/AXPi3AUrtwEZHtLg/nt7A8yPxO4/MwN0 +JWfMvlh8A2KPEn90+JL5S8Ox/ofIBphJmv17lAmoZeUwvxf/BsjvZsb/qyTz +V1iis80psp+Db/tVewDZS95o1z66AW7HxPl/zQC621t/6Q7zBoT/sukT2iDz +oquh13m6DUi25Lv5ZQ/Q2Jn1Ada9dWDbY7rZTea5ogqfG1ur6xBv353KswPI +04wnaGh2HTANoRO6y4C0DxZO/Rldh9dd9iteZH4UzFaSze9dh9RTnYY5zYA2 +1PsiI1vJ6y1jBo2lgGqWX6+4169DWdXLnPloQBGh9KqWFesg5qEywOoEyPxG +VJImcR3U/jNRlnoE6GaP6J5U4TpkeuoxvzkP6JBLhda5rHVYivTj+L1BQj28 +ujlMSevwOXXxoMhvEsoqn6Nfi1oHguKEGcmLhJxfuD/rC16HvltDRh+USEiN +kbOk0ncdyndm1u1pyftz/455mNM67NRMRNywJiJsqbXMxZ7stwPpnzpJRF9D +zE+YWa5DzIWi0xaVBHSl+1udhN468HyYPGR/kIConAXP8WqS/ae14lRT8Ogf +D/HDAZV1cPsXpv/nNh7Zm46JdN1ch/CkoZvzz0pR0aLEV8cT61Bqee1kvx0O +fQ6unzRiX4fKYywBv+eK0ePrhjIqB9dBj++awqBJMdpw8lnm3l6D3MMvPE4r +FSFJhr5HpK41IEgbDQqM5SM45c5FGbEGZ51rVBV5shBdoBC7fdAapPbW62jX +ZSAVyuaD495rUC3QWB5qn446hnl26xzXgOKt10m90hS0lErqD39Knq+Qzf+A +Jx7xX91KFOVdA2wi7VgJrTeyTIyLTji+BgN3834TTnqg/CNKoUfZyM9/IS5v +mjgh6Y0wzx0qst7ZlIv+rYF0iNfMq0dWwesKd9GGzifwVbC99Cx1FSRCLm5F +78dCM45T8F/sKmwxZ1g/soyH40IYj/z3VSgbDdz0aEuA5EOH2YS9V4Ezcinh +U3wyYE2ZK+sWq6Auc1e8kD0T6GQ1Z82NV8HYLnuh2TQLVAu2R3v1VqHxK1Py +WGE2dIUqt/9WXQWNDz6SUQm5sPxkoiTg0ipULiioNXHmg2R9QB6V4CoY2SQW +lefkg+vt6xlveMjr50aXU8sVwCHez1FPWFehQaWMwG5cCPxjfC4CyytwSi86 +UMe1GCwf176LmF6BruILLJ/3iyG/+rUN08gKxPokfDN1xIF0xq/nyy0rwKh9 +mZHiZQno2hjIQdEK2Cc/bGg9jgeP4d65gOwVmPvq8J72Ex6ytfS+P0teAd6R +31u/p/FAeUtnjjJ0BfZ/fOvOyCCAUG57eLPfChQHnpYpoiGCJp+WbMIn8vyt +AT9WHSKkHngYLvdmBabOB/B+WiZCs1OTzJFXK5Alc83R4wYJdubvz44ar0BL ++pfB+Pck4DdqCCvSW4HP8XlNrUUkuN+mIuOpuQKm/GeC2edI4KBUO/NYZQXy +3grcfsgDEE9QChOUWwERP4N8X1UyP12qvrN5cwU45GlScG8A1uLlZ2qursBf +Wq7oRjLf8BytCI24sAIyGY7TDUUAyl9k71jwrcBEfHlp9l8yb+38mr55YgUe +rnLSWw4DRFtLhx5iXwFf0dpY6iWAyiGSdC/jCuSzDgjbbQMsPLo1nUW1Ah6d +1udKyLzGVYMPcd5aBi6p0c4WMq/JSUlK319aBtzgcetKMq9Z5eCmTk8tA4u9 +er//LED4meshC4PLsCJxaOtSL0BZSCH61bkMS9KVRplVANMMYlNfm5Zh55pr +CH0WAIdTXrBhzTIUdYv13CXz6O15UXT11zIEaPNrW5oBmBnmTFKXLIOMMeOO +622AoNaLwS25yyDhzOHrfRjI507m7aTUZWB62BcV2E2CMbzQ5JtYsj9nkaDI +eBKwXEr7Jh++DPje6OgCYxLciBe4fSxwGS4nnSCO8pLA8EjyxLjnMji4qJfc +6CKCr9fZbziXZQidH+Aj+BFhwIp3Qsd6GX4Z3rJ0HiMA49CPIKEXy3C1tkGx +04cAYo9O3drWX4Ye9mnfcGECeN48ERSltgzav2c83Z7hQYThiFT/xWVQY960 +H/hWAtqO38Zyzi2DFTHT6trREnCbY/3qenIZoho+lX8IxkFrC/MYL9MylL2y +m5T6VAxOcQyBxjNLQGNzbHHsRiEkc3hKXhtZAvXomFXZmAJo9KQdpe1ZAllr +/x2V/Xw4a0UlmVK7BMExZyT/FOdBreTO8GT6EmTCar0BbS5ISpztH4hfguyg +4adp6dmQek2lqz1iCeQKUUv93Sz4LBrVWOG9BCSd0vgkq3SQ4ZcixpkvgchN +5rH6wETAsTqF6ggtgeLtycfuIYEgcDjxq/qZJeAh2kYnjXlD6KE6XwWuJfC6 +JHH9SIwH2NFzu19jXILG943lPxhsQGQXb806tQiNTyiePBb/iBInthVr0hah +4PP9TAl8LGIf45PD4hbBa2wgvhTFI7fhe6j4+yJsjFi2mfxKQAZ9kdeSvizC +s3Sq14r4ZMTVcvPMx5eLYHxSuqDBLRN9aTI66fB8EZyWFJYEprLQRoMPp7XO +InRcEW/vVMlBbTXdzE+VFmFEx6mxkPIn+gqO2xLnF+GMicRQcVg+oiAmrF3i +XQSrR7XrHdcKkFVp7SL/8UUQxnlfbG0sQCqFJyY4DixCQ7X9gf2dQoTPkx0+ +SLkIuVzJu7t+RUgo16KPanMBTKs1C9+fKEYMGfiWhYkFcB10Wg65gEPvUof/ +jg+Qx0ufnGPMxqGxpIO1fR3k8XBOhxThEvQ79smvuuoF6HH5qHH4VClyDt3O +Sk1dgGQVuqff/uKRoaG4klDcAtjTPbncKURACiK2IxnfF+CoiYnufTcCYqkc +48rxXoCOIwJd0eeIaPUrb5Go+wI0E69xPrMloq6neg/yHBdA8ViyE38JESWs +NnkWWi5AY+4ji+9SJOT16xDfdZMFeLZhLizmQEKWfgok3NMFkGRbc8/JIaEH +Om46kloLkNpxYYF6mITEzxFX8GoLoNfC5iLEBohrcT3glgJZN9j95b4FaJ9w +5QKgBSivLWJtNQI04vWqUlpiAZwfZTKofQZUrZn6vEyUnP+CDKN7IqAsnuEd +2fPk57MFKWxIZF6bORlewbsAE6BtxtoC6C1O+6oC1wKwrAc/MibzzxOPbw3V +bAugIlBrbboESFq94aXywQVge2y6Qr7GoLPcB2jrqMn+i32KbMl8xdboKR25 +MQ9U2rKn/yPr7he7b2Mm58Ey1Pci+VqEEvdfZ8V1zcPcbf23PuT1rMImhhNr +5yHcJOhsODne9Uv6XKmEedBdI248JPuhqPqnnpE1D2tUK4q/yH7/6Ct5ZsfM +Q3qbPcUwOZ9vayTiz4B5aOlS/EEg56vnL7ZS4DoPlTpVNzSMAfHzpwvhbOcB +J3rAIZVcrwXi6ed4w3kIdlcIKSfXs+RRSBjp4Ty4evEbZJLr7TbL2PBLbh4o +PGbETHNJSOWTK03FtXlQZEmi2yTv15GTa5LV/PNwpUFU0/IWCfUVWNjWHpuH +lR93hKt3ich2RKuvaXMOIgKvvNd7TUSSTnUcrVNzUCTwtD6Fn4hoOGTudXTP +wZYmhxFlOwGFyl7E9RHnwF77yCajMAER4qmDpj/OQcMR5w+VqaXok+R/1XOv +50B+OLam4XYpUmue21s0moNy3MSuUlMJGqTssti4OwctSYf7WqZxiO557l1a +xjkIenurZGOjCDVunHNi2J6FM6FaRx7YF6HvgZF5B2dmQfJ+YdqPmUIkjH0+ +zdYwC1s5BRovWwrQg9NPN08FzUIX6aV9jVseGip1/db7cRbyPv59VdD1E73W +SrwYZTsLYu0xI1WXfqIgv+nnxx/MgmUe7fGMhBzUvP3fH3aWWQh+truFFtOQ +RkdoJIP/DAgqmKUcyIhEQ3al16o+zIDi99vx53zC0evDfX8/vZoB6fXgLzov +QlCQ/DkaatUZCKTv/8cm7I+aC/Itdw/OANagonSh1RBpfG28tfRlGjgFQv8l +MYXBkPBKe+5/0yD4rW7H/lIEvK4+9tr65TTUqZ8RPq4aDUH7+skzitNQEBBW +tkSIg+ZXs8zj9NPQ1sQpPl+RAoYHWNOS1qfA+4H1ljpKg6VEMVnj8SkoODe5 +m1WQDmw9ju8GK6dg6HBRiWVQFmgoMw50f5qC5niVrpYvP2Fo9OL7iDdT4LAT +uCR/NQ9ef3zAoWMyBTETl6z/deZBEC5csU2OPH5Pia75ZAE08wv8bKSeguyE +dpMY5yIwLFO+F7A8Cf+eNEgeZy6GpadWo6rDkzAS1x0/8b0Y2EIKj9eWTYIr +//gv4WQcPKSWc6v4OAkxudF+lAGl0HDTT+/760loLOdlcV8vBWX7NvFXRpMg +0fxSSUEPDzKjZtMcdyfht3ea2zMuApBO5lVMXJsE/ANj/kg7Akhqbf8g8E/C +HiNr3XA1Aa5U+WkaM0yCEtXJpzYviJC93yYisTkBqwnXVGJyiSAkwXPg0NQE +6NmBQvYqEZJtXg73d00Au9QJQqg4CXjT8oj5tROgGsyXpmZHgqjB7TBPwgR0 +6Vsm1GeQgJPr7usnWROQnPWq9eAACYI1/FUuxUyAefd3CioWABafdn7qgAmo +KtR3TrsJ4Pubh7LdZQJOBrPe2TEEYNh52Z1uMwF5kpUtK58APMTyC52fT8CO +Bcsz/0SAfcudAA2NCXBnyk0sJwG8T7przi87ARerBSiCW8h81+svt3V1AqwO +37bcHAV4fbTjVMPZCbj+wcxlicxrc2q8m3FHJgDseF99IPOauaf5vzd0E2C/ +KUD3ncxrY5CfpbQ+DqyVaTg5sjbc2PE8OTEObI6PA123AHpF5Q0XO8aBQGMk +rvr//4O9DJCqqBmHOT6zxQwyH7bEdRz9XjoOy3woKaYJQL2Ld9EyYxyKykqa +BfBkHmWzqJWOGofPmsphyrEAivcKkjj8xqHxUkgm40eAcvddl4kP4yBiM/PC +8imANEFel2A1DvtnikrsrwHgVwLEAg3GYWeJIHz+AID4xU5mY/VxYLawGA3o +IEGeyZnJ63fGgTS9GJuTQCKfowXR/WfGwf3em4MSF8k8fXjvXT77OMTM9Ar8 +nCZCvIKChifNOGQsZ5+mSSbCd1wn3aWxMQhv4ujUZyYCx+KZQar2McD39Mc5 +EggQeN4S31Y1Bt9uhTyIMiWAV8SetXPaGAhlLgUdz8EDzT8FZY2IMQid3g4N +UMWD68GvZ/l9xsA3UMhIaqIU3jnxddZbjkECE80hO7ZSMNVXlDkpOgZusRwi +ezdxMBT6lXuRZwyOPH4o10gsBv2/XWvlrGNQLeUa+FiqGB5Jv8qwXB4FzhBZ +poZLRSB3JoiDUDQKbN1a/ZZL+fBZ/4vGveRRoCy3vnn3fj7URLgGdoWMQn+a +TcVGah6osVsf2rQfhZY3UyL6D3+CNo0KjfjVUWCBA+gVcxZYjNGu5OSMwMZr +aS3EGAdB6f/9S0gdBk5fMUMWrq+oZcyG9Wr4MCwcPi8beC8YHeMzu1/mOQzV +mR63y/4LQ1GRWrUDpsOA4Q6NCf2JRsm+V3+fPDcMFFs8oU+PJqGJaiHKLA6y +NrxuWxqRjC7QnkFSNMOgvsYj8PJEKsr9wILXHR4CQvWVO2UsGajUajYvLG4I +hKgGdnQMc9FO+sgC/9ch0LgwJfuW7SdC490iRa5DwG+su/0HfqJygz/pLQZD +UOmipZHFmo8a1FPiWU8Ngfb3Pxz6AYWIxS9mIJZpCHrqZ+Vk+YvQw5qQU6K7 +g6DGeFber6QIddzxiFDrGQTcXV7zhZZiNHjleZBPxCDoW9V4v+8pQdnuGbYv +vAfBt13v4NiDUvS+ZVVd9v0gyGhwnhb9XYrY33of3tYZBJWMKu/j3/FooLJl +rk1pEPjDE9XDdvEo89jphrwbg/DeCvPOfUpAd0vyfc2PD4LYkij+PxYiYmPc +s5A/MAin5JPimYyIqE9X8d6ZzQFoZtsfoflJROkZQUJ7EwOgSDd29+EWEb3b +6TnQ1TEAAw3icrO3SUhOVWCysHoAqtWaTlQ7kxBLjG31V9wA5J1TquosIaGe +OXzKq9QB6FBxoDy+QEJpiM5TKXwA9D4vy3/gJfNRoLrpOa8BEDF51r6nCkhm +MOIupcMAqOEyi0LfAGK+Mnq298UAjAkIZN8OJ/OP2yWakscD0NbhoLpYCCj1 +33/DwQoDwDXvMp3WAMj+bHmZzfUBmKljTDEeIvPVG+Z4FYEBEFy0e3FqERBT +pfZHwWMD4KZ3qrdlC1DX0YRnNPQDIGbe/PEzma9U/na5YLP9IMi0HX6FrEdt +rG871PdDuNnvS52bgJzZaHYvZfVDG4njpOM8oGMF4fhx334QKban5BoAlPvo +4vsflv2Qu/9bHlcLSGn9l8RjlX54+6j3tE4eoKFwrXVmYbKmOuJFEQzIUXK6 +sPJgP3CNhsvk2wDi6HGxd57ugxiun51vFcl8+YHjqnhtH9iYD0Y/OAFI/nTa +4mx6H2iETCcqT5JQP3YrN8m7D7hy86pf5pGQg2Gz1VPzPsCK9pOK35JQetL2 +dN15svYKqqRdJCJZhcB0jwN9IHOYn/ZEChH1TJx9KTXZC4rUgQte2kTELKw2 +lpHaCyLDLp2xWQSUUj+UaOTVCw7/PU4zeUBA0tbvjE6Y9ULjLbtK3AIevc6L +HfAW6IW1T7mKCmfw6KDmtR8y9L0wEdzNnlBQihJXa55ujfWAkJzicr1MKWqT +WO56mdwDZyV+HejUKEGScLdV8VwPuDExjgzIFqN/z7q+UdD2wN5W/GxdURGy +pLLWwI10Q0FGkpkg+fcTczf8r0BiN7iu8Rz8slWAqOumauj4umEg+cl5f6c8 +ZJ/yh2GSphv2/I4e7Br4iUbc0hVqx7pAlO16XYHMT1Rxw7wiIL0LXOXe3eve +y0GeKZMY55UuKD9nplRKSkcH3SeKhe50AgvhsqKF+A/ELjmWpGbQDorF8zm9 +DgHgcaRyRPROO0wYWRy0Tw+ClYUkPna+djAW5wuZCQmB1hSTuPaxNjAOuJX/ +wygSwo6MRj2zaoO3lkzLLi8S4MTi8LfXH1qBqiCNKkEhG3zrfjdrGrRCWZKn +2EpQDuykJLBev9MKmdkaeVuWudCrbxSwTdMKdESTLqGsn/Cjbsjbw5fceKWT +CyYPFwBLalmNqVULcMR+X1mKKwBX93gGJfUWyCWWVQhdLoTnkoafmThaoMeL +TaZDvgj4Ugc/hkb+g6HIISMeVRzw+Jz0mn//D9yqPk4mNOLglJWOv6LuP4jt +LXa6oF4CXGJNEVuc/2C1ncl3VaYUOI8xxT3caIakwoNMrEWlcHRLMSWzvRlM +E2Iyhs7igQ3D8vVDm4HTmafm+SoeWBJ2SorfNINe26uGWS0CMH+WwFgeNUPU +liX1bD4BDr20r3wp1gzI8Nd/6oeIwKiSW1fG3gxBlg4UjM+IwHBppvnEchPc +SlfnP5RDBDo2wU775iYYNRi6qbxJBMqOH6P8X5tgLGVG9Z4LCfZKu6ddbJrA +4Ypf5UYpCXaijy113G8CijcZQsWLJNhyfbhx+VIT1Lpfzf3AB7BhFLDnzdwE +q713deTUyTwjX0szMtsIm2Muq9QOACvn6Q/eqm+EO4Z8fEURAEuHZFlDMxvh +/i9u9Uc4gIV552PzPo2gzzVR2tNI5p3m0pOKFo1AjNe0UxwBmClc44tTbgRH +P/4nIWQemgq/IrR1vhFsxcL4f5F5aMLRSvThgUagfZev94fMP3VEzVfaTX8h +GIU/zt0DqHav+48x8C8Qz/nJ2W2QeUVJ7jNB7S8ond/l45gFgMOEICumvzD0 +WbUmuAegtPXqD566BuDPCuparwQoiszIaPZuACl9vkbpTIC853w4D6UGkD7M +uGLnC5AtEFkuztAAYVGaz0NfAKTPsjVNVNbDY2sZ6uxbAMn53r0Rn+rh87UH +wb+YAeL/o5pSkauHG5qC0R1dJIhB79f2qOqBUtrIbjuOBBG0S1Q/f9WB2qyk +xFVjEoTWvjxs5FoHAwHM7V94SeD3WEewarcWFlWu3wA/InidbBL7j1ALXovs +xYVSRPAYVrxzwbEWODWFXbfGCOBkLaEbsPEHmI2LfyVfJIDDtVzTO8V/oAw5 +bV/4gwf7bQG75Td/IE9cd0/SEA8Wnsd8Hy/XwInskZYbn0pB98ca8fRcNVhV +bQyXhONAy8TqT1NmNQjy85t7suPIfX2szd2iGs7rVuq+8y4GpeLW+fGJKuBI +XuI+9qoIJP4W8OYOV0J6SBRxmL4Ahhl+ixQnV8LPP3Hlp2zzwV+m6SbpZSU0 +HLxyOa49D4YLZx/VzVcA6QrBsznqJ/hH8XtPbJcDDcHrUzZHNgy/DF/i4fgN +omJ/DScOJcDJAxuf+b6Q4FnE+51QQzf02okj7vJhEjTqfEyP0vFC1fOieBRC +BOm6ycEbqv7oddvL+SdxBFhw45CzYw9B1Qndj4NLSqFxIN9CwigW2d8GQdqp +ItBWO8RlGZmB/vzslmG3KQJXFb/iI8uZ6PS5DT3etULwuObJmiefjf4cvPz1 +FlUhFB36h3OzyUWnO+M333DlQ3lnl+GnOfJ5qgLsHrF5MHbJTCTaMx/9ge6L +Qfx5wKXje2PzZAGyT+YwzL7yEzQvzdwVkilEweOHQupDsmFvjcFSyrQYDRx9 +15efnAXhXGrmMFKMLsgPCkQUZ0J4/GrYwWc4VJZYWGramQ7eah8iiColiLnl +NI3qVBrkRT0JpyaVIF1qb9Wr26lgf3zwxL8LpWjxuf7APncKxNswH2vZKUVS +X6vPj11MBvsb920nDfDIC7tiV3c7CYKlLnOpAx7xnKan+/4sAUQJV9z7XhOQ +pZrtfRfbeKDI3DsxV0lAxR+6w03c4uCsGw3u1DEiisYZPDZW/AGV977r4jKI +SOyY2JSoeTQwNnYbMS0QUd0bhg+7PpHAgLd2eCJKQkYtPYf/ZH2HNZXBxe+W +JLR15Wd86N8wWDAIKcQSSSjo66drRoshEPx+4Fp1BwmdX9CpvsQeDOqzjHZp +DIAwNZEnO2JBcLT9zs5TMUDaWVRz1VqB4Lxov9D/BFDfsWzKC4u+IELHu3/e +hcwvrVoC5WJfwH6J7uX1GEBSQfsqTx0+gTTPXwqaEkDm91Nfr+E/woz+9wu+ +fwFdPh4venrfEXro/xusGwTk/23Z8cFnexjR7836TeaXthPe/vQnzGHj9FiO +FZlveHh1lTs0tGBCJDGibg9QZqsL7/s7t1HEM/nCHjIPbdP6Zf0pMUTvH1/p +jtkBFMvw5mB+qw2isDngxL4KSNafD3NVc0BWhO+RNycBjbE326tVuSBONnwT +ZyegchWMgznWHQUKcypnlQMKDTg2b6/nidTnhn9vZwB60WxV083pg0aq33+l +DwAkcaQyQabVH8noLIS1vAJEm8kMLYpfUZ3CF7UXZD6yUpUUZhD4hqY+8JLK +T5HzmTP5fpM2BG1VOLsukXkTBX6lsx4ORRMzAbBGIqHUy0S7+F/hyNIlXKzD +i4T+s+dQO+Achc7YVFiqs5DQ0BFpvJReDJriDjFdryeipO5rHBInYxGbowdl +lCeZjz48/2ixHYckVSldaOYJqEx1/fqnqXgkcenBRE8UAb095TcX05mA9n65 +7XbLE1A/4J40FychczbpVacAPAoOVGObSU5Gbyld3K6L4JHi85Fq2tAUFBxU +wKRcU4pyqVjEb9inoVhh34mslRLkdvcFS6xoFvI/lrzEeAaH6jq5fanFspF5 +3a9MvYhidMSqmf7F9RwkMU34u8hcjDRrY/aP/shFVPTFF9FsIRpbPrDem5SH +lPHyk8uu+Yjx7sCoRX4RSqxqzau6lolEDuMTTl4rRjRDn3u6KtLRw86Q53+L +ilFH9ve13AdpKOrVvd4rpTgkep3rXtDTZHQptKhlEytFPIEVR3+pxCLNcd/f +ng0kJH00IHts4wNy+Pni4w118ntBZ2o2KG2Loh1l0HQTINevKx7unBpomd7p +aYo5hrDWB1fd5u1BKupyJ6PVLxTcT2uPn/gKf8ujGpvsfyPnF/pnXqomwdB5 +75z0wt/IuxSdGKtNhhX/d/7ua7+R0JMY4Sr5VODU0VC55lCORG8JKlSKZoDh +LH11uGMFEhbZjEl9kQsrR+zAwK0KVewceDDvVgja9H+ih0lVaGzX6pwocxHg +N3icXmxXoVljam/T0CJw626QsLavRsLdxg9fRhfDaN25Y8u51ahMS+sNKzcO +FElOq29nq1HQMCSbhuHgcJxQnrNpDeKgw2e0uJfA66CPgVQJNajtRdRY3UoJ +tLl3WH3ur0FnZtlpLhuWQpTp5wv+2n+QN4cbO+UVPFBo9x5gC/mDPM781VcP +xoORkthESNMf5GWiIdu8hAch4aHEaOVapOwQekcykQD+J2+483rWot+Hekfp +1wmwyBz4POl3LVpPKL/ZfpcImhTj6DxFHaJ7SDSJDiQCbvHWqSypOoT/ksqh +3k6EE8PBO6L/1aHzs3JfRo+TwLlluqugsA4l630O0dQmwd3i72EEkXqk0PAo +IrqaBKmpC2+kLerR1YCWY2ZbJDgUoaBZnlKPlKR2JGYFAKx9Yq4ojtSjS19F +i/kfADQ7rbLU8TSgw842w8xvAcStVObvP21Amr9OpcSGAnw3SKj/970BjTgX +epDbJeyob2U8bmtABwnG4Tl/AJ7JPPDuZvuL7qZHhp/rI/PO1VQzg/t/0XSW +U5s4mXcEzu3LD/v8RX0sUrcH1wG8j2qde1H9F1FovnzMR+aldfe2j2+oGpHb +Eb67O2SeSt2htC3maUR4j2uVFrsAum8uPtu83YicDPiuvV4DODSnff/m00b0 +8d1xL5ZpAJKpx+0Pjo2o9ledumI3gE1/zkX43oiCV2QIJ6oAeLW7uSlxjcgC +/ynIL5ucbyPdIdm2RnTGV1o87iuAh9KVbY+VRsQipJSoa0POv+zpVCVbExKc +YLMjKZN5T/JLJ8PlJnSFeKi5iQcgIr+gWvl+E4qVnvKKWCLBPeGBYt9XTYg7 +rX3tFEbm18SDKQ0+TWh9IpzVlMwJ2Sevh7KkNyF3+mDjd2okYDvsbx881oQk +bqZWHq8jQrlniVEbTTNa3VxpIHgQ4Q3FqAYnXzM64We2r3qDCB2LNy9HGTSj +2yz2FCahBPA2f8HT96EZEQRG5CkRAaSGgw7zRDWjp6lsMbhhPPxomZxN6GhG +5/5mPs3gxYNpcVh6xoN/SCbUwf2MbQl4C75ofvv6H+J2W2Q8uYSD7O/iW3e+ +/UPiIteeMFnjYN2xVamj5R+SuP9j4OzTYvCSZp+k0W5BqVrqhmmHCiHz5xBL +o0MLeuRSaFhlXQBNZ/IkIr+3oKNlG9yhf/OBi/aB1+XuFqS6+OlA9qc8yKjx +F9DXb0Ue1aojjtE50Cipf/+8SysaG7pyOlUsG1YyLr5b+dGKzPS5WRcqM0HK +v67Se7AViYqt/sZ606BBg9G02LgNFXErCjN1J8BC96dEFot2hBV+wtGI+AGH +6qO6bp92pFhuQbxU+RkkSGdXkjPbUeBZ5m/puq7wMfa37K058vynolcrR58A +mwnl8EvbDiQtdMsz4tZnJDbnxPv7XSfKlA961Ccaj7QNVJT8w8l6Y+6gfWkC +cmo8YatT0omkiGmd7dJJqCKvFJvf6kSBVYMmTLKpSOvdhgG3cxeakffXtjia +jf6jsI9549GN+hq/CAYbFiBvxWj3lMRuVL4g2T62U4AiAivNOsu7kf1v+/6l +b4WolOf41Vu0PYhH1lmss7gI/TGT4bQ+14PEC3QXP8kVo65ci93Yuz1IeHd1 +LrC+GG1Jk6poPvcgxvqoXMsWHGL8Mp4pntyDCE7nX3GQ7+dcTSxBZpU96HVj +3/Pq2hJ087mRXh1dL9phlQ0/kF+KVNJ87+zx9yJ+yXu/XvPgkd5iIb+oQi/a +aG9c+/EFj5w+Mix+8+xFuuYiXrT3Cci35nJbRUov4h65x3E6g4CiWJ/g16t6 +UR7THTagIqJMHY/Y8xO9SMUio6X9ERER4rI+PWHoQx17x430Esn8Ndlm7idI +1oHsTtJzRNRzmUIdFMn6JUWYw1US2v2lwcX3pQ8pJlg+Ls0hIWZGp33NtD6k +MlsRljtGQqc0kkY+1/ShKI16thZOQCIRDTW4yT7Utsewyi0P6PbQevbUgX70 +v5rOPJqq93v81+VeUW/JlBRJKklSSCL7CalMKWkQkoQiSQiVMoYkSRKRJENR +Zpc7PJIkkbkkczIlLvcaMn7PZ63f78+99t7PHs5e53mdtc55DmJylIJcMZgq +bohZp9gFMs6rXXijMdi4G/qYGnaB9/Qyhcc5BH+UXrO5c6kL7D4fSFCrxuBH +TtTLC++CmYsTHzs6Cd4yrFToe90FHsd9Xe+PYngePfafxJcuONUkLLef4K2c +NknOwT9dEPpNRH2a4C3bVRtGGJRuUMw//OEtwVtOhYWdLeLdUFkulOM4h8Ht +tGHD6KZukGw/kiY3gcF7ofMD/+5umE/1kOz5ReyzL64VyRp0Q9B7efSqHkPo +gWWZmie6QXdoVNqdhiFq6FnCMYdueMuu9zZKwBB3f2eks1c3WP1I7lD3Ifbt +nZV3gkK6IZl0Mmn3MQwZLZbXEmO7oTdUs8F8M5Gvz9iForRuGJUZOhIzyQKa +dNCpuqJu2LP/SNESZkHZe0mjwcpuyFN1PZcUzIKqC9n7eL53Q0GdiKuPAQvq +BXRVpAa6Qd/eqTiezILuo87ixvw9kHHLfO1PFyYMTi7xX1jdA2Z6WY9XrWUC ++2nM7K0tPeAXGLuMWcEAnl5m17uDPdCnq+CeKcgAwZBjjVUne2Bz5C4P/nQ6 +iCgOVPQ49oDuyeX+YkAHOXfh16KhPSB7t9roll0p6JLPe1yv6oGYzStUfLxp +YCPQuPnG9x5IVvm6T2ehGG4I7//h198DSXvzLd/7FUOBzHqdEL5eoO3U/23g +XQSbtH7yP0a9sIcWxzY8WADLPMwT8mi9IAtecfSatyB/o9yk6FMvBJnU6Py6 +nQ37A3aSSr/1QvvG1gsCO7LAN2rlhffcXjhOksxfFpAJf7K+KNer/AL9tH2u +nKWX8PW3XvnfjF/g5Blinr38IQyP5HmMF/+CbhF1kuq+CODnbtgyWfkLoiIZ +b9TPhgAikyLm+wj95RnPZnVPyJVhWCzf0Adsl5eja8Z9cMxJtSGFp31wiO/1 +CUpNIs6xeZmglNEHhmUHpLnmybjmgoipSnEfpJqMTGTjF5jiwc7TaCHkeNmI +wgep2Csq66bBqt+wLEDn4YcVr/Hpz/LC9mG/obfypEe3Qh5+W/PbJuvpb7B0 +EP3eU5eH+erTsrmZv2H0bK1877V8nPNNwSi4+jccJG6Q1/MKMLVPKSRteT+8 ++pihspu/GFsN/G0eXdsP87WR3q6PinHe8NuNGkr9UP/CeKh3LQ1bj6u8/2Tc +DydPH6Zt3VCCCxbV5gfv90N0oqold7YUC5KnDHcm9UNAqLt4nQMdn6UUP/V5 +2w+2uqrRh7/SseAKTQ3Bun5YsWPSuf0BA9uunA0+1tUP9rqqXS1DDFwkQm+O +H+uH4HyrAzuBic+t2ee+TXgAgnfNyrX+ZOKidYtl12QHAB9dHyu4keAfWbyS +oTIAu3Ojpl0usLDdxjs2fPsHQOmpZTY3hYVpm/dnGx8dgFu0+V9PfrKwkCJ5 +PubcAIS3zz343/eD57d/MOy4OgC5xeZX/tPBmKYS9HRTwAAE3KgSrHfEWEjt +wODl6AF4JixZHBmBsb0GVaMohfCnC8bqZWFcuvdT8GLeAKzhPf9kqBJjYZ3Q +ZoMPA1Cfm+Vzsx3jC/sPb3zQNACeDcPVMyOEvb6g+/dfA/ArSH7ozAxhf+hL +2XruAKRn1pNTCV5yMIpY6cQ3CDoqsqvr/3c+g6mJTY7YIAiu3zLVNYexyDGh +7Bn5Qbit2YeaJzB2tKibQ+qDoG+45eLbPsL+VJRh2IFBsBE7kevWQNhbHX3a +YDEIg9yVSjIlGDudFRlc40Csp59DL00g+Mquabed1yBohr1bZeSDsZhDTPDr +kEFQfPYru5ngx4sXLZonYgdhTUNSh/Umwt5FYqNW+iDsOf629C+HhcXcvl8N +LB6EyA4NxQgmC1+6Flf25RMh//H6uT+Ahcu8Tq8Uax2E4eLTBpK6LCzhK2Vj +NTgIZ9YvZq5ZYGLnWz+zUmcGwbBUaPnRfCaWCLI2VF8zBJEJKpkPVzGxy12Z +p7e2DoFLSl9pQQkDl4d3DXzUHILtpxWv7Ldm4MsPzwWfsBwCt50LIU2xdFyR +dKHsesIQPC127khtKcHKFJ6616+HILXJynPT+RIc5/yso6NkCOpNucnSf2nY +ZU/TrF7rEByaFugtmirGYo1IXVh8GMzsqd+9egux3552PT35YbB589Q83qIQ +DyZdP+alOgzhiZaVHz8WYIbz2yvtR4fh2GUNSnBiPj5PWfc6I3IYIlZ7Co0q +5eIa52Laz8RhuLj7otOT8By8u/HYJ6HsYWg7hsf7v7zDgs/D+jy+DINCbqsd +KGXjvD3TMvuX/QGnR/RLJcx0THZpfPTD/w8s83zg65cYh10aL6esePgH6hcC +tkm9fYy/7RHIheQ/wP7Z6p9Lj8avKejrKxbh/7y1ZTQpDB97nr3Mfe4PkO6k +/f6TaIxfNIbeEvQcgYxP2d1RP2NBUFM+Yl/QCLQKzJ9I+fwUPJ7jeLdHI6BS +9FVauuAZHHKZKv6WOwJ87X8aT+q8ADbFfiJldASUDngJhw2mAdIERy2nvyDY +cfH9ny85IHvvbvOG639B4aasosKlXCB11O1fFvIXpAYSbISpeVB2x3Zdy8u/ +sGgvsPrh7nyAKv8G166/wArz7Zb1LgQZqWodi9G/IOwV+yqEpwgWnUWytBb+ +wt5HbdS5u0XAWvkyZNnaUdi976Jk1b1i0DlZoZVyYhSSk6/2iV8uAZnMFZmh +F0ahwKBDX7ijBBZnj0tc8RiFt6G2Ko8PlwIr6TdbK3oURg6tEaNI0iGJvd1G +7sUoeCxUuTX70MFP1+vLspxR0O5T3zT9nQ77+qlpLbWj4PbrQQlfGAPW7Tki +ymgfBZnRiT/ffzJgPuzJnZQ/o/AtZ6tMnSLBPz+7/obOjkLKofKyLk+Cl7Yr +nLkiMAa7D7V8XmIw4dlttyoLyTFwcbAu2kRiwc0Gmrr2ljHg23jr3iFggbbn +YWGBA2MgmTyVfz6XBes+Pbw1Zj4GmzXqKoz7WDAv2TbcYjcGpXcPaomJYmi/ +JHeKcXUMGkfaWvL3YWAwLn1MuTMGowzDnk32GJ4J5e8KezAGZm7nNC+EYLhp +O/f8StIYWKWlHL6cisEqT++/E9ljEDox8N9eFgYtvghfbcYYtJ0ZFqlqwiB1 +onlA7ssY3LxJ8xL7jWE2fZ2FQBsRf+eaoXUE77T9sy8fGxwD/bq2N12zGEqN +snd8mx6DvmqhR2cIXqr96mtqw8uGmdadlChCZk7LBDcIEvI1NHdz7n/va32g +64uwIammmLSRgyHxsONE8Ro2OMkFqgb2Y4hwX7512wY2TIS06D1vIfJPeHc2 +SYENxqvY13zKMLhUmMeuUmEDX1jzE7F0op6/0zVBGmxiXvrEPMIwGEs8453R +YUON6+WeBEcM2oD2Ohuwod9UNihqPwYlpz63ThM22DtcFz25GsO6h6HpRy3Y +cIfGrz45yIIVpUqdFVZssKzE664WEf3vrRfbY88GkqpoRMNtFows9zR648wG +bV/RBukDLGhXWxMgc40NKT88P1pTWVBjzaQ99GVDdERI7dMPxDyEnBvjC2DD +6G2B7203iXlozbT6E8UGg6UHJtG/GJCx5NVDesqG+F+0wD/EvBVu1neQeMGG +7l+dRyu3MeCrR+eV/blskBv4r1Dbjg4/E95wT5QQ+WjKUWemSmGw3NvH5T0b +KgWM7DzulgLPKtHAJw1sSA5ny04nlIDQnm7+7B9soN0QjZOTJZ4nzmZHlPew +QTGvbN/pZBqoZR+M/TvOhgI3/+2aj4vB4fDNTD2RcXBnSFesMy8Ed7fDyqel +xiGqJM5mqqQAbj+RyHeVGwdSC8/NCOkCiPudw3i6axxuiqToHf2ZB9X+v+vG +jo2DfFmMyn9qObCj1HQq4dE4FMQNanj0pYJ2z9obuQnjgO55F5bbvYRDy4aW +Kl+OQ410eBlv5wuwOxEoMJE/DlXa5Mev4hIhZqJ43aHmcai36Gruln4IM4ob +9LhiE0Abn9ym7H4H8x0b/SQgPQEzph8EyonnxVU+dOP1mybAO6r+E159Hyt+ +sjhhqD4BzSFVj263xGDr8+EXky0IueZqfGlSMi5P4Dwwjp2AoMG4R1M+Wfg0 +N9vje+IECJvi9MAv2Zht7HTa7tUEGEfP7JyTfIelF9vlvAsm4I5ZZr5PUw72 +tq0sfNk4AXpzYaarD+TjlSV34pXbJmDx0Q6O5M98nLZK63ZJzwRklRxpPuda +gJvK3x2qY09ArS1rxDuiECtvevpzVogDZQP+489Ti/HHW+ZlwRIc4vkg5yJD +joatvv33SliGAzyiO8bCEmk47G6A6+btHFBsO603GVqCZbu1zXPVOKC/daDG +/V8JLtozraGtzYEdhuMdtg6luG/ImeeYEaF/FnPGXJ2OfXU397cf44BK57ZL +Wk/oeFVCd7WjJQfuBq4/dGaSjnWMLWJuXeTA7EC71co0Bm5JXemz7CoHzDxG +Le/NMLDLwmfrR94cSOLuKxU6yMRP3+psybzLAY+WyXU8rUyswv9vudoDDvzi +p+paSbFw5dl8NiuWA0781kJPTrGwNe1yy+EkDnh5H5jNiGZhrrBCafMrDijn +8wiHV7Fw+MXepLPZHEASv0Z2zbLwhvJngcMFHFhQMSl/toXgNamTTp4MDji/ +SD3x3gxj02urTEgVHPgQvJWa4Inx7y9fdt77wgGd88wP8rEY35QPkZBo4sCM +Q8wayzyCj26hueQ2DgwONmzVqMY4s2W2a1svB/auFX5H68AYKRdWFA1xwLep +cf4nwW/fQq5k7h/nAMf691LSNMaXu7ZG1sxwwMD0pQ6J4De+PX3uJ0lcMNFT ++rFI8FtCVNLJXn4uqDwJCItfwHjX0Cntyyu5cHU65mXTFMZV+0U3zEhwIfXX +LvE3fzA+G19LCZThgpPYyAU5gh+nJu4O/7eZC2J1bUVaVRhHGOnWxW3nwvXt +p8v/vcN4Y+p8/kZ1LnSef/Hz7COCL+eL4t5qcyFJ5PToVXeMj1pcvaWpz4Xx +PH4/NROMB7O32VUYcUFrl/errI0Y+1H7DY6Yc0G5gSLRPcnC4meTt7VZciHw +bLNEywcWziq2FL5gx4WSMU5g9H0W1hUWnxy7yIUJWbfa9eYs7PY+jEXx4QLL +3/5RdQMTy0teHt/lz4WVa+KjvgUx8XdXM3nbMCK/nclogyoT66xbHV76lAs/ +qIIbMvwZeNx9ljHwggs7skQGSXIMnPq5Y0zsNZF/UXx4A5OOl19PtbhSyoW8 +F9sz1g6WYlbt3dBn5Vwoa9sTVexVit3lnemfq7kwFbBHQZinFLc27Nwg/5ML +Mlsk+/QESnCaEh5pnePCn9B/fBNDRdgyMGU9lW8SjDb2LLw+VYT/aws+prpi +Eo7vybha/aEQe9w1pt1fNwnr3PgOJT4owPt7fwTq7psEB63+X8dJebj9CVcq +y28S7AU341v0DBw1+t3kR8gkVJx7ouqtk471DtDvUB9MwrHJEzIFzFf49YR/ +v+3zSUiT3tw0mJuCr5uszBMvmwTZ8wO81uw4LMKrePg2zxSQntc88qvXhUOu +Z68fC5oC26DVd5YbZELI1A7ByXtTIFb+2KAp9TV88CMlPnk0BfpXrfg6lt6A +zoMX5e0pU9CnduwfJ/MtqOX8+s/x/RTIfS15drsvF9z3FCQLfJ6C6n1vjh8N +yIN3ZUGqWfVTYHmrKChMOh8UGzadHu+aAvaVQu9vRgUgO+GYemNxCnxbm9Pi +govAxnePhgx1GuKK2+OPriiGBLJAddl/06Cb1Vlf+6AYJERfj1GkpyFcOyy+ +MoIGxxN8AzLkp0HJQjRtPbUEHm40EjdSmgbJtacGuTdKYIXayN4orWmoQMI2 +jValYMhg1O7Smwb2N/750k+lcFf/vm2L4TTE7tz1uluZDmQL5RApy2nwThmr +yRynA+pYlGSem4aU5ie/d5ow4NaFujdnL07Dsg8elmWpDJjxdGtI9Z4G2uhZ +Gj7IhN2LyP7gnWkgXQhmrHnEhGshq6aH7k5Dks6BE8ZtTMgR6g2LeEDINVHB +JtIsGI3NW7fjyTQgbZkeUSsWKK0PfNeQNA0rFkufxMay4GK6ua5H2jRw60Kv +1tawIG2HfIvE22mQ09nUkLPIgr5irmNJIeF/lV6gqYRBDn2cPcOcBvmNpOJz +FhjOVj2+v1gxDRJPVgtv9CX4zMxB9kXNNFh5Xoj1jid4qnV3vl7zNOx2McDW +RRgkz/Eb9P+chvmb+c+/1mKwGPreGvqLkDu+jnzqxhB9NcN5259piLS2nDcY +w1D/z3uxdmIaTqiv/nj4HwahgMMP3WanoQ+t7Pq6iMFIUEpelDwDrIhPgS0E +j4VGDxcVCsyAsoZVpPU8hkop+uFTq2aAlhR8w5GLge/lvfZZyRm42RFykTuA +Yf82qyuJsjOgGEORpH7H4JevREYKM9Au8GUg6T3Bn1oLMb07ZmAm07XtPcFj +sx9qtwRrEPKfoYfuBI9pGCeVboEZUCsQNyt0wODR7GpSbTADtmjVVCRgyLOC +bhfTGQgqiOaliGFg9628tvIEEc9uQ6w0wb/Kl7spedYzcKpP06nrHQsyb/lv +m3aZgSQ6b9nNvSxIuZFx+ZrHDIyimtKSWSbE+9S9G7sxA24WdY+Hi5gQ7imt +Nhg+AyM2ruImG5kQcE3fyz6aqF+8Nj26iQE3rjrTup/OgKGUFodzmwEul0u0 +f2TMgFX2ATuNWjrYO3f7WeTMgNIZ7fSdrnSwvsj/vqF4Bi4lFfRdX04H0wsW +B6orZ6C8JmO1jFYpqFiPm9D7iPw+n1G94EYDhTOSURojRPwdrQFHJothw2lo +zOfMwKH64i8LXsUgYnH/RBb5H9wskRgddisCrvHWs4my/8ApdvbcEioAmvY5 +t9tW/6BG6e1/2yrfQs7e0Ly58//AQ6/cXMM3GzL3vONed/4HZXb+TYcUsyBe +bcHbzfcfoLVaLjtvZ8JNpaf+5+L+gZLOZNt2nlRA6xqi9Zr/wZ3f18iv1j+E +qjlUyG88C/r5B+v3xybijumoA5uPz4Ih13Hr/IlkPMHpbtG3moVL+nLzOt0v +8LqRO1P+LrOQprNyhGc4FV9tL9OYj5iF+TOp1yubXuOQVuEqqcezwB1u3rRJ +Pws/a7Y9pZk4C1aJ/pepOdm4sobk45U9CyJ+R7YVaudgKSYqZdfOAvlPwjaj +/jy8oyTKcOW3Wfj935fhq2H5WL+wu2175yzY3F6+129rAXbNvjN3aXQWdsED +y96zhfhDYpn2b6E5UJA3pe18WYxbnwrX8q6eA8a9DXltijQ8+tjWWm79HJjy +7B7PekvDkpEkv7M75kAyyELa93UJdvFD+MeROZg4d70xxo2O/X2jjsycnIMH +7PyL577TcaxXd5eE7RwEhSr2vNdk4DLXO6TjbnPg+qLkFWmc4KNL9VHu3nOg +sePq9/cHmHjYQXbDwztzkOqFitsfM4n9tWz/16g54Jp1Wv7dwsKKZ4QbR+Lm +oIa17c+XiyyMTtraLX9BxF+hU9mSxsIW5jkTWzPn4Ifeir08XSx86Qgp8FDu +HAx6hVoeEMH4tpGZqGPJHIw/FOSNRxjHHEx+Gfx+Du76JnyfvkjwjB5bNfXz +HHiYyRqcisSYBaiivGEOhhMv3C3MxrhJK+p4z485+GUsmCxI8MWgRnffUg9h +r214zpzgn0VVFU+Z4TlosMi4GPEXY1GVO5R9E3PAR/XelD+DsYJS/eMzs3Pw +hGpQ93Hxf+dVyW72Jc+Dk72s2weCf8zl3YriBOfBoITZ9WYOYyfZMoNikXnY +Fh1YcXsC41vrhL+3SM3DFMnlEerDOFrS1pErNw+/rasfsOsxThfLmRbZNg+a +umPV0TSMGcKk0J2q8/Cs+s3GbQkYN6wwkzTTmgdp9YIDLG+M+5clZ7jqzcN7 +Tk/G0aMYz/Ox99w3mofqoxZRf+QxXsWDPr8xn4e9dV4CjzgsnKN8qwTOzIPd +ddcz4u9Z2MyqNLPJbh7O8fefPBHOwmNh008dL83D4zmeaOsjLBxZrBY+d3Ue +Tl54tEtVmIWVf1/1feAzDzMDU1NdNUxcK/Lu0kb/eZje0rXjcjATr3DdamQU +NQ/ikf1SR4cZ+E2Cg1bXk3kYipfSY8YysOHnl9uuPZ8HFpXyWQ0YOExeZkXC +23lYwzo+7BVEx9SfIrXDNfNgtc7PhNFTgl8tM2P6Nc9Dp5azIfdKCdbffT9b +pH0eoi71HkifpeHAh/yRe/8Q9vzHkzCFhkmH5k3DBRaAnMnoTeQW4ueemiCz +agGuep9xiHQqxDovvXbkSS6Ag4FBYuiPAnxrkb2ybcsCFJ2bzRvKy8ezBb/r +txoswLGambUvDuTip71y75kmC5AksbdPJjUH7xG2zT1qsQA++tbaR0g5+Lpz +20Mf+wWgrXi/5YB9NuZuqDv2OWABvqa/36U7n45HI2nNTngBcoIMCkZ3PcW9 +Tvda0/cswjJ/z1TyxlhIihmX6ESLIPljzlDb9ClYlp20EDu8CIP75S1Pez6D +xtXyjXdOL4LC9UPjcZYvoLyS8eW07yIcf6R/5JlXOvhNyAlGBSxCVaB/cR43 +A/bKhB2qDF8E9DhfjO76GvI8LT7uSiD863TfZVlkwwv5UdZyxiIMH3nepO+R +C1Zmxxf2VyzCpQz8tX59HkjeLNXyrlmE5vNDA5eq8iCqKYTW174IcuHbz1oJ +F8CdgPV5zIVFWFzvG2ThXQTab4PZHMoSlJlIWbgJFMPMjz/KikJLMB9UMFIT +WwxuO2lvYmWWwGbBUYX9iga23WavrsASDD6eGQ18VArrVhT/enVwCRxM7uSY +8NGhVUNarv3IEhRobs7Od6OD2YOhpEO2SxA+9SNRSJsBK+hHOvyclkCqxfRu +bzwDqvoL1xa6LYHtOaFnwpMMQDoBcRv8l+BEwB/X/QlMmL84+O1k2BLMhJgo +bR1gAu2xqXjkQ2K9w/2r1ZVZ4PG+wLzi6RJ4zwemnXZjgcpfqejZF0vQ3/1X +MiKbBSOS/vUqr5dA2fjlrfLfLMjQHxByzFuCWOSTx5HEYO9mYpJYugStFhIO +qw9iWP8s/15TOZF/vvGazW4E33xaUy3wZQni+o/KronBEMu5vQw1LUHkmeaX +w3kYjq3vN/D6SdRzYvTF4xqCX4yMg7N+LcFmzalR8R4M1V55H3r/LEEUSWm3 +ExtDSIokeQ13CS7V6c2GzWLQ/eqHjswvQcTN2sf/+z5v6aY71iWTkM4KH63d +hNwR/arTmkpCBiv2TGGCj+gZrQvegiRUVaOVuZrgp6es5dIxQiTE51W/Erow +XG/W0X4nQkIuPOLMPdX/Oz/r6plqCRIy3hC1dlkOBlXSK9/fUiT0TSHFJTcK +wyqJ1qek9SSksLz5k6YLhrFty0vWbiShtEheqXRdDK9vDr3buIWELI9yHH4T +fONQ+ylt2zYScrfecv9ALws2yKQlqu4gITdVE9+61yxodw2K0VIlIZrmYsc9 +VxbEYbt7ehokNHXrvELQdhaYC+8PMNIioUZTemg5cT2rcxeunNEjIYcrU//2 +mTIhhNzucP4gCU08aBB/NMuA/eal1s5GJBQ+Un3aJoUBNK6X0Q1zEspRSDzy +oI8OHgcsdANPklDvzyt0kdt02BGrqnnvDAmFJGexDorTIU2DvTnhPAntTX12 +Q0C9FOxCv0q/dCTy39VhXsIqAekfWWJvnEnIzlFuzla/BGJ8L5Lp10go1WL5 +bJ8eDQKYvR1tgSRUsJv8eFG8CHSE3jf33iUhL6q/drp/Ifyzef5l+B4JSVET +UsaHCsCNZFUy+4iEFu/WaHzJyQcbvZYYqVQSYm/efsBQKhekYvLvyWWQEHVu +sqHwcg609D0MUMwiIRXlR47St96BcYip294CErKv7dz0NzcL9n7+ZGRZQULc +gVJbl4E0ED9SSo7vIyHZb2qV7ZceQ43lc7c1m3iQcc5dSb5fz7CxvsfqdgUe +5D1Y8zn8/XNcu/0wK0mJB9le767qNHmBv5I4y+XVeFDGd5/FGtlUXJ9mkK6s +x4OU4scztFIzsVnUWtNxA0LuWeBpnH+NG3zY3HxDHrTnd/jX0qNZuNE4Xlfz +GA8y6x64Wj32FjdP/O3QO8eDPIQtyqbncvHx9vIg6gUetMu7uWPVkzzc8vHJ +ts9OPMhPvcHx5Y58/C1uv4+pGw+SCpIa/3GqALfqPBY7fZsHcX+3F10IK8Kn +FC7R1wbyIC87DaaAUDH+sQrsOkN4EHvviHPYg2Lc1jf47nwkDzLhuxXfEkrD +7eHaRq6JPEjmUvWWumOl2Mpj1YTKCx500dbX+QajFHdY98dxUnkQI89sIECO +jjtVovq9s3jQx2ezF11+0bGN1IX7Wjk8SNjg6mY1HQbu4t2rtpjPg8Qyh8Lk +HjNw97df/oF0HlSlf+CSvgYT25bRFAwwDzKgpn09F8DEPZn365Z94EFBHtQs +n89MbPfIzutLJQ9aChU/FrCChXtvakhHVvOg66/kktyNWNjOYUWF2Vce1GNs +Nb8/hIV/Hem5JNrIg1zOzzkNMljYXrNo1bcWHqRXa3nVZoyF++Tu0eJ+EP03 +mFNLlMbYfoXt2TMdPOis6TWHpIMY/55Uo8r08KAdy42MrS5j7NAlkN3dx4N6 +Fz+8byD4qb+q0/zlIA+6dSNCY/YNoc/Ln70wwoNiaDYFDRUYDySEvlBgE/33 +vNdy/AfBO8HWh/5weNBXSbe6O0MEX7nuGsue5kGcXa2XzScJ/Sn+WLc5HrTg +YCj2ZR7jof3t2qpLPKg4CbH6CX66tC331ySZjKwijJZeEXw1LBYSTqOSUd7V +DbwC/zB2XrTceUOQjBYV4+4Lj2E8MrCjdZ8QofcLn2V2Y+zSwHebJEJG5woz +9ol+xfhv6Y9NH8TJyPWOWq9IMcY3N37gfFtDRrzj1kPwFGPBiKz3w9Jk9GWM +p8nKC+On3McPFjeQUd0j2d1XTAnes75tLbKZjCZb7njf2oBx8UenbZsVyShi +8+vaSKK/BsrH/mkqk5HYcqb6GxrR/yX5x+d2k1HbbZPdW7VZmOModN5zLxlJ +n+t4nzTFxAH10yphOmRkonxY72AWEz9/UV2TY0BGhpGbo84JMLGyYEF8hSEZ +/Zsw9/ybw8AM90SnVlMyKjqSdrvbnIHb9Nz4SCfJ6OGeMds9EXR8Met0o+gZ +It6iqzpzAx3PiOklbzlLRs5k6qahvFIs0S+ufcSRjLTn6lf4VZXgo6H0a0nX +yYj9XJxRXF6Mu9mp+/NukFHvub7tERrF2PV05MrK22QksafCNCOjCEconnvz +9y4ZrVXmVIreKcRVNdRf2nFklMGduGJFzccn1dk5Zs/I6I760zEh2zzcn/jD +zz6ZjByKPxfXFeVivitZUhEZZDQuwBEaOkNsIKuOHftJI6Nn3v6v1q58g4ss +Et/7/CCj5Aq50rZ/ifhlp2pykRQvStaMfU79FQNTXaIywTK8yG2NYU588xMw +7OEkmMvxIjOjHZVt5fEw8Sv/CXsrLzo+qrS783Ay6A6pPlDU5EU5hS9mfyy8 +gthh0f/+afOiKKFTjZnn02H4Dyf8E+JFy8RFPdUrMyB6ND/E/hAvMh4fCi29 +8wZ6Oap+SSd5UeTdzhLJ8zmwe1J03uUML6qwjBE7TM0lOITjo3WWFxnIGX2S +TM+FXf/yPVsdiPXSK4u1e/LAf1H1sogXL2pcds9kj3ohNC+J/un24UUeUYW5 +5A+FoMDDdXp3ixdFk0eFP5gUQT1vgb1xMC9SWh6Q3Xq6GGQF1KxCYnhRXld8 +1XHDEvAQFGs7HseLtFVPhnxmlkDVcu7Jjc940bdJhZlX20vBTajAvOwlL3La +17lwkkyHipUxDZHpvEjfNrxjpSMdJFd5HLF+w4siNvH+x/1EByyqZjSbx4tq +rDgfl/sxQERc7HNVES9SKzPu2dTEAAcJrsGTUiK/5g/XNOWZULq6ueICixcJ +bi9V1LrKBKE1Bbpq5US8gFUHZEuZYCcVU0auJOrbkRXTuciEorUeOg2feVH3 +ph+3XYAFNjJqe10beBFbWiunKZ8FeevFaNothL1+S/6zARZQN3DVl//gRSHK +qxrFVmOwlGvO/9HOi3Ydab6oTvDD240FOzO6iXzndTxnnDCQN8W88+rjRbSP +geGn7mE4sdlj+4FBXkT+l9Fulknwxpbjb0RHiHk4pKbdUY5hUUFta+8YL1rh +XLZ69jvBW4pi6TkcXlSaffNm6iCGtG1c+dvThN4qVqKNi2FWqTnFZI4X2Uzd +2/l0HoOpcoHsuiViHrdconUTPJWyIyZpmMyHqt0n1HMWMUypeKwrofIh3+g3 +zfwEXxnuOh5/V5APxYb+tBkcxZCoqiZ5QogPldo465h3Y/h6BV9eJcKHKqxk +obAWAynL8EONOB+S+PftRmMRhp2DLZKha/hQnv8Q9W0CBjv5c6560nxoHQ83 +yOgmhhjbkQ+LsnxoftVJpXenMHx8dn1NqTwfspFLr+hQIfJpJV/xVOBDQZrL +0tr5MCiIR1aoKPGhrBNetNxmFlgeXSM1soMPDfrPup9PZsG9+6lX0lX5UFtG +TduMIwtGKXQpGS0+JPP9UujfYSbI6hq4/dDhQ69ji2Ot05hw1K/hY4wuH9qz +WrSn0ZoJBVMDbssN+ZBf7Z2X3DIG9O+6VllpwodGP4RvLXJhwOori2sDjvIh +3UjMly7GAN8BsU8zp/hQ9L7pAIPTdIDW/dL9jkS+cSA0UFQCbmK17i+c+dCp +GrpA+IESSDE7VWV1hQ/NmNFyquppwPfZ9VqTFx9y83KWO9VRDNUlCZ/LgvmQ +vc+h5dH1hTA/uXn9zTA+hHzM43oOFML2XXkeGvcJ+4Uk9RO0Aoh6XbX+bQxR +X/LRxdmYfLBImPRMeEnYl7MyrXfkQvfNI3Je7/lQ9/pv0b8n02EKeG9sW+BD +ZY8iCldWnYPdcynTGjwURJL66hScbIq9inQ99CkUpNK5xybynhueVAq4bP0f +BQ0+2KZ4aiYIc9fw2D6QpqBQG3mDTokneIKzqM/ZR0Ejtafq+HA63vUu6f3S +fgpSDPjeJaqRid0v6eisMKCgqMy4dVvevMbj3bc0NplSUIziRMqVkGzMrp3f +etKGgv4WZbq99M/FKmHP0s7bUVBs5qlHcYp5+Iq+9kY3BwrqC38887Y+D4+W +3lgX5kpBhs9N/vsuWoD/ps8K0f0oSLxbV/b4tSKsdD7+3qcACnqavYkSRS7G +LjJ7lzWHUFD7dWmDrZHFeCTGh+dvJAWdkgjduy6ehpXM1vj9i6agiJeVcUZS +Jdh5ecks5QkFrf547l1gbAke9p/hyDynoKEKnq1lAaVYcV+c27aXFCR52V3z ++UQpvjSj8VcjnYKqyubttG3oeMj1er/ZOwrKvef59rICAysorj5vnU9Bj64U +dvaEMLDT76Kui8UUZNfEPNzczcCDZ6ZaAzAFbXVcmTsXwsQKq2MtHnygID9r +uCzRxMROjeqNCZ8oiCWybdBXioUz7reYZnyhoIejp9ukrVl44JDnl4I6CrIK +e8vgxrPwZj7xQ++bKIjqI1w92cTCDrigovY7IXtOkySXYZzme3x/208Kko/9 +Lm+uQfCQOpfZ30VBNl6u+Pk5jDePP9rL+UVBzAX2hukQgo+yVIuXBiho15s1 +DubphL9jk+qKEQry3LH6yrtygrfkruVIsinootqZYSrBS/KdIts3cSkoYcdh +sxPDBJ89zcvcOUNBs/If++KnME49fmyzzjwFxemmFDcuYNy3ciLFkERF6frj +qf97v3zofGjdKj4q8iwV03An9KPFMvOt/FSkeEFT1Z/wn1heqJC8nIqcljXf +V/yD8fRZIwvHlVTUE7jr25WfGM/n9/gri1KR9G/93eafMCYt8347KUFFj1WP +un9/izHFSugnQ4qKYniiB5ceEryUk8ofJENFBnU4qt4N45V8WmpGclSkaxY8 +Z2KEsdipBluRzVQklN559H+8JJnleP/HViqiZp0/bs9hYWnSYknydiqC07cs +Bd6zsNzxmH7HnVTUeD3k6LVw4npkKIruUKcirzff6ZlHWFjF7KQLU5uKjkid +//aslonVU//GBSEq0tOKvuRMXP+9M4EfjfSJelRuaShqMbFeco5MmxEVDdz9 +zz0ljoEPcQ2MXhyhol2k21ru+xnY+FDHdSdzKpKX2Dlh00/HJ9gCDVOWVBSq +wV/zXp6Oz+gnLzBtqOj7q+SHx1il2DZut2KwHRXF+tKD1Y8T84vOB4peoqKT +fUPtSp4l+FYUQ13Fh4rih5TZcfeLcUDfMbvpm1S09eoyjSvLi3HInqFI1h0q +MhXHo2tCinBUt/igcSgVCafI39ztXohTVa7EX3xCRc0+/4bTt+Tj6voNSymF +VMQ9xPt8tWoWrpOnbbtUQkVu1S27tNpf42Zv01M7mVQUV9X1Pcs/E3fI3sjF +FYR8IjxQszwNs92az7c3UZHY9JS68foXWGLV3SrxCSqSbPOJpDUH4wcaG6+a +TBHrHXJ/89jdDy+zwWuCZ6lIpSRaKGD3VTz3evoSl8yPSGGui9ei7KBb3+m/ +JlF+dOcgK2qv8API9D58LEqdH627kTtgn5EKcs9/z37S5EfGDy/kd2ikwbOP +/i+X9vEjhRSv63c/pEOkSCnX1YAfDQ5Pmpz9+hrcsxSfmJzkR7ONsdVXLXLg +T2MlBJ/hR05xBs+PCuaC/T+7QcZZftRrM5F2gJELJw0SNJWciHyeGNWxJfJB +u3t5u6APP0pWWH10fWohFFIzgnRv8aMsVXHFizpFoLxdf7uvPz/a81mzvbe5 +CDb43vQbCuNHDC798NJkMcQnS27ZEMmPJP++9XS7QwOxTwV1p6L5kfx6d/u3 +1BKgiv2VrYrnR6founvVqaVwe2/Y56Ukop7DNPNjt0thxnaTu8ZLfjScYPas +j1MKf7KtP6S94Ucn+sWerKmjg33zP+fOd/yoXz+kMFadAZ2zj8UkCvhRBZLo +3feEAfUHv14IZvAjvpdsgyojJhx2vSTELONH9ganIiKSmFAeQy3mVhD9VHRc +0h5hgjY95azSZ340M/nJtEaNBYU9Osvsa/nR6GUQVPZmgfKynzkJDfzIzuRr +6okiFmQoXz/d1EL0d1uWl9YYCzZYiJKXt/EjGcm1uFEOQ/yNd691O/nRSKxo +muhRDKIpRua+vYQ/rto35YMhompgLrefH5kq8wVdS8RAGQtMHRrmR7vjTp8P +pmPwE5c12TDGj6I+7CzY3IxhWosxeYpD1MPK2mc+gMHN7lRS1DQ/Kth0poh/ +EsNwKNegao6I7/i1Yv8Chv/3/0D0//8f+H/Wnc6h + "]]}, + {RGBColor[1, 0, 0], Thickness[0.002], Opacity[1.], Dashing[Small], + LineBox[CompressedData[" +1:eJwU2ndcTv8XAPD2U2ZLSEqlhBDSIE6ihIRUREuUtCT5ShmVkrISSoM0pC0p +Tc5tr+d5Lu2tvffe/e7vr17n9bn3nnM+dzzn/XolbnZLx5yNhYVFmpOF5f9/ +r33zHV5ephGWEtbC58XpQLzeLH1ogUbYrcm+v3CGDiL2sYb/zdAI3l7D5m/3 +6VAtl18yMEIj+A3D8mWYdNBMno6oa6URqY9Djh6yZsAXP496wWYaEf0ii770 +mgFsd/j4ztXTCD1fjkv4gwFZ+3c+KiynEe89Bd7um2HA7lTjSz/yaMSqYoEX +OY5M8Hnf/2oIacQzn4gyrTdM6L7rVLA9m0ZE5Gw4TI9nwmcFv32fU2jEnNPR ++YgWJiwKid1sSKLyi+e6zc0w4fJ0XKhQAo2Q2FSecJSXBIH0glUvv9CIYtFd +fz4dIsH+g86x4jAaobn/1akfZ0mgO/27z/6JRsQnpDmkmpGw3cAm6UgQjajE +LeGRjiQ8VZ7tuu9PIzyjYw65epLQtvHp5lQ/GvFdICzuxHsSYI5fd+QVjfgo +U3JjLoKEkPpQn53PacTIccPhgO8kzGTK5lh40Qhuc74ysd8k6AZnTIc9oRF/ +lba8fFNCwncXjd1Nj2lEdufxvwMVJKwxrLi+4QGN2Ho3T2VvEwlWKqbBF5xo +hMqw1SPjThKKRAb/vnKkESYSH7QdB0jYunifu9SeOl9I6ZbDGAmuTVzAaUsj +Nuwujbs0TULTr7d3VW/SiIrhq3XS8yQc/LQl3sWcRsy4Rlc3LpLg/yih7edV +GqFf3PTceZmEceODG8eMaITPkbq+ZSo+B0Vnd12mEYJWK4ZtqDheTPeppT6N +0KLd/5hDnc/D0podoUMjDBrzOZbmSLBosR1v1qb6VZY6LEHlzyXmtgufpvZX +wtJyN1WfaJiXqd4JGtG/c/S7BFW/i5tggO8xGhEzk6a93EFC7dUwRhnQiBZb +jYf5jSTIq+3moKnQiPqXPz0dqP15I5F1UE2JRtiwJGXwUPs3xKZ5+6E8jfh0 +wtzR5xcJp9orv6bL0Qi/z77Ck0kkfM272jwuSyMU39gLn6LuD0fkkOCe7VT9 +Evn93u9IMPVwOW0lRSPOFBauTfUgQVj9fXrLZhrxUl3Yg7xKwn9SEsObhGlE +e4w0F6FNQgXnN6mLQjRiMFv7yKeDJLwoLPZjrKERZN7fYOm1JNRvOxqetoJG +OM8dfUxOMkHGO+N7GBeNYP2kFqDcwISC07F/7i5xEYchO10vnAmCCRItJnNc +hPMhllUrPJhgtiZ4+OQUF1HId2Gbx3UmLP15vkZ0iIuQ7F5fxRRngtY+DlHu +Pi5iIMVWKHyJAcFvH+wa6+Qivhs8eqhazwAlfVutwiZqvSg8ouMlA243aPvY +MbiIqkNR56a6qPdbpSjwUgkXkd+z6qZ2Jh3WfIIYtQIuYl0eJj96QYdYU7li +oV9chN+uzOO3dtGho5OPC+O5CNuh6H+FV8tAf6TSbe0LLmK27d+z7f4lEHn+ +zJtZLy7ikYyU2PzFEhhLLvjc/oSLiNuxD4s2lMDruz8xzYWLOHJQTMcwoBiK +5wIWTay5CGX7f/eznxXBIc4r95NOcRFj/KbSRUcKwMei4lmQBhfxJDnQ2Hc0 +H2qLTn/wUOMi7OUPDbtF5IOjj0rapYNcxFFVpe99HPmQuFZ0kmUHF8HJuyNF +9ncubBFutT/Pw0V87PCuNlxNQEyb2R9XTqq/qZStJxwR9sV17Eli5SIiNLwP +ZdJ/g7pKz9CaOU5ia/3uv5bOv8DKeNiG3sdJ/BR1dXpVkgkp4YuWJ+icxCfT +sCdnVVJBc6fw1cOvOQlCy13tE0TA3/FgwuY5J1Eq6H1GPD8MLmdv3hLixUmM +K3PWc2h+Btsz4v/mHnMSIxVGIeohQeB3S8Yo3Z6TOOJ8WCxX9yU0/lAw2K/D +SfRwfuT65e+O9ioXzm9fx0nslc1wv3Y1HkVKt9dZ83ESP/j0n/qQCVh8keVq +4moq3wM8m6TyDcXuJNjv5+IkrGV43Np5viMzhuZ7eJqD6Lwdc6az7gfKrs9m +nq/jIL49/9N15lIG1kb66b+r4iAuHX3q5cqRiR77bjZX/+UgFocqosu/ZWLD +GaGhK6UchNXF1iu/2bPRx8N+tUUWByHk2lIk8Pk39oxu1XL+yEGc4795v688 +B989nq/IDuQgBN3XuSVuyUXV1eVXlt9zEByncjZX2+ZigMxja49XHITDP6cU +da481DCp83n1mIPwkxNqMt6Tj5H0lyXhVzmIKbfhledMC/Hc5evnO404CNWU +sijxiEJc6D5Yt+0yB7Hj47HBPZ2FeIG9pydeh4Po2FoSPGtRhGwH1bjTjnEQ +WUbuJMfVYjT9OqVRJkX1Qwsd2LmrFJdS079mi3MQln2SJ8/cKMXgfGfuxM0c +hPN7EV+zz6VY3bpU4ruOg9CwKaszWVuGWiK0M/qcHMRfZenPli1l2LejJOEE +KwfhnXL71AAfHb2Un69RXmQnVky9GtdRo2Ou/to/mybZiQW1ztCcUDoqvll/ +obWDnVA8OXp7VIuBlaF1P8pb2Ime87xVBncZ6JAYLJjfyE6cDFYSDQhhYHyZ +WHVUJTuh7zQg79PNwFP1rQof/rATXnXOPIdXMrG7JyLAm85OOB9XKP+9i4kS +XDIGNvnUukVv+fZbTCQE+zKMCHaiYzLWgfcVE40k44XPZrMTuQEnqok4Jn5Q +lWvcm8JObLkSBc7tTFQ4O6YimcROBJZ+Wuu2yMQKo5SPgvHsxH6DScUzQiSu +cVEymY5gJyyuSX3be5zEeO857AllJzYGc8tqGpB48kP2lvpgdkKu85bRFlsS +u6IeuZUFsBPXTzbfz3hMokeqalv2W3bi5utH+fxvSJTIZzuW+JqdOJW94+XO +MBKxPD8i9Dk7Ub7mjhx7EomGrU853nixE1POkesDf5E4N6xp7v6EnViMYKYP +lJD4YWlF4Z3H7MRKvRL/xUoSD6xmSJu7sBMt95SPljWTWL7ptZf+PXYiyPu9 +rl43ifY7zvecuMNOmL/c7hw8ROJqZYGTyrfYiYIHwpYfJ0iMPVEVs8OanXh8 +4Gbr5VkSNfUDVojcYCe6OiZSKxZI7LxuYL36GjvhMfIgl7ZMovudTfQlYyq/ +YfjIFBVvcW+SHbnMTtyP71EIo+JfvqEvW/Wp/dL8+YFricTLoVeHynXYCXc9 +Xelt8yTOJEiezdemngeBoQW2aRLfZ3d+Sz1FXT/5tUbQKIn7yr7yftVgJ1bF +bT042Efin7qbtz+osRP3Xt7dtNBGol3PznLvI+zEkQtSh4rqSFw5PbjP5SB1 +v3cmTmmTJEZzJr21UWAnuouM0t/mkagh6DBhtI+dsBQ/P/3+J4kdEvJ6Z3ez +Exm5txT1o0l02zuVqrqDnRB9bsFT9YHEbG3ne5IS7MSa4hOdvP+R+C5fXeay +KDuRpNanJHGdRNuDfHW+wuxEwq700c3nSRSVjj64xM9OPFHecLhmG4lTwXf6 +5deyE9V8SSr+fCQy+SDEeiWVf5eDi9ocEx8vVi3WsrMTN54JzZoXM/HSnbDE +tSzsRM3bvpHmBCbK9dqYaCywERvhV6CmHxNbKtlzfkywEc+4/WpGLzJRLX6v +x6tONuJx363F9GoGCkssyhe0shHCg2XylT8YOB5Q3DnfxEYkF5oQPa8ZGPnE +5MTNajZCMqaigk2dgZxXXq44XsRGdD6JbhGLoGPzn0tZznlsRNv1MLsdTnT8 +qbHV5juyUftlqKSsRUeLfVkM0XQ2wrRKPOjmaBkW8/T6zkazES8bTx1QkyvD +z49Tjsp9YSPIV9fYghdL8f7k4zGLMDbCOJRVjLO0FHe0CulWBrIROadzbgma +luLz9OPrv/mwESZB6boX3EpQ+8bnj9dt2IjvootaK4OKULrJWjvYko04eiPc +wNSgCJd0FJf/Xmcj1tW09XatL8JvR5imYMRGyJ/QjX7jV4i8QguSwtpshFCR +fcynRwVYkX8xltzDRjzNvSCTuj8PP2WtkU/dyUbMwTe78pZctEwu+BW0jY3w +fBYYvvNlLi6E7v9rLsZGmBnstQttz8GtLmtn5tewEfR1LK6DXgQ67i1Slxli +JfZ//3fI0ywLBT8ptLrGsxLLG5qunPdIxOZ3g1YW0azECdGcaqHxeIx+Hjlx +OpKVGFroi/xmGocq9/m514ewEopsJ9+FKEXjdd2h3QnPWQnhPE/fPU1hmLIi +6kGdFSsxYHsvv1LUA/XurduwbzsrUao+fGEmOhLU9ouX7pBiJZpPrB9QUYqC +3cOyDyTFWYnXyx6CEYVfgfvG8RbBjayE5rrLzPctsZCpfyd6mpuVsPkl+vL7 +kyQQVfir9KuHhdjkVloS5P0TVow19qV2sBDc9no7vmmkwXRCT0hiCwvxejzf +q54tHf5IsbB+rmUhdLUqKi45ZYD7uj0l7sUsxEi6P7fMxWzomnhhoBnNQuj0 +ce3tHyKgPOnDyqORLMQkNy//4+M5gDaRv5Q/sxAs7+4KWQTmwIeOLPGdH1gI +x/P3NLcczYVTlX29q5+xECsYhwX7vPLg2w9N54obLISfgGYW30gBhNzSlaVf +YyFEs5ZMDZQL4dlO0+Z8ExbC6G7D81y3QjCLuKf28yIL8VhTU3pobREIvo1a +EXiChXhxUl7fSLwYnBw4go23sRCetv+Onxcqhc/vN34MkWQhepMtP7/RKoWi +9N2h9WIshOWdjz0DbqUgtHwpQn8DCyEe0sQ+2FsKKc8T4rR5WIhVL6vc2xLL +oDExN+EFJwuREhu3o6SpDNjLa76VsrIQ9SrWG36tpEOkHIfly4lldCjseFF4 +nQ4tJxOcHlYvYzALuUVhJQP2+NY8mGUu494ZN06jfQx4VM3qdrdoGWNLXgZ6 +XmKAyDV9b9v0ZQwrbY2qDmOAdYzry96kZbQRfxG2kM+AzOHYN+Yxy2h+5aa2 +WDcDLj1YDjQKWsaxpWMS+jJM+Jq7/VOd3zJKtSjwWZ5gwhS3brje82VM6L6s +5mDOhHfvo2PPPFjG8j3+RtafmNDeUJ5Y4riMnDetL17KYMI+icVkddtl3B+y +lKxcwQQy8XzWYeNllMwp469mp3wy6YIZ+svofCro1mthEmwOReUdOLuM8ubG +/5TlSFhRPFe2S3UZS5el15hcIsFgjdSfGKVlnN/98FatFQnRumcrpfYu49J+ +JxnVByRotEY0bpZYRu6d6lq1wSS838ZsCRRexnjljghaLAkdtjMd6wSW8UFK +maxkGgn7UyR636xcRtu3pOOOPBLc57QGV3Ms46l1OwQ2M0n4q3pv1HthCc+e +exw9V0PCFq+wSc7JJSy1b2nObSHhFqNs1m1wCYO/MG/e7SHht8DU4mLnEj7K +PMzFP0zC6stb2Jybl3Cjqb/zhwkSDD+f4pqqXsJ34tQDP0tCXJfjCgdyCWtp +8/vNFkiYkw1dM1S0hMp9cge+LJFw8k4JvxWxhIk2UU//Uh78kDEu1JW+hCZx +kqLdVNy9vHmT2fclTH47MNdJHa+goSnWHLOE0X2EFJO6nucLB8nL4UuYwNKY +FErlqywP2VYdtIRF/BNplydJkNxYtFPn7RIeMFA2XabqdTAZ3cN8voTuebq1 +L3tJyPmySf6UxxJuNrO4xNVGAu+AulLhgyV0eMgucbOOBJN99ipqd5cw9rK8 +60+ShESnINXftksolni7aCifhBYieCrAfAn5zi54c6aTwM/zMf620RIOLL69 +VRNDwvHzn8xO6y2h5CZHHvMgEu4Fhm6QOrOEQ3f+TiZ6kxDb+pm5dHwJWwcr +/qXeI6Fxe7hHrcoSsiS+fux8nQTVzMiR57JLKCA6waJK+dCBLSrKfOsSGtzf +/FZNkoQvp74agsgSpkiOHOJaST1PDTHFYyup/VGQxcpqJqhIxj2isy8h739S +Sa2ZTLCzjpePml9EnbPlHT8+MqFiPvGzQf8iSv5W/BtvwgSu40n6+9sXsVRR +maP6CBOUXnxftbphETujLW6XiDAhRCTFiShdRG4rr/uCVQywOJxxblvsIibp +2ltfV2TAB89MLtbwRcy4ueMY92oGlDKysusDF/HM1g1v3FvpsMf4t8wr70Ws +Mbjhx+pFh5lHeSyTlos4dNfqr2F+Gewoyv/JNF3ER3vvJHT7loHh2kKb6EuL +2Ht+WP6SYRnkhBbXXtFcRPmHOZljw6XgQzCScrctYveN46qnV5TCZrZaU9+u +BUxR6PkRtLoYzp2qE7JqXsDFqdOu70qKwN2vnn6segHfrb4dF+RRBF0STUrT +BQvI+cJ2b810ISQda+M1/rKAE+teBJpWFICa5wCx8/oCvs2RZJ69mgd9wSzr +fQ0XMGtfWEmnYB74JQvaTugu4Lql/tt/i3Kh/Z/Kxl/qC9imXvMqZWcueBx8 +eVt72wJuv+L1ZaqfgILhXRK3++Zx+9cdc7lh2aB5+daTn/bz+HHIW4LP/Tto +7xlTP/pwDrlmj9U8DfuAh/58Gyi7O4e/X01st34ejDK3bd/q281hwqv6fdcc +PyH7j54Wa5M5HOHMOfVePBzTFf65+B+dwzgr28XEnq8ofoT+vZ9zDg2dZQIS +o77jhFbUZv9XsyjU7yu78DKbeu6u5W/xmsXKOrU2tQO/kPlK3Dru8SxKHBPj +ed3wC2P+hKQT9rOoejLOUlwK0Vj37YV+nVlsypE9UVpFYPEVV2/V9bOoM1a/ +xl01D1MXDsuVrZ3FE05x4aue52H4x/lqPe5Z7Nln7jtcmYcP//231Xp2BiVs +ZwNSLPJx3zVbfN8wg8vmKvbTbgUYbHV5si90BjmMiXrd90Vos3r4TEXADDrf +4XkZWFeEKklPorJez2DAriPXB0WKsXky/uKLxzM4rKDTn/a5GLe4LWfsMpnB +sJLtV31DSnBE8h2/0MUZFLi2tMhZV4I5hTLWS9ozeFRyye8/wVI0W6UjQh6Z +QUNXUhuelWJkQOQje9EZVF9fNrvnWhk6HlSuuSQ0gwd4fRYOB5ShehNjz9E1 +M/hpSs7oQGkZdklMt/AtTWPI20dKtbJ0lEk8eexH0zQOXdAvSe+g48y55uDg +qmm8HC3S2rCWgSXjDhNPGNM4lWTjUqfMQCvlkC+6v6ZRRn59hJEPAxPyh2hT +IdN4dMOGI8abmfjoxhPT5nfTyBbIEbgdmKi9YkNG4YtpfLvtweM8EyaOnD1q +FfBgGnWilaqNPlJ+G6vKfew4jT6PTWuvZDLxzXurTZY20yiWMeotWc3EfQ1v +6UqG08j90frLyhUksj2SkRLXncbUOAn2HRIkVmz59ZBHaxqPvJ2YXq1MYmTe ++erRY9TxYz9DfmqT6GjRtbv+ELUe/01I8hqJx3lcvHL3T+P7Fx8DdKh5f138 +2pbYndNoeoMwOv6MxJ+jSm9cNk3j/T79UWvKC0/fMXqvCUxjfBaf82fKExcV +zdS0Vk6jVXTI73eUN2Tqp4Lk2afxu4OUiiblkZkHz8dF5qew47zbg0zKK8Vi +W7Q4x6dQJmSvUD/lmcDclMjBvilMGb4RX0d5x8r85GJV2xSKNfIMe1IeOsjd +rPe7fgo1VqYEDU+RuCLOITGqfArrerOdhChPNZyh0V6XTqEJqWAyt0j5dCTY +5F7uFEZ8GZULpjz24K1cuknmFLqsfdA0Q8VnFAp4NZOn8M+arVcFqFi0zuCm +XOwUjm2fzu+jvDfkMpSzIXwKd/Dmij6mPIiiT4RZg6Yw+NfaN38oL3L57hBw +9JvCcl2B7WeHSdRiLV/Z7TOFq43/TKf0kOjncJ/j8pMp/FF9QZGtlcTa9i2L +dJcpzH1xZqdiLZVPr3gSHKcwpGy1uC6TRPPCW0PJNlN4MsX9lgG1f/GK67ul +zKdQ4uiBeyfSSByL/v3vg9EUsk2qh4vGkqgkbFG7Un8KlRRuXv8XTOLj56v/ +PtKewk167Qd9XpC4ys4w9zpMoUFD+MnPViTq/GPPqlGcws8bN8SvukTt97m4 +H6fkpjD5i/I9c8rz0vvnIuXEp/DqWmmOfxtJanwN+xixcQr7G2oOsbKT+GPd +SX8h/in0XZgq4u9noupMgNcC2xQ+NH8kR0tn4tOb4HprfhKF1NMY/SFMpNd3 +ObWNT+K2w8Oqea5MNPh1wKq4YxLFy7t8tdWZ+Hl3k9mhpkmUErJy4pBmYleo +x5XEqkk0pl89/Z2TiQ7uFVrvCifRqT9k10QOA1+cuL3HNHoSB1fCPtXdDCxP +3yBT8XkSv4XpezC5GLhxB7FFI3ASi+x2hxo10zFq1Vp+WZ9JfCoiVfjEh47E +3/iJaetJ1Plb8m9DTRlyHdMdtLo+iacuEKrVX8vwTMp8Z5PhJKrfN3T6fK8M +6/1P1eSdmcSv1YYCZoJlOH6lJ+P1nkmcXx9oWKpWigcZr5PZZCbR7chIsOiq +UnQ9ohh3d8sk1qWNVr2sLMFV4k9DrvBNYln7Qnu+WQlKd0k+3jY+gUcUPJDu +WIyX7U2O488JVBO/USl0uxA92puGXidS8RDt4PlthZiobxhoGjWBHB7uOVGN +Bch62GCI1X8CV4R91Pp2vACjeS58OH53Ao9d4O99sSIfp8I1Bkr2T2BtTLLA +afsc9Kva9a4yaRx/9v8xbLuXhmUHF9p7Y8fQWGez1vi4MxxU2vqvJXwMRzw+ +LyYVP4HoA1r1NUFjKOO56XKEkA88lQv5U+AzhjmnRVeGXnwLatIqv8KsxnBn +8HEPpa5QSOd74G+wYwx1ftVlrzGNh8ieec2SmFFsXr3/AevWTBDokjxOhI2i ++O2/oRUNmeDefhrSAkdxZ0jQxSC/LDBpDj7wxXsUGbd5xHoXskG48pCE281R +tOfamlyUh/AGXeaVto/ieu13Vho+ucDyK2Jqj/go0gYGDik05oJdZtmo9MZR +zIv5edxqVx5opW7qEeQZRZnLbGZ+jDzgjsuqHOkZwRyJDsUXHAXwyH8+ITp6 +BKXOxP58fqoIzMwUTu4IG8EYLq30DJ8iOLH7dkdc4AiSYSYNm0qLgLewS/ib +zwhiyvHZOxrFEDH51yvVZgSrzohqKB8ogWc5qyQVzUdw1fcPVQy7ErB5eeJ3 +utEIPjZ1kn76tQQUpH5NZGmP4E8D2RuXKX8V60ZfzZUbwd5de54ZUb5K2NK+ +cGz7CIqNN/M3bioDv4HNHwrERzCfx7zh1pkyuOLxllnMP4JB+aFOfxLKoOHG +4n+feodxbtK5V/Ma5a1lh4Sw+mFU36u19/grOtgF9LRHlg1jRZXmHs10OrAU +VZyLSxhG5d7iqOs8DJCWjt2RfnsY14fk0EtCGTDyS+xqltkwLml4VXbkMiBD +733A7wvDKCHHEF/qYICWpytHwYFhvPr79oy0NBPWbZ46WCw9jAnFPmfk1ZnQ +nGJ9u2z9MK4ai3t86BoTbnfoN/+dHcLGVwV39ocw4eADumBV3xA6id7QlEhj +Aoeg2unahiH8lnpHjPaXCf7HdqU3/xrCwfZWw2+sJJg2hA+1Jg5hpkbX5tsb +SNh+Z4NUZ+gQJnrH+EvtJiE7nN2v320Ihdf9LL6mT3nh4P3iIYchfNv8WGrA +kgTt8qGl0WtDKKa7zu26MwkbrK4fmNQdwo2ussfpPiS0stZbz6gP4UnelBYJ +an6PDTwbPq8whPu31v69EU2C496C2qVtQ3ihjCskKJWEwyUH17JtHEK1/RP0 +zBwSuK4mqXOuGMI7np/mi+gk/JmResA9P4j+jueLc6pJCPQNTl45MIhG92Ma +v/4jwUyGr3dN0yB++O3ff7+bBFniqRg/cxBfZZt8VxwiYfLigt46HMQHTyLG +W8Ypjw3ffrEhaRBFU6+43Z0h4ZlXd+6msEE8vKt53+Q8CefFjGZF/QZxj0Fz +rwnlp7ZM17dNboOYOf4ut4DylYN+5K6Q24PYbe38uZOK2caKii5fHcRFsVPu +SB3v97L/6sbzg7jvZPqdC5S3JLavXahRHUQ7j9svw6h8yfn7/P3lBnGoeuNk +DFWPmqm+nN6WQSzffbrJZpCE8vn7pQK8g/jR5K1nXyfVX8DH6+XLA8gMun1Q +somEsX05S77DA+h7/YLe+grKp8yOD2f/DWAGxxuVoiLKU1bc+9eQA7jb8ea1 +/VkkhHPKMui/B7ClcPGkYQIJ+8LO3nieOICu/FoP1T6RoFPrH8z9agAfFB0+ +cpLyctudzANFDwfQ6tKslPVNqt+1zaSn7QCmWr9Zc0aP6k9DioP9zABq/mVI +6G6n+mvT/JSjMoDX1lmsceGj+ntoo+QqO4BSA0nO5jNMKE/5YbO4cgAHwvhb +nuUywexcDVf2fD+ar2tczPvChLH+uc/O/f2Idl87C72YwC+pVjVd2o/v+CI6 +ZTSZoPPmz+Ex7360k1wl7J7JgDbZiZqk+/0odeVqhNg7BjgUr3e4dbMfvc5f +rn9twwC/ZeOoAc1+pIkfjBnayIBy28E13bR+3LrMV1ZpQQczHr6YL9N9eNTb +wVZBkQ5jkfLHrnf3Id/Nf6FOXHTgb3S511rYh6v9TdyjwspA59SKlgbPPnTY +qKbbWloKbZ27nIPu9mH3nVAVV79ScHA7L2hg3ocC3u0OvAal4Jf+QbP6eB+y +savPrG4vgXLpbd//sPdhk9YlVqKvGC6wH3cvcOtFHn/+jwplhcA89NIw0KEX +n7Eu/+vxKoRTjtUKttd6sbZ0UrbiWCGodVr2C6r3Ymxgg6FBRgHsK3qpe527 +F59I2FXfCs4H3uc10uyve9D5jfnrmcO5QOe3LlMN6Uadqy8TA0Qz4biEn2D2 +z04c/di8zvLNM3hq7K1zOqoTubh/7hQUdYeSIFff+vedKJtsNMSlew+0BW6t +mnXsxMdaa+cdJ47hJQ4tDoX9nfivfJKUXvscrbs4J75968D9G19lnw+KQL/Y ++xUR0e24mtSPS9H4iZVd9nz7P7TjAdPrcwO0NFwvaXk216sd92u2nj5QnIYh +wfplLRbt+NQ26nu1egZGvdift1mqHW8Hmw0/kc/GTLvB5ICwNnSLkrB2HCBw +IbZjRPpNGwp1gVzRsRyE7obdP13b0H1/3mqLoBzMNymNrTRpw38hC0v31XOR +ee5rOJ9oG1aRZ/4F+uVh676rfs+DWlFL45ksg5P6vX8Sd/uGTyumPfDwHtMu +ROfKyXPHnFtR+mBOhWJAIQr857N23qAVn9APtwpJFaF6xo8XVhtbUbUq63vd +gWLkX7FkrcHTiuYfzFZ/v0d56rLmaYnZFrx0TC/KL70Y7y008tTXtuAPLmFr +K8USjAEur5MfWlBm9drr27aX4n++5yyknrWg2Vrp5yuvlaJaa5A6q1MLzr09 +EN0VXIoN7ns4Mi624OhWyzanFWW4uvCSm8z6FmR3Ou78t56al4QiTDloLWjH +yiO7dxUdtcj6x8TgP+Qdc5C6p0LHR/wci3sS/qG9d61FYiAd2z7oT6+R/Yf3 +ZtwaAzQY6HKwP7Vw5T+UmNmkOG3HQMHGx46P+ptRT6h9cLc/AzXEYkYHY5uR +Y/3MBfFWBv4jDid98WnGX+td+Os4mOhkVm5nZNWM+QvJp69tY2Lsl/l++vZm +PCRhxey1ZOKxE76xHjzNeNeA8Gz3YmJjz9abKr1NaHTg7dvYL0xcI6vdFRfd +hDNXTPlDmpj4ldEWee1ZE9q8sj+fP03Nu7fuXdtk2YSiR+FJKi+JDsmfW3y2 +NeEhUrl16AiJK3UPhKrRmnDD/k2HD+hS3posMZrrakR/E6V+VUsSDwcYiyQX +NuLaMSUJPhcSq5XG629GNaKvrJTUF2pev1XvFSj+tBHbTWyPLYSQyP1A5FKd +eSOy143UrosnMWzzd6E36o0Ye55DezSD8hCqV2lKNeKv9nvrXxVS3jOtf8vC +2Yi6j0N+9v+l5ne2WzrpHQ0o366ZwdNIImckO599fgPeXd+c0d1B4if1D+S2 +yAY8YnXaxHOARMVu2Vf/njSg6RCfUdsYiX+e5WgFXGvAOJcTd5amKY/t0F95 +9lgDDssF2tVR3mKn95VwSTbg/XtnZO4sUZ78Wsrdy9GAbLonnX9Tnupwjz1R +1lWP/wTv8Y9Rsa6xz9OE4noUSBEYXk3FBcpWBa9j6zHfvXc9P+U1hXWnOBxe +1OP2zrOflihvRY1sP6ZrV499mTs+VkySKETncVc4V4/rHHuV3oyQ6PW1l9iw +rx6Dyz1DFSkvzriXLM8J1KP5JXfuIsqTlsYxR5om61DYrCcF6il/KXs/xJo6 +9BtSHw77Q+LJdTezwzLqcJNA3MqhAhIzRzTnnwTXYZjI1xtbM0ncQZc5aPGw +DulG6lbqCdT9fdKTtuNoHfY/Gth90pfypHHx1CrJOqTV6g/JupI4oBx9YJij +DkVSNp9dtCORMXLjx4/iWgxgCly0OEniEfqJsfextai9v1GD5QCJiV+37XV6 +UYuie2RueouR+Nq4O1HlXC12qoodthllIsvBokHRfbXYHNPtVlTLRPt1X2VZ +BWuR9sJUbB0y8TzdIragpgZTnYVHfJ4xUeBg1xdtkxp0pzdlzq9hose6wg65 +ozUYbximzzHEwImRL5ICkjVY9kb7LI3OwKqv5mE1XdVYKZ/LwerJwIB1nSGm +dtV4QenKrq4+OnKP5jeonatGS9YG0Y4cOjrRI4Wl9lWj8GxLfFcAHQ2eXP/Q +O1mF201PXVtWpeOm0fa3Dg+rMKhR7b8YrzJ8Qc8r1zWpwnDe7VpT+mW48DWC +T/FoFY5E75fUlSrDJuNrr+c5qjDFSj/yJJZiKL3Nx+NFJW7a89XsTE8JSka3 +uvkHV6D8QPYqI95i3PJ887Nh5wr8T9qg+hi9CEXtDF5pXq7A/OZrggpeRSgs +/zdobkMFbrpVtVpzrhD5CeKHsX85NiZmDt+uovxUG9op/eYvsr/jc3Exy0Nc +m+1nt5rErZ7y0pKNWZhZtT90C52JjzadimiVyMKfwXFx5T5MXMlTq+FtmYmJ +24LzFbiZyG+TPv19JB0/gfPUEhsD7x1dv+bwZCo+uKV0+fVMKSqvjOCYiPuG +SmSKeFJ7IcbVK3vy2HpjO3fe7rSoQgyPsesVcXiCr9T+Hvp9sxDPnFRU5hh0 +xvbUQT36cAEazw4oeLaewFch0j498/n4sIpJJN5+Cu03P4xtEczDE4msx597 +hcFmnpmnkt6/MWC32712ixRweCAYtnftb9w2wR2/TiQVioflsuD9L9QZyiny ++ZMKDtU3h6+EZeOdwg/3tyqmQXFEw8V3GZl4tKXoh8VcBjgeQRnOvp94OKnJ +oOgCwrvuVe8Z7xMxqARmbN/lQ4vQveYfUQno0Pvix3xDPuzUaN0WlBaPk6YP +a6skCiA3MjXToi4WP362bDJPLIDRq8YtyyJfsWilddiP7EJQeVO8vWtXFPpd +Xqd9bakQnhH77tCPfEHJm5IcZ6AItojRuAJNI3DdzLeagt9F8DHd5OJ1zVA0 +lb0ZzZdSDPLr5fvkrD5io/Lwot5wMdDvcj9cfB6Me/nMo/K2l8Dcvu/h/mQA +do8f2yQQUgKXEtiGivV98c2um8Zn/iuFLeKXT9Xq6OOPwVdGn5bLIL7qsbjz +0SOg8Xr+XogsHeY5XyaUZpgB75ss1uhLdDj2SpJw1XaCqfTAR60JdLhRblfS +sOE5WH5uiPupxQCldYURalWv4LOlpP/MbQZwxq/BSs038NjXb0nFnwHVQ+aB +hzjfQ+5Ot9vFDQy47yiozfMoBLTnCqpLLjOhbZ1qlorhJ7jiv2S7fI8JXxoO +CCpt/gy1Av/92P2OCWseXnWzng+DDfNGXv+VMCH3zLSiZ184bG0WOv2yjQn/ +ib4c+lQXAe5s37YFzTHhH6ZfKU/7And0lWb8tpHwzlebfyAqCgJvzlk+VCFB +82pHMaf/V4h6d2rg8jkSFvY6PxbzjIZKHfGaHddISGLjVVB2jAFy/zOvAUcS +rld8GdC5FgtbtEKvh3qSsDHyUISNThzoGYQ3q72n5nv1G7yf5RIg4yTbB4Pv +JNDrRF6wyyeCx279JMZvEtbZldNuKH6D/AOjYixlJOxhzT9qvjkJQvQOW49U +kaBb9mlZKDQJtn+8LvmJ8pLT+/u/ird8B+8AvS7uHhI+mui6OId/B99dRcZy +wyTkbt+jLLs1Gbo5VY4LTpLQNc4z3fQlGXyvcV5JmSVhxe+OlNfbfkC4u7oj +7yKV7xk6HI35ATJ3Rm1lKA/p6gTJje9IgTUO5fsWqNhJ5O5QZHwKCBNPM59T +cUjX2Xj93alQPuXGU0Odn5O0w4o7KRVuNqza2zxH5XPmlMnc+xMCvh0/GzZF +5VNv6bT+8ROcWYRfbxklYffarIjNB9LAbVxbxrCPhAt176+SP9PgFt9dE902 +Kl+EvZibUjoEv+7z5Kmj8tmebtqXmQ5O62tmXZhUPkXp4I5DGfBqlYx0fC6V +j5XVwP9XBqw5/8L9/x5dQW8Q0oRMEPa+9fbEV6o//5+Vs0QmrG6a6P0RQPVn ++sYvTi0Lmg6OSrY8pfLtsDlnlJ8F7UKd/XTqfub+FqcTRdnA/6tzTb8Wdf1n +C94OJ3/BhorVS5sVSVh5oebE1rJfYMeiGyG4hbpe94s8L+ZvcAm9mntuiAlO +32+4KZ9DeJ96Q/5DBRM+uqhB/1+EJwqTWl8p34/THhh9tSKgdtSqb8sDJnDZ +3lRxjSOgr+Nu6UtDJmwo199kMEBAd+UBWtEhJqiE7K1bYZcDrxlXKyKmGKDN +KpbenpgD/3L0xU6VM+CqxaqA7OEcUPozpZobz4Cnct26drdzQeDIYbbdxgwg +80P+/HXMg6Zw2rLYDzq0bff5FpuaB2drjku7edJh4tW9V0+m8mAtsflsjj4d +NhjoaB1wygeptcT6rskyMBukFX9wKYDjl4s2zUiXwcS6O2jiXgTifUMNQvrU +94NW+rGd+g79FzHBHbCpBLJmtjy4MV8EJl5nYpRbisG9gal0y7EYBEIanYcs +imFt2I7kRxYlUCBzwfO8VRHskG2L/HiqDBQ375AeOlUApmrnfRr4Sci6XqBg +40FA/v5oS5Oz1Ht4PdE9Yx8B26SWNdqfk3DQXIMYJhCmn1S73WX7Ay/uRlyM +cvwNvy08jjx0+QNRsxIyMWQWnJZtSXth+xeq/zsgutPgJ1ikBcTGna+AL11S +saklX8BH5kb5fw4V0BJXartvfyQkBirMHX1bAZuPff/bFBwO0y5VJ2srKyCm +R3aCo/oTPFMV6OW4VAmXPJPTvnD4QVzJq23GxlVwv0pbRbj9EY40eEbyWteA +WPKmvsDLCSh4Ro/e8LwGzsyu3i7Sn4hKv7dORMXXwCfdjOndh5PQ7XPescND +NbD93H9Zt0q/I785a/vN27XQt/vm11WNKSg/9EA8714dnCjZYFhamYn3WRw/ +3fVoAK6dW2Nfjueij+bHJ18jG0Av9OdswvE8DPIttKzLb4BF0ftlq9/nYeaW +jfsPczZCkOjN24/35+Oc6u8ijqeN4PvmQGOlRQE+cOMefevVBCvb05/+iCzC +FyV7qwu+NkHHARMJ854iDOG7kjVd1ATNZnVd23YWY3ZYgucV7mbQ9Br0qk4o +xsUcHWFJ72ZQuKP5+s3XEnzE9vFYss8/8LMy32hlVYavThXKdMT+AxU1hcEV +n8ow1G94tVDZP7BXIOsD/pShKZ/4QDZnC9he2L3Dbh8dXcPu/Nyi0QL2ck2r +anvo+EydO0ZZvwUkWNVrIgUY6NsbEqxj0QKuL7dtO3uYgZ/3Frp6PG2B8b3M +1gMvGUjkbDjdU9gC0wYuq8XFmFhsnnCYtaYFGs99WE5UZeIfHjU54e4WqMku +SltzlYkt563XadFa4Yyaj9ORT0zsmVymma9vBUvThs2rspg4Evhu7uE2ar2m +PDeqmomsbb/+fTvRCoV3Y4qPrCBxxVOd8uKLrXD4xSbpgxIk8u/ozm+90Qo2 +U7YPlpRIFGa6pM3da4WaA3t6fLRJlHDgjRV41gqZjRv9ms2o+VnoS4jsh1YI +mRD5NnOXxH2Zyq/Vo1thrO+aa60XiWps1xzvFbeC27kCt66vJBrzlEu71LQC +6+Xgg9tTSXThPVr3qKsVpHpCTC/lkPhhfdJz98lW+KTS6X2HTmKKqNiRpxxt +sKQ0pOdcTXlF6tWIt0AbfPny1tbmHzWPyy6Gv5RoA+FtQk9OdlOekrfRe7O3 +DX63btbhGyJR6lAD7b1qG+SXZYfmjVP1qJ3K/HC2DUwT7A+azlD1nMywCTFu +gzXk1rkuyjvO52TEPtu2QbfefuIi5R3/iwF/Ix60AYe2xb1kyjPJxlweX5+3 +wR+zGYFpKibN7yrEBbWBgfr7t1JUPGDT0ZMY0wavCIPFw5R3uB0vBCent4Gt +S8VV1TlqDnXJPfOzqA2kbrI0yE6ReNR9L0tmdRvId595wT5K1eP9OflXZxs4 +eweE51PecfZda54z0QZm76R07dupegIerS9gbwcRqbgWrgaqnk+DJcX87TBP +O/7mGeVB5hfDB3TxduA/7JA+SXmxP75s9x+5dtiyc1OydhZVT8rB1gpohx5X +j/a3iVQ9WTFva7TbYSn/XFbBZxJVczdoNBi1g+o7l+8db0g0LPGaabZph3Wv +9U6MupHo9Gcqts2lHTwmH9MG7El8X2Nu1OXTDoZj3Z5VxlT+zmO5g9HtsOKR ++6F7iiT2DSQ7jqa1Q86+xmI56vmiTYhvmyxsh/GdP4mGlVQ+NpYXCx3tUPPM +npWnkYmGPLeOsEy0w6jHeO+LXMr7vM0j7OwdwFm/6wFnNBO/i2brrRTvgC2G +64/W3mIiU2on91q5DgipZTOU12Fin2xQJj90QE7G6tFn+5kocchJTNioA642 +hGaLjTPw3UX5XpnADij74SwnacHAJOOIYNnoDnC4clDeTJWBdHN+bbm0Duhw +71wM38hATseRZMWqDqBn+e/eU0LH/3zjH2jwdcLwxrKJDyKUj0q28l737oR3 +H1n5Of1LMZHeaRwf2An3bxtdfmlYihx/ohImYjohMS5tL7dEKSZVy5z2LO0E +Hf/gkeaYEuTqkH0atbILArMsUnWp71HKkvxCz8sucG6Z2xPhWYgr2KZO7f3U +BautgiyfqBSiCWda4P3ELmi5xXLZdawAV6xSVlxBdoFHzcLRxisFeHXjYYed +vN0g4fGe7/bWfFwjr95j69cNV7SFM/++zsHrilyKP8O74dbPtD9jyjmYebDI +cym5GwTeK1RdayfQ/OhJydcV3fDUN9DtmDyB2dpnjJMEeyBZOyU+LeQX3ryp +Vznm3wO7ZR027WWmYf4nc+JecC801UtpOgl+xd2crGRsbC/Y0W3D9EK+4Afr +kKamjF5QU/7s6iAZiTZKFXPHanvho4zQqdA9YShYrnqAd10f5GQlq1i7++M1 +TpHY6Fd9UFF+1XTBTA/YbMrf1rn1g6nImsD069FgU24bvupNP/juSb17qiEG +qpV4vsPnfphRPESbOhcHsZyqzC+/++HJ6fZzFsqJoBOawO0w3w9SGYOVn5e+ +Q1j5s4cr7g7AzTpe04bwNFBVhhuHLAchAWJL0rfkwJbnXpXi9wbhRoto8pNb +OcDSRB7lfjoIBl5Wxhm/coBwNRWpihiEnpzxN5cv5QIUu/21+zcIIgNDt2Wf +5sGRi/mHwvWHIM1+s25LTgGIxqyKeWY+BJ62dy22cxXC0pyu0C3HIThO+E+l +niyE3586Rw75DYHVvf6XvsxCONzFFVXFGIJx5q6x1WQRqNw9ycujPgz5EkdO +6cSUgEjRm4fDF4ZBM3xjQnlLCSxsqO+rMqPWO3/43l1fCtnZVgXhrsOQcYLn +7Sb3UjjE8cJZJXsYel6OKKZplYGwfmW3RNkwpABNXPhhGcx9FdHjqR+GSD7B +3DfxZZB5OmFP9fQwrFtXX5/OTYePJ2+MpW0cgTliaSArlQ4vHFZu3yk+AlUZ +Ix2BzXR4EPzN5JPMCHx3l81z5WKA4eA03UNxBBzW/+i4doEBWkIh7DNHRmBP +Red7IycGqIDqQWuNETADTZ4rIQwQefPs63m9Eeha6LQzbGXAqkzZ5nzDERi9 +85jfmI0JC21/BJWuj8ChqA0NxhJMaJTf6C56ZwQSqg6GGJgwqfc+xrDflzp/ +IIpnA4MJ0cv/tbIEjsCre+xm3D1MSJU+biEUNgLbx7cdzWElgenYfOvo9xEg +7Xe9fbaXhIbguAn9jBGweP986/sTJPTkOt23yRmB+I7f9y0MSWDlE3gS8HcE +jjLa5HXdSVij1EJLqBuBf9zvRW69JUHYJOFFbusILGJi2ekIErY9dear7R0B +fVfd8F7KS/IJJ/wHR0fgrIzSak0kQbVScBP73Ag8+/HJ04Ly0pn51tANbKMQ +/8z8zfFqEi5LfNu6e8UonNOk5bVSXrI4+SDmGD+1LvI54zDlJQf7k7sNhEdB +xGd0yyXKS48DhH7YSYzCRsL8uxzlpRe/2xU9doxCjBW/XBHlpQ+dSdmB+0ZB +jCPLbhPlnchVj45+OzgK67+Wn95Feej7/tOF+Wqj4Gv6MPn/Xvp9ecPp+lOj +IMn2JsibikvdOslhnVE47/ieu5I6vzo6WZfzyihUP8tf3Uh5qZ18XCd8bRRW +n+Ep/r+XRqa0jOWsR+F249JVKcpLC5uF29XvjMLBH0P8Nygv8ah337jiMgo7 +3ZiiNygvCdmkDNg/GYXkB4erpSgvSbx1u/30+ShcV3Dzj6C8tCdTeyr47Sgs +DriVtFBeUmnd5PI9eBT4zQo7mygvaXL3LhdGjMKrPbfsgikv6e356dEYNwrS +n/aOb/xAgpn+E56xH6OwY/E872UvEuwenntFy6b6dfloZ3iXBJfIzQKb80eh +xv1anrgZ5emxNBHNylG4+mXh2gzlpc8bPcOMGkfBnivt0kpxEhJUdaTvdIxC +bU7M+w5uEgpfDez5NDEKWrxiuYOVTChPzUj5sTAKGpsu/BLLoLze+FS5hGMM +EstXbxAJYcLMDvFjE4JjsPFxvbeTMRM4dIaKeDaPgayO6JqGw0zgu5+lJSY1 +Bpc2ytNXiTBhR5Ge/qkDY/Bk4oVueyUDjK753PysNwbLgdWFHkoMsPK5OJRq +NAbumaJTz9Yw4L/vW++UmY9BKE3wnGU7HXyXfz+YujsGvx15LqM3HXKDx19r ++Y/BpiIpUdaSMjCYSHCs+TgGV717W9wDy2BEy9LA7MsY8Gc5uPHfLIPNS40S +TiljkOPaQzPjLAMn08LUiPIxEEPRmLF9pbBbKrBhbs04hOkdtnS6VgwFDy8Q +nkLj0H5sRUWSVDEYVq/+wis6DiNudubruovA28vdTnrXOLDH7/9ofaMIOnqt +WXVOj8O4oK2sj3EhBCYe2RbjNQ6HcOvQO5l8kKPNrpR/PQ5NrmN3PzfnQaHJ +j5Hf/uOwUcMqfvFtHkzwymRWfhkHsYcmFmkLuaB9h+8MS/44eHaqCN8uzAEO +pQ6HiywT4HfKq+ub82+wz/H+zXl/AoZ7/Qb8An/A1g22o/vcJiD8UvuG11XJ +UGN3bqup9wQoPNdfX8KbDEdE1vtkBk6ApzWHupBnEqy8F6l3K3MC5M2MRfrK +YiFKFgdq5ydA77GM6UUIgcaACeH4R5MQ5KH2qpknAH2Has7UPZ2E2Icb01eq +BOEx9SxXrteTwBUtYLnD9iPGjrl1mYZOwkrZu2aNnWF478za5HXEJNiE1UUf +PRSN/Ow7Tj5mnYKOzgeH/Q2SUdPO5J6OxxQceFBMSsv/xqdTe1ZMPp+Cncrf +Ncsaf2PeI5aPAW+nYOlR07nLHohHXoflNoZPga9A3wleSwLlk9pX38iZgnY7 +7byq+BzcMnYj0mVpCsqS3ht2rc9HY2clRVGuacoD8RGKZvkYzMZTSqyehlsB +Kgl/4/JRSCB2mHPzNKR6pqVVqRTgKvmBg76HpuF4PO9AtV4hzty1/xvpNA1P +b11x+3S1GBWWVK+fcJ2GxM65b7qhxXjnKd90r9c0rIowebqrsRiH/JNF9gRM +w6dUo6gjF0qwI23iRkbqNGydYy2PVChFCdWCuSu/pqnfyR/bFGxL0aT4/cul +/GnYErdmsC68FOtrFX4cq5wGu2/GGudXluGfWaclxtg0dJzY85xO+WyN+8k3 +9nPTQOuadfm9XIanVwhvFWCbgcvlVRkpu+hYKJx18hLfDOjOjSR9fUrH7EOL +79r2zEDGIfnXD2QZOJfH2OapOAO9Se4J5hcYqKj1KXMbzEB13IudJ+4zMNkQ +Wmy0Z2DDwPLiYA4DYx667Zy2mYHfc1IrojWYGO4SbXvHkVqP2nwx6DoTg+6T +34ZdZuBKrAjtqRsTfe5ulu/xmYHXrp7f1dOZ6H7n+H/X/WbgK/GvfH05E11u +W6e3BM6A6659X/71MdHGNkOlLnoGHj48tfrMRhKvW7c80kuagfRH3Xyju0k0 +uknL+Zs2A1vvKH3xOkai/o3d7No4AzMPL63jvUiitrmeemnhDFR0u2Z43yRR +49oDLw3mDKz+u2Zs3JlEuBpRkls1Q82Dz2S0n5MoZzR6JqtjBuxt1K/9iSZR +5soGX8WBGeh/+tpymvKbuAGU/xifge9SjbarcikvXrQQlJun6i0oWLGWQXlS +76V+PNss2Axtb1mi/LbiQsoHmRWzUHBT9kMD5Tf28w31kXyzQJM52BVJ+W1B +m22z+MZZcKpe6XWZ8tuE1naTj1tmwW1rtOoC5beBU+fCNsrMQnC6eZs35bdO +zXvt7/fMQk7lwHH2BRKbNT5J8SvOgmWs0ilLym/VxwtuvDoyC41GH5rSKZ8x +1QZiVmjMwsqMb+MTVFykKjDw9MwsxL685yNCxcSRg7vZ9WaBKDwcs4fyW7rK +VfvHhrPwZPsX092U35IOPkuevzYLnwsiSzdQfotR+jZxz3oW6gW9VgyPkBiu +UK0w4TALYqU9Wt8pvwXJLzrZO88C77m0IhPKb377tmYNuM0C+/TuzLl6Ep/L +nV609J6FqPJaG3fKbx67HaDTdxYOn3i2d5ry2wPZQLerH2YhSOPSNQPKb447 +iLym0FnoU4m2iKH8ZivTzXn56yzcTtgQ0035zUJ6jWZ14iyoPfYKE/SjPLn1 +gI/OTyqeW/lHzp16HiQM6cxfs6DhOPZL5TaJZ7c8WXO6YBbSEtMWlUwoj4n8 +9TtWOQuPnn/p41D6//8fzlRiwyxcxOd9VZTf9m4QW6/SPgvkDaI1cBWJEoK2 +wfJjs1Cn/hEXKb8J879rSpqdhYaNUUdD85gowJsltot1Dv5kJ40qxDCRYxVP +pBTvHLBU2t/Vus3EBR65rrD1c6BeeVqWfoGJk7SLMqJic1Bnc61G/QATu9i/ +xAvtngPCcOO+nZMMLJ5XTaVpzUFu05f5RksGNk37qkvrzsH93fVVvJTfxsZb +qo4bzkGWyQOdTUIMFBlwnXKzmQPyzKrezN90vN1IKC68mINfH7cK6LPR8Wkt +b7Hw+zmo8TY+YE99L0IqTS8pf5yDEyLWb299LMNCOsv9/xLm4JaltIy0fBkK +/1LNHGHMQbr3vGSibinuyfA9tbZ6DjpOXVPfJVyKx1Nb6nc1z8G6P+tXRDSX +oF2C67zVENXf1RWLLtdLMO8jodK5Zh6OxHOdkrlejDaPVLHu7DxoHJ6/9f1A +Ibo5+56duTgPU/VzX+j9Bej/X8s/IdN5UPdhZeUJK0DCzpVF134eGm5sXzvK +XYDrTIijzP+1cObhVG5fHH/POe85p9BkqJAxjVQKSam9UBQNIiRDmrhNqJQh +VKJJiXLLFcqsUogy22bHmV6holSiTFfIGOH8zn2e35/72etZa+211x/fz7OH +8D8owNVS0CCswCUIKsvf/kFnKrIa0/TK8Dwa1D63nkRPpR0gYHYuzlwdkI8c +JpH7RLO0u+MbbOlY8LTh8CQ6Yfdva9TT1zgsV/fWnzOTKMVySve1UQ6Wcl9h +YRE+ibbnDdzIPZ6FWZ+kBT38SXQ5NlW2yTAVT+T8qFthOoUEa182FyvvRP+0 +qZcV75pC3255zmt/5442zHXJ2mszhTQugTBo70XkffJjhO/RKTTdeUwl+85N +NKxGWdUGTSHbE/PXPk+OQn1heY1/4SkUo7hT2Cufhtr+Cm1K3TCNrtH9+ky9 +c1Fc5K/5X2BarBP0VlLr89CBUjsb2R3TaM2tzQ8dRvJQ/QKN+sv200j1U4j8 +YY8CVF5dxLP3m0Y/Y1e82GNbjOI1+koki8T2Mw1eRniVIUfLfVNGldOowIV9 +K5tbhhb6F2zy4U+j5avvuCxSLUfhDdfyvrdMo7eHEjVec8rR5SCVV8VT08hP +mStInFuJXFotkz2QCDEfhAoe+FSjRVK57clmIhTSdezNP2XVqElfSb1ljwgF +1z4ez5hZgyzvdsdtdxGhWXzbNomHNQi2BEWpXRGh7R/tnq1M4aDJ413v7W6K +0HfX1RE+nRyU9/duubAIEboh0PKvWFaLtH8q3JuIFyFeSdvotuRapBKTHdpQ +LkIRR1tpufe56GONPHcmT4TKlj8zSeFz0YOhSzOgQYSO/VFvDCR5aLbFzpD0 +dhFqr7/e3ObJQyL/s9iYTsDKlllVBoZ89Ple8hcnFgGDnyL815/io8K0pikf +CQLe7dscL/mIj7wbtxhmSBNw//PMBP0RPurXlMxXXEyAX6vVxqOPBOiZf3fG +4mUElFx8nABlAuQqqEnR1CSgcSqRO/hDgFrcgyM36RDASjVJqdcUoih8ONRE +n4DRhX6xUzuFyHquUZDFJgI8zhV8+n1KiLhZUx4OJgRMb2XoOzwVivugxfWI +GQHuB2tGcZUQGVkXOJ20IGDcQcNkoFWI8oYvWFy0JiAx8JlFhgyFvLbZGF+1 +I8CueKWkoeZ/5yk6BqEOBChNMJ3DjSiUoj+w9NERcfxttea3T4h54YZQKdGN +gLkBbTvWBVBIqTld9vlJAqYW1KbEhFGoaUWoZLYHAUmo9xU3TswLfsfphecI +uF2oxC98QSFLntl4uTcBthZRjh6FFJJctHSAe5GAZcHMT99rxLxwiuysv0TA +2rVXuYr/3Z8rbvv88SoBV/XTCmQ+U2jL7LLGtusEFE/eMOP/oNC482NeTygB +ry0L5bf9pFBORkD54F0CYprtOwKGKORJOOZP3CegnM72uPCbQlp7N2bSowjI +PN1/ZfUkhTrjF6ZKxBAQ9YM3/t/7rYTB0VjpJwSQ79qKW8R852zyLlIhiYCE +zTPL68VjhcjsUPU0ArauS2TdENu/+x4RtDKdgP76xKjJPxQK1/P0XZdJwDze +7Qhtcbyd13Z7bswh4O3e0ws0xPnM+KDlZpwnzi+91fFDL4Uqlkk6mxeJ+0dH +Kt5cvJ5An+59VqUE9DbHrAlsodDG2hqLA5UECHUrXc7WU2hUPsX4MIeALzP1 +/lkmrlfWiWCDE3wCXjiqmMcVUOhU4WHts3UEbCe0fr1Pp9ByKaNlfo0E1Dz3 +XlgfK+ZRRxXloCYCfkXcsQ2/Q6G4F1Oyt1oIWOp/aLe0P4Xk9hTQo78T0Ply +VPeoDYXqHkeNx3cRUJ3gnqoHYn4euDDwtJeAD+X0T4IVFKLf0/mSPyzux+E5 +srbjQlTSNu9d2W8CWv9xEJl9FSJfnQFe7SQBHXdsvMlKIRpoTM9vJmngdu+6 +87ebQpS+JDTz2wwaeDYEyJInhcjtwvHUbikaLBq6/n3EXIi+LFj697gsDW5e +HW+3YAsR/8BjT/klNIh7oeLReUaAdm71WtCynAbvrhv+OLZTgASrdpTEadHg +rKKp8PsSARISQ5IaujRY26hl1P2Oj+pSTFNXm9Ag11gjRGclH1mGK+7+ZUoD +pqaOdsskD731HRjONhf7P9lSFC7kofqd0cYGVjTYf+Bc/WIPHmoc/PnZ5BAN +rOwilVWTuWhfS3kw6xgNZji+4tl4ctG7qoeatX/RQBAt+TlpIxe9jzLy3e1J +g5rbF0Me8GtR05a/Ze0v0UDocn/W1A8OarllaOEeSwNneY2nUQPVyNFr3qB2 +PA28+K05li+r0WenjqihJBrsner51/hkNfqiHd7hk06DJL2ZrK9tVaj1ffuV +q4U0MLlID9KvrUTf1UPzopppMM37IhfqVY5+FjQvqZCjw0daaNKvjALkv7hi +6L08HXZr9XxTG8lHErfTy3qU6FD3+vdPM4N8tNzpkpP0Ujq0uik+uF+Si46K +NP4+tJ4OX4P9bKaLc9BHE0+SsKPDIY7Uk7erXiAOn9VuGEUH23saviq3A5Gd +3kCmZQwdHjnQZZuLz6CO2ObAo0/okLXFcuJsoTUiPdIVbqfRQXRk1T7tDC+M +5llZfcqjAzumpXDPWAR+YxNb5ttMh3OaP6m6rGSc+EXnyRsFBiypW3gwRzMX +j36VUQ5RZkB6cIRq2udcbP5t6JG1OgPGBeHh1WF5eLA9++HACgYcfLuj5kRf +Pjbu1rm70oAB2r1ttskJRbhtSCcwzo4BeW8Gkut7S/H6EZnJUw4MqOxbJp23 +uQzfGh3y3XSQAQoqEUcYYWV43Xj2+SZXBkg3ZgeXapXjK9M6p6UvMMDM/ebj +64crsOpMXcdrkQzIKH7gP5Rehb0kZD/ui2LAfYnXfkODVZgjOWy3OIYB8duP +7FizoRp7zs6xLk1kgMeheTmWpdUYy+haTLxiwMP0+bW/q2uwtJxsLecNA7Bx +1tK/WRzsOn/Y9GEBA5heZNWBbRw8Wz7HWLecAYXOqmz7Ug52Vtbd6P6WATNw +rEbH81r8SkU2z/AdA56bun8I/16LWWrDepLNDLh2IVlh3yIufrk4Z21aKwNC +e3D4optcPL1cd0VbPwMWzRwtumzHw1YrZVMzhxhwc/5Kw8IbPJyiOaxxaUxc +Dw3DJ6I8Ht69Okd1kYgBNgcGDj2ez8exOroLbWeTcD2CUTqrmo+FHvj0PGkS +Vp5wPxfTx8dEunkFX46E94RB3Dqx3jysccjdRImEf7GMtOdhAY506a2YViUh +b+kGvux1Aa6K8ZYv0CBBqXzia+EzAV4uF1aprUWCt0OTtVS/AB/YK6/Qu4aE +NF2l49lzhDj0TpJHqg4J3566Ge9fI8R9zEIF5U0kPHriIfHwpBDnjHZ6SpqT +kNqr6iD4INbL685VV+8iwXn7UInpgBAv8JhWDNorjnc6wekNm8J+nbI1v/eT +EDyG1pzXofDzxU8W5TiS0F54rKfcjMItBzXPeriQ8DqhfYDhIObBJiOlDjcS +1M44WDsFUthTVnA2/iQJV9vTL3mFiXnHcj/H0YOE0JI5Uf6xFG643a608BwJ +d3uOKJ5/TmGy1v1cwwUSjm5LiXDKo/B65gQnzI8Eq6fDoXqVFHYzClE2DyTh +WnJE0qSQwlEBc72YQSTIdHUGvmqiMDf/UW1pCAm77e/U2H4T8+HIUhX/mySY +dW3T7e6i8Kp1r7z075AQMoMVfLxfzDvum7mD4SRwWocDPwxTOPwZR+VlJAnV +K91H141TuKzD+vzxKBKoCkbVRTEvDqp/5WrEkODYFyjMEvOixsETqq2PSTi1 +9ZuoUcyDNo9Gzj9KJOHpgWN7fojH1z5c5tmmiu1lLxW1ie3zZKTUpJ+L65v2 +aY9A7K97z8MLgpck7LE5pJgsjqdwW51/4xUJ9tzVG0+MUHgn54Xa1jckvNwU +XbdIzIsBpIG3KJ+ETE1tqeJuCr+ESn5BsXj/2rMWW7RRuNV/j/qFMhIYMTJ2 +//3/IZ3/0XttFQkCe7/+tXUUNhk5JujlkHDJ2wCFVon5cO0v9TQ+CZvaqfiG +fAqnnPb3OVInnpf6cVHyBYU/PGULlRtJiL66bZPOYwrP6Li3+OMHEuzMv9pa +hFP4pPNToeVXcb2qmOm7PSgcE62rIdVOAs9kgNjkJObn99i3poOECbXqLnlz +Cmvvea+xpY8ENBAi+UqVEqu5Q37jv0h4aKvy7JQEhe/X9FI5I+L9UhhLWDQk +xKOIcVFzioTEvv2Cg2VCvP5Pwpg+jQlaDhX0Z0lCfOGNsddWJhP2ReU5lVwT +86BW0GmnWUzYq5Jobm4mxLpdaj3H5zHhWP5658olQuyVWOZ6QY4JwlM+0bMY +QjwsT3O5q8QE0/55cjIFAqz77knLIzUmuFbs16u/L8Be4WCftoQJuZGzjV1P +CfAQ67JV2SomFHoTbjIK//Hj9NahzUyghUvZZ7rx8bqMuDKRERN0hlMZ2zbw +8dkTW7ZImTIh+QXDpojNx79aA/SX7GaC2qRewoFEHh4QTK6wc2bCgQ0plmEC +Lv6ZOjG7MJAJDtY3e/P6OVjrSHRoTRATnMfYY+czxPynvHFG4zUmBHw6dMzA +nYN7I31pP8OYsHQdvfpzVw3uufJ7SPkxEzy9Zih31lfjLofRpiDMhJAHoX3u +/pX4+5zBBHOCBUZVT3zsz5fg7iM3qHkkCzbv8jlCCYpxX67yZBObBU792T+2 +LCnGYwctbNzmsEAo+axb7W0hlshMYgcrs+DoSe6RGKV8rG1pd6rYkAUFimP/ +PgnLxgHhRXraviz4fct/unHgMQ76bnV4zJ8FSQPL7OOmY/C1Dd1hJZdZ4N/l +fvIvyWgc3irXtfMGC87tyEh0VY/ESdoe0ccfsiCfb1zLibiMuXVqooTXLLiq +lR1yqy0MzZ93nSM3yILWV3ZKHUsy0F39xWd2jbKAjM46uNElE81wxvIhEyxg +z4llCrWy0J9nYyeG6Wy4nLfUNLfiFWrd+tesBhk29BdsXhXX+Ro99dlhFa7H +hj2DPlwjogipP/4xUWPABmspxj+mJUUopupKomgzG0Yq5aXmXixGYdIFw+6m +bJijkx5eN1CCzqavfLjLjg0JX+cEyXaUIsNWyRYJXza8j3aNz4utQK9ZacHG +AWxoSC2Tk/xVgVav2rrK7wobkk5KlAaZVCI1P//A7ptscNtbGtPwoxKxZH+q +cqLZMNW24lu0SjW6tPFmrSiODfG8/NVvxHrnt8uSs/qJbCDn/Ar89KYa/fvC +qSLlORtWcVdY6pvXoDoz4bGQIjZ0KxqtbTnKQTvcT8wuLmVD1L0n1f1pHFQe +ycodrmSD4t0rguF/Oej1ty0zjgrY8OvOtpIa91oUfTHjmfEXNiwz25hm4sZF +MgkW1n5tbJDvTBmJTOCi25zOP1kdbOgcbZtR3sJFgXKqu9T62SDhujMyeRcP +jW0qGtk/xIalPd16dsE85Hl4f1z4GBu8DU8NfMznoZ4bw6acP2zou5Pps7qP +h/7/nyQ43YkN36PGR/8DO6tb2A== + "]]}, + {RGBColor[0, 0, 1], Thickness[0.002], Opacity[1.], Dashing[Small], + LineBox[CompressedData[" +1:eJwU2nc8Vf8bAPCLa5Vvi1LSMCppaUvqQRSJ0iaFlopKZYRCi5Jd2QqhbNn7 +Ofa69x47e2fvvf3O76/7el7Pcz7n83zOued83heR208v3mOn0WjbOWm0/3/e +iXYZWlriJm46+rmcF2EA4bxp+/F5biJJ0DMhcqwEhI3CtE2nuQm5Jf6pdXkl +UC2VW9Q/zE34HXaRXn2vBJRjp37WtnITKq/S7lR4FcPehFvX43K4icu50hqb +awrB/luf0yByE+AoqrPkUwhdJi/zdqZzE9WTJ8t5dArB/4jbAf94boI0LTjj +11YA/Ml5fI7B3MSThBM/eVryYTp1d9Z9O25iw1Hj360JuXDZJ2Uq4B038fgw +T93Fx7nwx/L03kZrbmLdvjVrV4vnwiNZXZ9LL7kJPi0y3so5BxozvpjIPeQm +AiT3Kd2/lQ3ZxOxOIVUq7/905+MMBIf8QjfmCm6i7kDLS+ZMPNTtkA9MWsZN +NB/c85/20XiQ+JTyJ4CLm5gfPmImZBwHeaphpSaLXMScVcLJ031/YLH084rN +g1yE7MPHNU8CI+FZvbr9EyYX8Tblhz8vZwBcHa58s9KBi3in4HfprpQrBmmo +uc7YcRE3ws/ohNz5iqOxef7t77iIWJ6Al+vcPdDZJBGTLLmI7DR3qYUpPyyc +9VjQMeAiaJHLK7dfDcbjnDfMY85yEbVgvNVvMAa3CrUaafByERtM11Zot6dj +aNvtUhtOLmL49bzmlGMGHgjv2BfDxkXIf+hz/Hg0E5VkuwdXzHISa1LOnDCz +Q3x0a8iQ0ctJfAM71jBfFsYHLjw4w+Akbn+yIybe5OAJA+tC00JOYtopLvc7 +MwfzD7JJhORyEpqyMTT39blYm0vvomdwEu0TTwLvRuTiYufye9mR1HjJ4e9l +SvJQeZeQ3glnTuKS2THr7+0FWDbmQxh+5iS2TvuxLYoWolb6pq2+dpwEn/nb +yvd6hfhYTaR51pqTuPxlR9RSfSG6PZW4mWzESUi+NY57kl+EG6XD0rsMOQmz +7GRu5mIRBtF2Cws+pPq5Ozovf6QYk1z31ZvocRKTimuXPwgsxoa4I5oHL3IS +K//zUzN6WoL3XiUn31bnJLgvHeI571+Cg4oy693OchL0PG88XFqCbNUn/g4r +UP2Xm5kI7GHg9mnFK1EHOYnnG59t6a1jYDSRH9+4jzpebi64noOJ0p+UBf7b +zUm49Dz4U7iLiapC5yoMxDmJ8Zzb+c4vmWgke0lj51pOIuF070wEJwuFi3fW +GqzmJOqcHqyJ38bCwms0vaj/qP4DjvMmKbJwy4tIo4NcnET3hYuGEdYsLKa9 +nzZh5yQy8mvrfX1YaOqkZZO8SCcaGtSlPiSykBXK7XJiik5kfjk+fKyHhRZH +mwRtxuiE37XdIXQ2Erfnxf/IHqITF7KWV+cIkvi6RS/6TDedmPhu5yOsQKLE +E+mj9h104pVBZk78FRIr51Ygo4VOVDeLfz75gMTdguksjVo6IZ5eYiNuT2JN +kNvVr1V04mCyg721F4nvDzxsqi6jE4d1P/YW/SJRioD7G1h04nvy020cCSTW +q60bvFFMJ3J/SRRJZpFoW99v8j2fTiizygzlGCQeeJiz0JJNJyRX5cecqiax +adLrgxjSCX7Wj5OHmkm0f2/03/00OsFiHS9a3UXikTVnvv1OohPNNWl8DQMk +tv3YtKkvjk6Izn9kuY2R6LRnPGhPDJ249vlK4+FpEo+lFe82iqATLnmbV+fN +kdihHBAf+5tOPNu3V1VukUSXajPZiSA6sdNXyPTXEomyd9VzjwbQCegs/DBL +xd0j4ucs/OjEwjVDs2NU/NV6riLdi078yLHVuLtAotx/5TeWvtGJHardYpaz +JPZ7/26Xd6MTw3+juK0mSfSQsDZ470QnxuSVtjweIVEh8cpYvj2dKNp+2125 +j8TBU7stee3oxHsjrsBVHSR6l7FznHtHJ1QdLG3y6kk8rVNr72RNJ3ovaJjr +l5M42h+9psySTlz9dqNxsoDE7xa23vwvqfmaRXMZp5N4luem6FVjOpGt4X+9 +OZrEiW8HwzyN6MSNu+lwLJBEf7FlB+oNqeslWbT/7RcSz/1pSdn0kE6w3cbI +1HckBjEciwL16ISt6f7H87okXtC6q/HvJp2wWG3WwKVO4nyXTO0OLTqxzGbf +Hg4ZEi9xdHdHXKQTpfY1eytXkLjokmk0pE4ndp3Svxw2xcKwzd+m96vSCbWX +noomzSxkl1HgSTpFXe+VOmX94SyMKljvMgN0Qpb2XdLHhYVaV4YEZWWp9XHO +KZA3ZuEfI98dWYfoxLdegVBLaRbq/po8XbKNTrwR2jWRGc/ExYTkX+kidMJz +ucUhcGKiT64FT9QmOnFWcvnNL/eZWN26WOSylk7orZolMviZeE6YW+0qJ50Y +//ClUEWXgb2SRZFn2OjEhm2hox5SDLQ79nnFsQUO4u3gjo6CpRLMvrqydOME +B8GVLNRV6V2CR10FL7V2cBD/WprvNOQUY+WP2rjyFg4ixPeI0bPPxfg8ykcg +t4GD+MDgm57WKMaIki3VIZUcRMfhjsDu+iIU5ZLQNMzlIFqWa7Ac2gtxhaW0 +ztRPDsL+96LMptx8jPg0i90/OIirkXZc7K/yUcUzfWudDwdh53Pejv1gPr5P +kGtL/8JBPH8Ip29/z8PZIeV7b99xEA/ld0wNPcrFf3c1Df67w0FU3DLKnmnM +wnR1CzMxUQ4iQcErYLltMn7NVZLQ2sxBbDuVfqqyKgkfy6yudRHiIO4LdwgX +iyfh5u2/ZRbXcBCJfY0jV4gEtF6oWqjh4CAmg4m1PoOxqBCx/73TP3ai5ozA +YqRWGBby9rjM/GYnZCfb/Je4TNHfOl5eKpidqFDpsn+ieBfNJ6xH7wewE61/ +9h8P3ysLkq3rLld6sRPVXPKp7g7m8DlZUTDanp2I6On79U7RDdT1/f3uGrIT +XzKcUw+PBEFF7rUwch87cXNnc8/5iQT4nrbiUMIudmJiL9PEKzERHsTmZXjv +YCe44J7QlGkSzP84WHZvCzsxQouzJseTQdxy5fTcCnbCW38gXrgjDYz3FyhJ +DLIRnc6h4afzCDgpYUX+18tG2NmONuYIZwHPlsOaY//YiI8G/ZedX2SBL99P +w8xGNmKr7HN2ji3ZkNtl9eUyk43YGTbuNW+YAwLfj7TaRLARB69MJZ1ry4Om +rwOP7v9mI5LLdySv35MPvz8HjasGsRFH00TvLZrmg6z5Gh5BXzbC0rCrdBlP +Ady9PLg38jMbMW3+7nr15kLYqxqc7GbHRvV/smvT7UKYltdWePmOjWBn1zvy +IKgQHPYVXzllyUY8Czt+a3ZbEcQvC3lV+4iNSCq8J8QQLgYrtptceJ+N4Fxz +PLzlWjEoT/O7BN1mIxxjNwS0uxZDw783P59qsRFn3fhvhrOXAD3rZjHnWTaC +YzPvJPvfEmAlCVzuU2IjrDWFFVR5GeAZVdJYKs9GeCr9uWkkw4DdvsdGfI6x +EUZ1zmtVvBhwxWzt+gM72Qgx9a7gJWUmKBwUKZbcxkZw/RL5LfuMCXuHdr8S +E2EjTC/F9V/0ZAKPvmKLwAY2wn2H8i7OdiaMi15w+28tG/E2wPbYdy4WtDbd +UORazUas0oiJXbaTBalXX/ye4mEjDmeJO19/xIKQNdZaw3Q2ItUj5u7RTyz4 +wrLn66GxEdt0cz51hLDA8HSgUd00jSjik5AMbmLBdfYo0YpxGhGZqWmWOM0C +pcyUypJhGnGmrCvJdTUJm4+USWd004jqVYPHA4GEZaMNvQkdNCK+Uz626jIJ +U5HdvlEtNMLZLO0N+YCEjofj6r8aaITrG702J0sSSrfR2PxraMR5S9v1/I4k +pLcuj/OspBHveknjG34khPoJ3nMtpRHecOKyfgQJ7ppigvYMGnHn8N6tR1JJ +eLt2X9HbQhqxFP9AvSCfhCdlMpaWudT4JzbrCZWTcMPx9B5jgkZkk8OdextI +UFa52GyYTiM8tacs6P9IOMR5y/VeMo0IT8rK9e4nYWvWw1O34mmECZ/2y5FR +Ev57bTJxNYZGJFRrXOWZJmFW+s2v8xE0IvBmzK7mORI6xx00lX/TiOk/POUm +iySUx3gulw+i6vc+28dYIgENgzKO+dMIm1e2R9qoOEIi5ukBX2p9BA07k6h6 +z440kV2eNGL2OuOs2jwJ7/0LKsS+0ghbWo1lIHW+Z9oVH4RdaETPKaXvSWMk +3FrffHStA41wu6Xe7jBAwtnK3p7/PtKImaDoj6KdJBxxmfThek8jfIWCa142 +kiB2jl19yZpGdNh37XSpIGEVzwratCWNGBAPbX5QSMJ8zobYYTMaYeft+pAj +nYQe6213e17QCOPslFO6USRUH9+/ru0pjdiQGTJp/YOE6Dhliwp9GiHyq+X0 +MisSfJ9e3s24QyNaKkQPmhqQ8HGXblOuDo2oP8bt/usaCbd/mikkXqMR9xc3 +/7u5mwR1nXfjUZdoxMHisLcdAiQc3+gc8us8jWAkvZw5OM8CgS8hy7zO0Ijg +M4E39hewgHY+Nt31FI24ZhSm2RrGgoFlmU/sgUZc5T529ZYjC/LfVpVbHqUR +jwv8xnPUWfDyOd3n1g4asZzjM6deDhP8v23w8xWjEUIP7izf58+EguS9P+q2 +0AgrQxp9zpIJ65au/7y6nuqPPyTHVYoJ8Z8jw9V5aUTvs6ubmx0Z0BCVHenA +SSPY82U3Z91mAEf53+hiNur+2/G3MfwIA4Kk6A8cx5dQPcAoKKC+BFpUIl++ +rl7CgkFrLRmhEtjn8vfVDGsJh05xSjh1Uc+XarY3JgVLOF531HcqrhiE71z9 +9Dh5CTtjpj6sOVsM118ted30XkK7Z50vfAyKgIzSSDtxawk9THZYhn8ogM0T +lphydQnXJ9gdOKFUAIbHQ3IOn1/CnxvYpOn0AlhWOFuyR24Jb3+3FThunQ+n +W382bBJdwjglq5bPhnmQyT+5sPBvEV/yxZoyxXMg6qW3XObjRWwyFO4+fzwd +WgifSY97i5gyW/196G0arOH1i3h2cxE5c9e5mBSlgpnXj/Xb1BaRyymhXuNS +CsilBg1/3r2Igf8p2Gy+kQgVc1H+mn0LmJfosCVNPgamrXJoEw8W0FR2vZbP +akeQLMhNZOku4KnMiwnikbagvTLf8Pf1BXQVtS7NO2MDWT8Ka24oLyBPv9Sv +sLobYE8wY7J3LGC0ZbHYrk22uIm9Rtelcx6v6pV++qsYiAof+oldd+excuy0 +DuNTAvb60ARdtOfx8TRLyOJEIrrFCjwevzyPVomhGnrDidjeLLshQ2keba5U +KeZcSsb3Mo7P1HfM46qqm/ckVqVh3tAe0We9c7hs2ftPa/cQ+IRL4WVV2xwS +vH0OZ60JXLfpKutY/RzO9sap95cSeP+slQU7Yw7XX+OOefQ8C7mCWeVfIufw +yDJnW3pUNiprPX2XaDSHo70n+lU583DY6F2t0MM53BY4/ZBDLQ897Tz2WevN +Yb3dk7z5L3nYE4/1Zy7O4fanu46Eb8lH+5WrDtUenMObyZt04/YU4IHt4vYn +ds+hlsWKpcNPC7BOVrolQHwO929WM+qKLkDJR7oOj9bOoe2TEyXMvYVYkhvT +MTc5i5YtVSsMRIvQuD5XRndoFpdpfEvZfrMIhUdrXHK7ZtEiIXRhyb0IDbew +nXCsmcWW7ovKHDzFyGeh8W1z6iy6mvDpr2suxniXe31vY2dxz2rebR/XlKD2 +L3P5rrBZnC8+IcujVIKRlQED0T6z+N+DhBe7f5Wg+r5RJfnXVH5aqaJKh4HH +S6P7S0xm0dSnV+GPPQMlnj3+cvXJLHKcHazziGcgR1x3i4HOLLamOw/acDIx ++Uizpbs8df6l07f8fJgY/NdXVERmFnceKHaNyGSi20utovADs3hRKMYnvYWJ +hqlV67LEZnFS2SCsToSFIicZf/o4Z9E4ir9x2IOFK5o/XTddnMHTl6z/dMey +cN76zBJtagZdvXfuqWWwsDor+9y67hn02MAe6r/AwpzbNmP+LTOo0JDBZSpA +YgzHSe9dtTM4oN2aLydJ+UoppUuueAYPqbh9jrtIolmnqVNJ9gwavxE/rHWP +xLt2hw5fTZtBmz8HP4+ZknhRYrS+JW4Gx68UTFrZkQhF0W8NImZwTHu0Z86d +8uKjxzsng2bQtutv88NgEoWW7yq18ZvBJxnR2oWxJHJHdJsud5/BxefFA+uQ +xPFzIZvcnWawX+7bzivFJLYO3MndajeDvY5+0W8rSWQ5iRiEW8/gGsmvEj8a +SUzf17z6yMsZ/Hv8wumwfySGlvomE0YzaN9UlvOzn0T3Z1o6qg9n8PBzxXuf +RymfrlnPVa03gx2+tGndKRKfxVVF6GrN4PYFx4vilAdvXf5yqe/iDFY7Bl2u +ojynOnFh1kR1BudT93S9oLwn7b4igKY4g807lOaXqHj7UcaZz7IzeHT7MWdz +Kuav+TS49vAMGjTZB7VQx9PMz3zz3zODQxKDKoep8Qc3cMru2j6DyetV3M2o +89enZrclbJ5B5pG40F/U/Apv2HySE6TO98Q4Mo+af8L8CamSlVR9JEdlGdVf +oN9c9RWeGTy4j1OTQfXvcjLldQttBrOtld8kUOvzutlU3GBmGt/vyfd2pNbv +kc2hkomRafTa5Td/mVrf6yKjz2x6pxE7V3LzxVHevvMYv9VPo8bi09yzHiRu +oe+6v7VyGqU4Te5VUNeTL7ibL5wxjXZiJz6rmZHY2XlHi8iYRktDweD1l0is +sBNhU02cxurCLPIRkEhINP+qippG5tEr/THU/eTzSGui98c0Hg/VLtm4yELD +/4bUKjymUbv1ZPHeDhbKxrwLSXOexijjXeW8RSxsmoi45mA9jYb+XRrCzpQH +PeVjjM2mMZyetOaqEQutj1fz3Hw6jauVzZ9oX2Dh1jdLKXt0plGIdFxRycfC +YbGva9Zdm8Yrls3zZ3qYmJUvYbCoPo1mw9x1jrlMvM13UZg8OY1yGhrS38yY +GOQRZGW0eRp1dv5ZyCAZaCxz7O/1ddMoW0PY9QcyUKmRuU9+xTRanTNtmTFm +YKfoVMvqxSncf0ZGJXkt9X2PUjkV1ziFdn9jrGZUqOdF7iD3pO8UmvBzlN20 +LkIr/Xe6TV+nUD9dhttAvgjVl61PyXeYwk+ZQVLm7EU4fF7+kcerKRSzj7oS ++KYQD9R/YUhrT+F0oVLjU+MCTByRdrXcOIX35XJZV/fmoe1XZs8d/im8UZMC +sa25eO3obYVzy6dQWCuOlPmai9OvPo8Jz03i2oKdTs2TOSjD03Qls24SQyVC ++cnYbMTN74TYvCfxcuevjo08BHK5SPIbu03i1Ie1K54YIJ5jK1/eZT+JbeFb +V7vkZWJN+9YFhuUkPvtcLx5lmoGjvzObPW9OouQBuuI4IxW3H5wNkhKZxAuW +IFGunoAOZ57t0/09gbW5GreOBv/E8uT1EhX+E7jfw4Oo2hOIGySJrae9JjBY +f/25ygR/DOFbuWa3/QT+l9MkqPrRB4myiPEpgwn0eOoY+98TZxy70Z3ivG8C +zw61BXvMWYOWkY4iJo6jT95RWPUmHN63Nw46R43jnbMbTqiviYSoq9peuiHj +WHmzvEMnMArYTmgOsrmP4wi/YNWt5hj4zXvJU9FkHJ333RXTGIuDycDT/UUH +x1HBbHr/99EU2Louz9171zgmtM+tFI1KhbOfTskbiI3jsWu7zrk9SAO/p3Lu +fPzjuCtTpHxDXTooysrInR8dw0+qCWcnohDcqvZ8rYwZw++1Bb65DtmQrhxx +Mvj3GHpI1fodbMmGzjTJHhP/MbzP+dOv+UAOHAvccVLQZQwl7FeqtFblQMsT +kW7Np2OY/DWrY9+aPNjLs1a2ec8YVovK9cnoFcB1yy+d0dvGUFXQeWAupADe +Dq52tdk0Rq3nGvfCvgKoqlzRKfLfGCZ89C80f14IrwJ4XO72j2KjWbvR8Isi +KJGZb+8JG0Xj3ew9k4olICMt3twSOIp5F5jtiuYl8Pvwubq/3qPYPrnr0puI +ErCV8i3Nsx9FnzlWQMZKBihsl80IeDSKQaZ76lYUMeCP2N1kz9uj+Oz5uuU+ +4wzYKuIQ56w1isrqEUNcW5iwsLEh9PXZUWyBX0pmRkxIXv3KXVNyFA0eqKY7 +cbJgx8og1wuio/hnaKiifwcL3PkYDmeERtHuwP3wzSoseMEt/O7wslHU7rO0 +nLZjQRtd0Wo3+yjqe19i/x7MggvshuZisyNIMj/cW5PNgr0LaU9X947gAcEg +nTtTLPCbbX/E0zaCUmWJ7SdWkcA3vfz+Uu0ILsx/2Ny+gwSLiYN6k2UjaMwb +JH7xJOWF0RvaA0Uj6LIQt87+EgnXh99d68gaQX2J5yL2+iTkD4RfrE8Zwe/X +019rWJAQ1D2nXBQ6gjY28qoHfUng7xRTJAJGMLdH1OBcOOW5dlVI8hpBA63e +Y5IpJAy3vJCJch1B8zK7PYw8EnSafA4HfxpBNolDhfvLSGDV50j5vhnB9xMm +nlr1JMjW9u36Yj6CqTPbjp3uICG8mn+H/bMRTFz+QmO8jwShyuOibx6OoKzT +v693Kd99Kruz6aXeCK57eDvHfYqEadbn9U81R1DHbk+oPeU7fUYc/32NEfSu +69ssR3mtuqh+xU2VEXRoC+JNojynVMCx7LL8CBak5GgNUXF87i5O1WMjWB0i +uKqHqhfNvkRT2D+CKw9UHgyifOeKlnPSO0dwEV0ats6QQMv4OblPZAQtYs7s +0Rmn/JpaMrJ9wwhqs1+5ojNIQmPSWP+m1dT6Wxq7iHSRcC5hY7cA7wgaXcft +IU0kpMWeal/ONoJR5qGGA5UkSMYYNLHPDGPclsXsqSISvCK/1M4MD2OeeIN7 +XgYJPOFplcPdw7iQ+UfvWgwJZr/bya6WYZQpOBoaGUB5Nnh5SVPNMKZ8MFwq +dCXh8s+D+VWlw2hJd2IPsyEhx/9GFqNwGNO7+G9qPCHhwPd36TnEMP5k/M5D +LRL8fcKTUpOH0XGv2NKEEglW7nORv38Po1UGuTtjPeXB20dUJAOofAY/fYmN +hDN7n3WEew3jJM3syqFeFqzK7xSKth/Gnhslv14lsWDCVSRR6t0wJu4f0XH1 +ZUHdTW2NWMth7OxzofnZsODnRJldguEw9vO9ZfgqseBjFp/Y0XvDKBiQM+m2 +nQWGjmcyk28Oo/cude73XCw4si1jPE19GA3hg8wNyoeFl3/rZUsNo6d11ZNF +yn+RW9vnT+0cRm4BjzX9vExw69/kmScyjGJkxImmVgbceP+FVbhmGMduZ/hV +OTGgXn/B9HvPEC5bGLeTbiyB7dvDJJOfDeGO4PY9kmrFMJyxRS/t9hAWsLZz +rRUshpQr3zwyLw3hxsrPg5taiuDcBxt63uEhfKl0Wt/1aRE867jaVDYziLon +JNoOvS+E9EAOt743g7iF/YL8Ydt8atbmhYPPB/H+t5Krwwr5oF4+uDhyZxDF +XdSDehfzoJWtzmBaaRD/WAiLhhjnAZdejBLnskEM6Nv42+JaLmhsuTmz2W0A +14UatGTMZ0Fbqs2XxjcD+GeZol/Pryx4fjVoj++zATSRXvta72IWuDn26W3Q +GMC7AuMqp4IJKJ8zL+ZfNYClbS1SuraZcLHG3YfHqR8v9Vw+75GXDBddS0+M +furDQWaypdbuUGjbPf43xrwPhaL7Np3z+QXPCwWfP33YhzFnxBXVeEPAbelW +SL9yH66KuSqa2RYI5Y8HVnRx92GF9hZZaSEvuHh2WUv9h14kfHZtusZ7DC9x +KL7Ne9ODlffFHr9zCkXWcUdtr+c9aGeh6JTAEY5njauPPL7Tg5qfcwanzCJQ +4d+DPgGlHmzRMf9rfjMaDxQ4Xr7L04PaQkoeHxxjcdXnv9s5nLvx7oIX2y/J +ZHTI2cr217obMw29WvPrkpFn/mF9mFE3hhw7unuZfQouGc47X7zYjTobtNPa +/qXioLrITMDabjThMvQ56JaBjDUGJXK+XTifYd0nqJ2FyqrxwQKOXRhTyZpo +Ds/C3HcL1t2vu/CIdK/k8rksTBt3PuSi04VNAV+22nhkY1h1vF+zaBfKeohm +exbm4EfvxadWoZ34orTbWZY3H+kVZ85e9O7ExNZl0bNq+Wiz3FV8++dO5Aq5 +Xjfqmo9mr8RqmYadGNP+ZshOsADv31JW2CTViU1yCRX0DYWoKOomkJ74D8UV +w3R0xorQ9tani6oh/9D27EZz5X3FWORt41L37R+q1y5L3vqoGNX5n/LNGP/D +29ebhb81FON1+jn6kYP/MO4/Q2m1+BL0ljulkCf6D6010jufdJVg4ysZm8tr +/uEZNe7SxxsYeHtCYv75SAc63v16fM6cgQadnOPR0R0oZR38ZPMeJkaJLuyH +Hx346pGD99hVJg7fGn/KcurA/cdzlntYM9H4b1tf/+MO/NiYt1uBycRE/rqd +r252YHy4bNzpUSbOnC/TX67Wgc0qFrv517HQqhDbd+6mjqf37FvUZCFBTxJJ +2diBja91JjdYsJBDPkpHeXkHamooSkx7svBjim/9/d523CSUUDlZzsLiiS8b +JmvbsTtwYFRgkIX/Hfh87UNRO7KUuHKHuUl0CzOv+Pm7HfNO773aeJTEyk6j +1Qc927FysE6sX41EQbEH57Pt2pHwTMyIv02ilo6Oo4ZZOxoV7lU9QvnP1+dq +Scv9dvw2SWMz+khi0181XqOr7ZherSCi50WiiIDSmSWldjyx5tEcTyjlxwuy +H5wOU/Mxu9R/P4nEEIeDOZu2tWP/D5VbFrkkdhdKskUKtGMDx/IihVISd3GK +giy9He3syT9YR+IT+Q2vS8ba8L6dWvhwO+XX16vStNrb8PGezCtVfSSOpnDP +9JS3IZ9J663HlKcOTy4eMc9uwzMmbG+TKW+9PDBpzBPbhvH7JuwSKY+lPhmI +9QhoQ3lS9Iz+IonzYR3D212pvOabn8WU56Crfm+iTRsyK7ycWqj4rViFoZJR +G3LU2HGHUvW5OsVhlTptyPoxIyQ+TyKXb1b3nfNt+M56X7vGNIkqNcnbx062 +YUnlrN2BMRIdBGLuvt1Lja+ffjKf8h3rwq/A1Zvb0Obk7bP/Ub5b5fi9xf+/ +NpTquDvH3UDipaJvm6UWWpEmmhudWEZ5ltNRG/tbsW0XR8WGfBJr5N97qze0 +opSceNP+FMrXVpY1jSWtmJT689pSGInaqc/XPU5rxSs+zyve+lCePqDn9tm7 +FbnW/rsb9ZLEqHfhz/TtW/GAwLmJeMr3FpUTF05ZtOKrRUkJGw3Ks6b2K+c0 +W/HY8OtI/W0ktuRXDlartOLAnfrUD/+RGCG4hRV7rBWtZJ63GIyzUCklzuHR +hlZM2bBg9DWThWuWLRqc5m3FF7mZ0zUBlO+0lFVFZ1pwaxOU97xjodl8A29d +TQuufX7omIkiC0OBy07FswWHRRwiriYx0dTlwv1tH1uQr5zrlIgrExVavZXY +XrYgh4ptU/ZDJta/3UdPudaC2q6dN10Fmfhf/vU3EoItSFjwfPt0j4F1637q +0rlb8HuX8XqZIww8R9ZZEwPNaHrqwgmSk4FWa+gL+yKbkXvx18rogBJs87w6 +tWJ3MxodPpv2ilGMljJ9CfnLm5F+a3/Lp6/FKNBgbWzV14QPGUO8DjeK8fSW +0JGBsCZcurDxwcvOIgwLnutj7GxCWsiI8YHhQnwe699iv6MR704qMK9U5ePy +y4d/KHA3oh5DP6jKMR+DJopuznY2oK2o+MhzpXyslh6rexjSgM/fPL6wOjYP +ZVCpSnlbA67kiGftfZOLHIzeIi6xepRmOSt8m8lC41/FPD30etzyodaURj2P +O96GnSnprENn+7vSZTeyMO/YozznsDrc3yl/LCqNQLtfPcT6A3WoUnf64ume +TFz+rjtJUr4Wv4jqa7X4pCC/TGewus5f7Pq7sTKhOALfr83vkJL/ize9g06Y +a4bj+HCwGL/YXzS7ctNNrSsUq37dC/jbWY3TW4q/3qD9Qo+1/3x1n1Sj+RmF +VKOdAbhxpP3L89dVuFq6TjbH/gOK/W594+5Tgaa71PefPhQIWz9v+jhkUYH8 +PHJ7+Yp/wuYnmk7KWhXYVzJSyqUTDEKHyrxn11dgaLzyMk3b37CGIOJuuZfj +Axt8FlFI+a7mx7/trmX4ktdrGbddAiym1vdZG5WhWKQVo+RMIsz7CY7WnC9D +v4E/3uHcSTB9x3nRfkUZJkO+u9/7ZBgeshIc+lyKDYr7WCbP0wBXprs9oe7r +BEMrteTPBKRWHfyxlcHCkNWShlLtBCT6hIeX27PwsL0I+9yxLIja4ZN7hIeF +Goe+h5v/y4LvYDG5yM7En2UbpTIO5sCrp9JaztPF2O/BXPYyLA9eHo65L59U +jNXbjVfbTuSB8dyOF2Mmxfg3v/JZLOSDgZ2gwzXqPSYmuV1XqywftH5MZmwZ +LMSc4kNN33oKQJqMF4lpz8cPfsYGF/uKoJ0nZ29SSD76Pv4txStWDE4KZccz +H+aj8nx+ZZVmMbQnDFxhDOWhRZrVutBcKu+73b57LhePr9hWz+FcAtLVhzyG +MnPRVWhF6mEsgfaVp4ImqfuMPhq3/OkglX+nk0nnycUBn+YXIyoMaH/oObpV +IAd91+Wd4J1ggNPPkKUdf7OxcHGj9tlNTJBujOfb552Na7RlIm0VmeB0oWz7 +ia3ZWHZh04s+ZyYcs28+qNiehV8FPyiujmdCR86AnGpIFpZeWsO+5y+VP7rs +hubuLHQ0X9CVF2JBh9H6B7pDBBo8fBl6VIYFTmHbTfRjCdzcpr97iyaV33TK +2USaQJ1NpR4ZX1iwKTpQemYSMX+91Ivn0Sx4LooXuV8j3n/y74lAMZXnnbYV ++5SJrVmR64TnqfwrgYD9KzMxY4Mnuw0/CYVDUmnwLQO197o7MXeS8Lz64dCN +gHRUrHn8TJTyYKGKLe+jHem4PZ/3qsR9EjZlBIq9jExD+3WqkwIvqfzP+mtf +U1KRlaQ18sOThM2C088CIRV9fgRLnPhFwgt7AYeYvBRcq+pVmRlP1S9IhWSq +pqD1R+lX4llU/TM1glGWjEIXTWMeM0gw7nhYV3ctGYdijvF5V5NQdM12vLsx +Ce+f1jsU2kzVlwSumLqThIGv8v96U54yPokSnL2J+PCmXPQTylvFf+oV+I0S +0WNlyGtxymNbtk1ri0wm4Pxs6cr0aareU8Bs36sEtHf7LnuY8lzx8v2uJ9gT +sCJ3pMOZ8t4Wa7Vw1Y/xmLEmfqyE8qDx6MM8zRXx+PBc9c0eKi6+Z9us/zUO +T49fEO3+f31t4IyJUBwqK4ufLaTGMz6H/O/9Y/H0yLXuT5QPi7F+j9v2WHx3 +fXbDngmq/uD0Gf+IP/jo5xau2CGqPkTgdtSBP/jySkvj+h6qfsP+V+nJMWji +ea1Br5Wqd1RzLz4Zg0uSAacdayiv0yp1/3yKRouJagMfFglfu/i+Mb9FobnS +imCHHBJa1pk1xYVEornXRghIImHX6dYd3kkRWNPwuSAojARTE9VnNoXhGNu3 +O8qD8nt2UELq/dow5K6dMrBwJGFF5Ra6Wm8oHmjke6f2mgQtDnu1g3O/MWAi +ymq1IQkjerdaloR/4UjRUasnpymvuxbu7NwTgr1h2/N5DpDwkTjwgnEyGH3o +vy3chUnYuoWby0v3J+asmRRwHmSBX7LOtbvKP/BpdLHpclsWHBI81Cv1yA+v +S3eqXnvIAoYJz+uFzz644aWRmp8qC2YP/Al0Jz3w9231po3/seB6JPtg4VUX +DNOtu8H2nglNglFsu0Yc0OukpKWsDhP+q7q6I/fQJ7TRGkixOMaER+d/P59M +e4P52+xiOfv+/3uN1tmai1eRTf21lKUCAyKqrEUs5E+CPOdc9PhaBsxxOkYW +p9yGNetq9V51l8ApJzHCRv0lKBREvk23LwH98idF9es/Q7MU7/vd1PPF3FhA +ndfKF4K8fANV+Yqgba1cmqz2d0i1yV79rKwQgusPC0hv8oeWhKNVxLdCWPFa +743BXADEuSXrd20shGZMvlGeFAw5oiYR9psL4K2S/ip/qUjgeDkYuHIpFxi1 +wg4ch6JAh/gkV/AnF9Y+KefWPxoNCV0WeyPv5MLlku9L637EQEocu96qvBzo +HOOdagyOBWOF9eEOVtmwTKnln0FcItTrPHll/B3hcpdDjh0rEz6GHWswWYqD +8bUvUOdtAWgO/F7UfPUVr3MX+7VnFsBoX4HN0jMPTJve+kp/rgCsZn+IVN/3 +xrf1LOmnxoXwXnbn0b/b/XFlgGSs1f0i8FxbbObFFYKSu9uC/M6WgFpMDbcs +GYO6Chr29WtIePfvmKdFXxrmHvz9QOc8CdJGO4+tck/HHduWTrd/JiFnxbBP +KGTg1LvqNybspfBtTb5aqXMmZt5/f/K1ZSkcuhs0FexKoOruliSHx2XwychE +loc3B+eDlv9ifS6DZ530YuErORi16aj7qrAyyNzWRdj65+CalU7GXzvLqPdS +mf2Fw7lYM3J8v69OOVyxSzllfDUP7yd5hIVrVICsrkBStXEB2kvol5s+rwCn +2xUFRqkFGOV1ZFb+SwXoV/zuFFgqwCnLKpWaygo4saxIxuhDIX6U4++hX6+E +/Rxa/TtsizDiT9uq0peVMKqtWpOfU4RlorHSPl6VMGganKhFK0YhTo2P++sr +YU/cwIdrpsUYXuS049atKmgfyDC9c6UES2Vund9pXQVsCxWx+vYlOB6+x2z8 +RxXUaPKbq2eWoKwTI9++tQpoM7Vn0kQZyLq47H7S3WrYP5Y0U9vIwNGcWse3 +H6rB+mGnfCovE9cdDk1QC6kGszdrnR8fYqKOoDJnR1c1sNg0tU7bUl6r/xC0 +yuAvPLAovPRlIwsF1K4w6j//hc7ehyuaTrBQOlN8PCTiL7zg23l56BYL3/jn +nDox+BeUpXIO6Pr9f5/wxYBnZQ30ij1SzEil/PX29peKfTXws7mlvL6a2g/f +Y2t/+KwG/MU0/11fTuKR6tJlh91qoD5CXSVBjPLVGf8DtLga2Mm9ppclQ6JV +8lOtkooayNl0qCboAok/d8Jb9/EaWMGmt/8ItV8v9F4Rpre2FlxXPdz6ltrP +9y9vKtt9pBa++6o0UmbCQ4OvRHLMauHCHu+2DMoD13XOqTh51kJt2q7G/mQS +X5VufKaZUgvHdTp5K/JI9Jfv8xSvq4UjTevan1LeyItNJYZma6HMUmc4u57E +XjH77tSNdcD5Nz2/pIPEFd80V9nK1kEr2PPYU545wLVTWuNmHRx+++HeAuWv +q2bTOsJWdfBoW7n3NspDFt0Fdl3f68BZZP45O+WlH5oe0bFYBzq8s3lf/u+p +4vt/X7fUgXzoXvPa//+/5fEjS8ps9bB14yPrCirmi+TcISBaD5vO99a8oeql +NlepNyvUAx/vjS8dlOcuOweZht2pB+JiVdEc5T1zmvF3k/f1sOdOU1ABNR97 +Zb93v4LqIax3VfRDar7eLvkPanPrIffRWRaD6iesZkht+b96KLvgqT5C9Zu6 +dcPBE5wNcGut2ce/1HoUP1BY/3RbA+wvZLVYU/6qizFY8FdqAJmtQ4W9lL96 +p7+2ld9rAPeVnzPXR5A4K5dZQLdtgNL6ONVlfiQu+9QVcSSkAb6lVnARDpTX +yla5PchvAL6xX24yliQe17ujzeBqhBfn6ztsLpN4LtRBfnF7I4wVr9+rDpTn +RhK2S51phIdHktXaJajr94Zn5ItdIzwiVvs+mGahQ9H+6rxfjSDiujFaq4mF +vqtvpE0VNEIzya+3PoeF6QGRH27wNIFcrMDQ7EcWMnqqHzlKNME3vpiVoo9Y +2LCfdgGVm+C+t/L1DWdZuJB1UUjsUxNISlx7/JqLhSuWvVq6HNoEribSjf1t +TNx8MbjDtqgJWg5XpO3PZOLJtqmoXt5mYEl8c5B/xkQrdr9TsfbNcOzbjElQ +EQOdzuZLdIQ1g9Sm8xy9vgz84Tb037qSZlhTcSJ59VMG6q4W6U/nbIGC1ZMl +K1Yx0CbgReLW0y3QrD7yYFyxBD8q8YQeu9oCP5Q/x1qvLEGXHl+fi/dbYFFl +LHi+phj99+fbvLdtAY2X4+sqHxQjkbVetTu/BdRH3ssdfVWEhfciT7D9bYEN +K+oiHE8WYSmvgpRQVwuMGVV0dS0VYouGwdpz3K1Qllfv/ce6ENnaMpqjz7TC +p1sxRS0vClCB/Y6xWWErZCeiHcf+PLzFW77d8m8ruAwjc6onFy1XyddadbbC +qWTuC0cCczF+85aTtvQ2KMldwfJZlYvbjtdzf5NrgweNvrrq/7KRx/iST2xy +G+UehQNuRgSy/p3KHvjdDg1fFUPVTiWiZpH4qruf/oH2kdYh+bUGEMX4dyvC +6x+IcT6PyL1kAfTSkMjx0H9QyGwIGnB8BzHVEqofiv/BVJBXdMJOF+Dq2G0b +srwTtroJGhp1+kL84qH5bsdOuCnn43V0VTisOKTU/ditC5J2rOSLj0yBu0e5 +jiYGdoHq4ui894NUSJUp+LAY2wVrBwPZjEXT4J68iphzRRf0mCr9bHJLh3R1 +tVsxAt2wOfegetE9hIcPr1SOunfDl7/C+nX3syHTcJ3Y8V/d8G7Dhcd7U7NB +wOjvs3dJ3fDVYduyHL4cIEw1VwrUdENcyKlm/+gcWPf+5tnDG3rgUzDhXtmX +C7nf7xFmPj2gasZuefd4AezlZCPDwnpg/6dDzqGvCsDTwLexMaUH+LbBi00Z +BWAoXTF7qqYHxms5Uj8eLwSBcrnDq9b2wreyz+ek9haBlXTDqVPivcAdp5EU +9aAIur+bXTQ92AvbWKkVZwOLIN0g6mmDRi/8k5sXr1xTDHc4hcN+O/XCXZkP +7BPdxcAwSEqu9+uFYDq7n6RwCRwpv1iwIrIXTBPNsp+ol8CyH586jEt6oU50 +OmljTAnESk9tlufpg4//CT+p1WeA8A+3PcaCfWCdkHX68hcG2HLulf21vQ/6 +dk/5lmYwQKv8ruZ/Sn3w48Gt1oKVTGA3LP9S+6YPHv3M8P70iwmG5Y8D+Vz7 +wDSncrS7mAnV0rx/wL8PtgffGjk5wIQwTjlWcCaVF2GJFe9lgYBhfUMNsw/i +cgZXLqixwKrctG95Yx/ssuXjFzVkwcUfkTzP5/qg40P64ZPBLEjnVBEMXtYP +DT6/rh8kWLDdsGNbzYZ+YBy+5LWujtp/Sm88dVK6H07uPdj+cxkJd38kajw7 +Q+XPzxw/J0ICi/OibtDVfhi1jdVoPkJCQPnH18tM+uG+/fKM7FskLDsm7nDi +fT8c/HM/evUzar//A72NvvRD6eJRT+W3JDRx3gj9GdgPfTx7mu67kaBsOJlU +/acftnUmjhgEkBBb7prPm9UPkbtXql2LJkH42J4q2dJ+SPKSNZZIJ8H2R2H7 +0+Z+iNATnGgqIGGY8+5o4GA/9Eqo6VuUU/t3wyVa9UI/tAbdNZytJyG33Hsl +738D8OEfEX2rg4S9x45slhUegInTQZ0hfSR4/ijb/XTXAKxffrC0fIQEdq7H +xwNlBuCqj8nhtkkSDA15zlapDID4c62eylkSqst/XufRHACDiKTCsAUS5I6B +/vEHA5CqcC71DuWlrZ/tKkXMBsB8plh7iYppjaQ8j+0AvLWVF/pExS1710cP +fh2AqS1BkzTKU4SNrnDVzwH4unvl0v05EvzLf39Kix0As4p8lbQpEmzERyYD +sgbA4cSRSep9C7qmx+5+LB0Av4+Du/cNkACFb8qeNA+AiGHwlvOdlBeFik9e +GaTm43yQ91YTCYsGayKOLwyA0xe3PdpV1PpnaG0Q5RsE4+K6WpUSEjJX/rTl +2TgI/CFyd3cQJHzX6xsb3DkIK6tW756II8Eq7qBelfQgnOWP9YoLIeHktdzj +gVcH4XfMmcP0T9T5QvlCP94bBLkGDT0PyseLs5fXPTUeBKX95/Zt0qfG//5v ++LjbIGjIGq7ikKfGH95zSzRgEPre/3l4dzc1voJpCU/MIIQf2jiSuo6EE51c +IVXMQejI63h5tpsFwtLn+dMbBsHDleD6QLJg/pOHTWDfIPxUD29MSqDu5z0S +N57yDsEX+Yo2XmsWyJqorOJVGgLmu3Yvc07q+ALX10OXhuAFV8Iblw4mzK+v +6626PQTal/wcf2UzIT39UV6gzRAMz+79WWfJhON0BwvZ9CGorTTxNm1jgNDV +yi7RkiFwftN3PCaFAbO/hK/w1g3BSn/fpTFnBqSqRu6rnhqCVZKE/Y9jDPBT +0R9N2jAMd068yo5+UwIOz5fv3CUyDD7nL6nf0SiBVz7ROt8lhsF0swrPnq0l +oD0wxXh/dBjMlff/5E0rBmHXj780rgwDd3iLoWBnEfjWhGr3uQzDeM+H1E38 +hfB7ybSV5jUMF16tuZpMFkDCdsX76wKGQUJg28ztzwXAMm56Kv9nGL501oqM +LeUD22r+dx5lw7Bc8bX7uaY8uK/yKvTUmhFY/yh54vHzHNiXqj7p82UEtH/U +jRYLp4Ns60bLPz4jMDmI55PvpYEyT89S/s8RkJfxdHGNTIXbV9/xjsaNgF3t +wUJxmRT4OpokrFw5Ajv19rn7nEmEaUmRU+MCoyD6n5//FZkYyPYZcz7nPgqH +n0i9GwhxBM3xSOO/fqMg1KJub5FuB8PnHmjeDh6FxiW+y0fL3sCmxQbRl/Gj +oLNLPBw69OGlbn7Cz/JRMKusHOVPfoN7t3nVz64YA8mHpztWyvqjV9TJHaF2 +Y3C95kV4b2gcSnHPLD/kPAYDtKH46ZvxmK8TN5zpPkbtB5tXXl6dgOOrJFIr +g6m457FknUkiqr9YrUbLHQOe8vjn5odTkC7d8fwabRw+xnyYKfiUiUZZnzI5 +zceh68XkRtiXi+LrH48ceDMOtZPCP1ytcvHvkwviup/GQcHoW/UqZi6eFBa0 +T/UaB6k7Q3kf9fNwuVnQlaep47AuSUiFxy0fM5l2H32zx8H9S3f1w7p8fC5u +kFZUPE69154XNIsUYE3ZfhHx+nH4UHH+2kJkAYbsxv6auXEoZ7rQ/qQWota7 +wC1c9AkYedMvpT9XiP/Vfbh4kG8CnAaOlm08XoTGdueSHYUnoMfnn4RpUhHK +t9W+UzgxAbWX26ZCfxbjuHRG4lOlCbBt4BNb0VCMv539e3zVJiDfLvz2Tf4S +XHFC//zUzQlgD3ORj7cqwQaPcaEIqwl4zG7eza3MQJfBv2q1thPwegwqP5ox +8JRSmg2X8wT8XS6p0BHMwLDRN526Pybg9woHabElBt5UubfB6dcEnE79J8Eh +ycRV/srn0qIngLFJ1SDxEhPN1FbGriUmIEExVsblJxMlg0Y7FAonICzuuUtc +ERObZqsEjUonwFmzsejnIBMVf/u+Lm6ZAI/HJbR/hyhvcUiqWLNNwo7zAz05 +sSzM1/zvVQTvJLxXDnq2g2ShecxwVO3qSfhhZnZFrZeFLTeTBA6JTgKXRUJT +vTCJX+K9z+hJToJkXbuFwiESTy+3snA6MAn+dsW6+mdJjExWbOlWmIQbunYf +up+TqLtSgn+d6iQIOuWKnvpAosD95adPXZoE82bP/OvuJBakD740ujEJAuYt +hEQI5SH+8nC/O5NgzPftSWw8iXsfJTQVG0zC5IPKYxNZJLYSnqunX0xC9/tO +r2EmiV8FXyluezUJ55cU+INqSFR+omN28f0kXNngfnRlG4m2k/uWTXyeBJnU +sa4/PSTmWNH8PL5MwsDFM4mHh0mkcZftk/GhxuemPfCeIPGkc0B2QyDVDy2Q +0TxDeULw+RXrsEloFCrM4FwgMeWHQrdI7CTcV9y2hY/y1+QOfsvcFGo9zD80 +jVLxoZj2//SzqPHvs8ZSqPi5dLw/b9EkiCcu6epRPosm3h+MKJ2EuakDB3oo +n/UrX8lXr5kEp2M+r///9zHJsm2aI83U+sm+v+M9RuIDzcm+L13UeJc0VuQO +kBjcmm91ZGgSyrotY1mdJLY99FhdOzkJDf6uTqlNJG4d1Q+yXJyEv7sP9NlV +kXjLQvroZq4pCErj23i0hEQfdt5i4r8pGFvTaFGIJNbY12rfWTsF/moPnsnG +kbiOP2yIc9MUVIL50y/BlB99LN7+Fp+CtW8ahpjU9XIVU12runsK9IS1zfpt +KX8e6pdxOT4FWy2iW/7eIfFsejrzwKkpkG9oWgimfG6n6KhbdXYKinOrPbVk +SWS/stdWSGsKHlZn7LJYRaJc4+L6DL0pWArfGNVJee31PTJc5+EUHLZbnSPb +wsJpE6OyoJdTwL329rbQcBYeWZS7e8ZmCk4P6qpmObPwhe3qqR67Kfj+Zl9C +/nMWDrrHCu/zmIIo3panfodZ2JE0rp+SMAXn9u6/4RXFRFG5vNkbGVNgQLM4 +LGPPRJ3Cb46LuVT/Mx5vy+4ysa7mSNypyimI1srF7nVMLJ15ucgcnQJNx7aK +licMXPFWxdVodgryovev1lZgoOoyIXF+9mlIy05RrBVgYL5Qmsr11dNQFF86 +15xYgunHF7627ZuGzJtFX9WGijH09ZtdU4bTwD6ssOzEwSIMtPz9+IXxNJjX +ddn+nS5Eb3MyeshyGqLjgk94ZxSivcmmQ93203Bnn6Cuv2IhGj5Oka39PQ1H +PP4c7VEuQKmbI2ppHdOQGrG7UWN3HibL6hlZa8/Av2sp9KknBMbIfIyduzMD +H7uDZmc2ERgqHT1uZjAD5V6PbrR7InofWnhpZDEDKVa/fn49n4mvdnu90fOc +AeKyoXljTBrKCZe5naqcge0PT37gUk7Ewjm5BO5zs/Cp1f6HUkcwNk65KG2/ +PAsxQdf00zWCcHSspUpRexZ2fZr1vZsZiML9NpNvDGdBN/Vz9ZpdP/BZA3F0 +3mEWLDbu+sY0d0OhDLnUYeYslKwadXi88hUYWslh7fk5mJT/Y+WeGwFvLFzO +T1+bA5u52OgYjShwN21pXqc7B70P7ge7N0YD8cSGdtloDh7JKL3PefkH1uoQ +8iyXOci+ce626Pt4yAS53OyyOTjumZnV/CwVVrPJFYVfmgeT1ABVpPwVs/d1 +CtyYh/CNIqsDuXPggnZqaMXtefijLXSx4VIOOCUdsp97Ng8SpWeIc705wPdk +p6qqyzycs84erVyRB1z1a5i9jHlg78m0vnyoAIJ5LmRYVc5D1ea4bTYmBaB4 +xDFyTcM89BYcXdGQUADvXLmdZPrm4aSUdf7GQ4VAU55Xt+ddgPdElarV9iKY +jf9XuvP0Ajw5FCNPby0GrzbRrAy1BUjPcLx4TKAEpFfp/tG4sgAHNB97WJ0u +ATODOlfzuwuwr7il9MDvEhgXIS8WvV2AC57v7vDrMuDLeb5TN+0XYD42/LjP +ZwYceK1ycMR1ARykf6luT2TAs5oc/g0BC6BeMSgtx8OEQafkyge4ACaabXLa +/kxwTJ/Inc9fAIn0FrfqHCbs7j2Q4MJaoPafmedVOplgoBT5LblxAVL0uM/z +S7Bg2YveD+f+LQDNsf7sgzMsCPPfYdrST9W3vRD/c48F3XMBV3nmF+BGxnsV +oR8ssNvZfNqXYxG8b3p4SqdSvromfFRq+SIUjscxTley4F6su+B1oUXI+ed4 +cR8nCfT/tXDn4VS07wPAzzlzzhlRiii82SXZJSnL+9yhDYUoKtp4QwqVeuOl +IhRKspQoKSVbylJkaezrOWcUSSWJIpUsh6yd85vvdf3+vK+ZeZb7mXnm/vwx +09uO/1QWoEwnfT6+gkQPFklMn18tQFOfni3jGpCozyum69F6ATJ9++an7F6q +fk4cW9YDAlSXutddyZfyTpXzLqltVPztMq33AomW/axMsHYQoOFrXnQXylev +l6u9vrBHgDo32z+9dJ9EsZbRS0oOCdAqkWEP3wISWfuN7hj2FiDG963hYgSJ +2Km7r6qeFKBz3q8u7Kd8UNNQ0bonSID6Nd3eH+mk6vVxFdG4MAEK0DVQUOsl +kYlC1NaGaAGKDGQNJn0j0e9tI5Hz8QJUY7jgY/kI5bnTu+rXpArQ3vUDz5Im +SeR7rxzzzhCgpX/VrVWlPKXJVba4mytA+D1rTQ/KUwPTly68KRKg6byMABfK +S/fUfr0UqxCgdXeDhf/zlKu905+NdQI0ooHX7aVimeAy07McAZqNn2nyoq7v +eKQUlN8hQAvPxqpoUu3HtUeWfukWIMfxi+NpVP+2wp+/5b4KUKqZnFcjNT4R +LUcjh2EB+togUZVBjb9u94tTlyYFKOtlltVaan4XwhQLK/8I0EvR5O2B1PzN +8iNG+SwhUi9fDKeo/Ey/+6GrKS5EFT8LY1Wo/BWzdh4/uEyIlJUTXlyi8utv +UJp7Q0GIPohq7cig8q/tpvCdoy5EcjyXwdPU+ny7HK6B6QnRuufOOrRQyne9 +9g/9kBCl7t2f8Te13isWlvQ/3CJEn018j0xYkajLWF6l206IWjTs5j10SWR/ +bSht60Eh8tRQdAn6w0MLy+0+nvMSom31hJxyPw81DTz765k/Nd7u89mRjTwE +f4clK4cK0f6sxOL4K5SnvL91OkcJ0YuqmSTT4zxUmrRDOva6ED01iFyUZctD ++sNy8bP3hGjRCH/ZK5yHFG8XxbTXCJFR9+vaGD8uet8o27KgVYjyoou0Azdz +0Q3+eRFoFyI7U6HauhVcJG5jG5HXL0QhS2TzV9ZxkDD4JGHBoMFB16J14mwO ++hj/sMeNTYMDySu7ctpbUXlW15+zojTYfFxWVj2d2g86/jZ7IkmDTj/DL1VG +rWhES+zFX6o0CGuPlqx3bEE5wUNPVFdR7Q2I+ebItqAj3MZMLS0auIsZa0X3 +NKNu3/BEU0MaOPx0WG7xTzNqKfjjt8+SBuERh7G3R5pQpvGoeqo7DVbc7Isj +zRrQ4cs8+QxPGuR2/3CN5Ncj+Xd5Urk+NGBFySgfyq5HiUHejPJTNPgUq2Mc +K1mPwir7Pr6/SIPuW/KTsh9q0X7LN4lyD2iQZTzTkbelGsklFsWoZNFg0Yf+ +TRLjVejNl+thmnk0WOlZ86E1tQrZRu7wNymmQWlYmfDeewKZNDfa7K2jgYBr +lfFbohJJ25UxUr7QwGNhWl2zTQni7L3rL7uSDk0PRG+M/52JbK0Clndr0IEr +Na9u2/IAcXW2vUzTpsNdX9qhUacMxKPxxdTW0kElGEptvNJRW+bmR7qWdNjg +OzZ0RCIJdYwPf7Q8RIefnQu2Crd4EN3RZja+d+igNn9r+c+KLMI1QGJc/x4d +wifzO/7RyyE+ug0k8x/QwUDDU3suPZfo0Y8bOJtHh0vhx3dtDs0nejv7Qy+W +04GOZ4hekCskvqjElCa/o0PoZK7m8iclxHDZu5W10gwIkAp51C1TTQSr1vI7 +ZRmQ57+1S9WvmhC9klf9XZ4BphE/UWldNaHhdt5NUp0B48E3meXHawgPoVrS +oXUMuKr+ckPL81rivaU/k+bMAI2Xum3GKg2Ed96e10v3McBxQmqq0aeBmJay +TF91gAGiwmn9k8UNxLIBaTM7TwZE17laLLBsJBwul59K+5cBC0fL8sadmogm +DrvfLJkB1crJO/ZsayGcjUaf2t9mQHdndrTFxRZi4M67cx7pDFgkOdT/V0UL +wfTLk7uSxYABzp/uJM1WAkns3PmhlAEcg+4e79lWghdoqjRSwYCc5AX5N7Q4 +hGuf2i9GNQNYx0ZS7u/jEEFFU1GazQy4FvBE3b6UQzzfdac68B0DFktJM0l3 +LrHpZeS1qx8ZYDYe61sdwyU61P3d7n1mgPpmuw/hhVxibMpipmmIAc03Gq6f +necSFw5qN3YPM0Bkt8LXh4o8QrxZOml0jAGD/it2pG3kEdop3/RlZhlQe4U1 +/z2UR5QzXgu0BAwIu371sVk6j7D2KecgBgYJ7kt2OFXyCC+zWC9PUQxMGmyI +Nj6PmHrw77r/xDFQU7c6ZLiI8siiQ8xrkhiIOHETnVeSREaPYfpzOQx64pd/ +6nWgPPFpqUKEAgYlsYuu8z2oevozP9VRBQN3HX7m8BmSSOtrl1VRx8B5SvYC +7xJJjPcX3RxdjYHS+ocRSTcpj31NkCZ0MLhrcU3TgvJUysCphKsGGNx2y//R +TtX3vwYdJVyNMNB2eWFnXUUSFkOG1zQ3YJBfbzP4gPLBje9LF82YYRDyeci2 +n/LD9x/86EbAYKEccyXrE+Wj4XaRG1YYbLGclRcdJIn4X0WRHlsxkPRXGB2j +fDIwksA0tMVA8VSJWwXlF5OxU2F0ewyi2JihN+Wb2HFHWpsjBoEpxpunKf/0 +8Q3PpTlj8Kgl4l9vykfrJpfOH9uHwfMg2YIKyk/Rv/mBpgcwsLglNzhGxT1T +7VML3DFoiXq8fAEVr5kpOt11BANLI741g/JZ5GwCP/MoBierRRI+Un57P3fq +xGlfDBaMsBemUr7T/eM4YnkSg3MK9G4Tyn+hAsPjkmcwKJ3DDCspH3YIl/7o +DcQgtW2pjQrlRw36hNeTEAy8z2l6HX1HeZDRMRASisFGBaOuJJIk2rBiD9sI +DGK2SvAf1JGEGiuxTy4Kg0QsWi65lCTOsgMODl3B4MoepzK/XMpnC9a6RiZi +4L9ax5J3lSQCRKXeOyVjoLFeymh3CEk0iU04q97GwJ4z8bTOhyT8xYsdqzIw +WE2Pq3PeRBJ1ixNfxT7CABBRFKJPEjISAXZuuRjkofoPV+RIgli61ma2EINr +H4NHvX9Q3peWam56joG1zfmwDa95xJFlE5tvlmFA/vPj5mQJdb/LFlusrcGg +FmXSjS/wiP0Ka018X2GwYUqxaxbjEYWKUqVmbzBgOG3fZt3HJdjKE0Zi7zAw +fROUFktwiXzVYoOsXgzw8uG3s2e4hEBj7eq+EQwq9DbWRLzjEDs1pR495VPr +Lfhgm/6EQ2RqTaidn8Kgkn/OvyycQ+zQLVZaIcTAUxAcxaee9zuGa2V2izNh +R5y00kNfaj/wI45LSDLBfY3K/BfzVoKWZ13LkWbCCuuiDpOFrcRhtUO+lvJM ++K/kmY5eZguhIR1bp6/NBJNj/Ut8yGai+Pegv5g1E3pjy4c5043EwJpTDQ3b +mfCpd1RvU1kjsdxP8FeYAxMOHMpOGwtqJIIGpRqnXajjSvsvj8w0EKhro/yA +JxPSfnwurPhVT7S8SG2uimBCp15FXcqzWmJ+Ul0xOIoJu9umpdx9agmdNYUB +xleZcGu8JiFcqZaIy2lSzE9kwvYty/U+Xq4hdqVOnk7NYEIU3zVGe2c10Rts +p3KmmgkVJTFH1RIqid8I+0/rDxMeB26wLKssJNbN3Z8yprPAiosvr58tIM48 +twiwYrHgF24pL2dcQExqhx13W8SCdJFx94v7nhATsvSD1+RZ8FRJhl2zKpvy +mMCKb84CnTB1VbHVt4jhR7Pi5edYUOn3UNzz/i2k7Z4S0xjGAmwfr6Kz9TY6 +pmAi0hHJgrCCK+aqE3fRz8RA+nAsC15o2l/yVspA30On+Qp3WeBacb0oyj0b +fdv3uyuMYIHzmMOZT+8L0ZfF4/etaWz4sD9gr/y1l2jI/TIpwWSDtqev2wkj +Av0qUZjvwtnQaHv0ViH1/p46YLPLczEb3pqIs/hxVUj06QM8XIENUdWPRU1e +VSN9e+djlWZsKFf/k11sWIeMHgwnhwMb7NhTOYLgOmQyfbHexooNh7/7bE2s +r0OW6U8V3tuwoVOz5XCyUz3aPbrg1e+9bBjr8qoivBtQSFyFkX4gG6bSQuCc +bxMK+7Lz8FQwG+bHpF975DahyPVDsS8vsKFe763eycEmFNcr/c32MhsK9QOk +Zlyb0QN9vxTvm2xQOp195bx5C8oOZzXqp7LBUtpqt8epFpTflcqfSmND/601 +5gezWlDJhSbbyEw23H+spHxjcStqaVMW3n/GhpQ0W9Pm162IVCvVOvqCDW7B +XwuM6BzUcXaHi0ElFZeb3czVpeo9pf8KiDo2mI89Ov04koNG/Tvcu9vZ8Kqt +tfOTJhdN1h2Ny3jLhviR7I/HHbhoVoZeefQDG3h3RGpnznARVq2zbKaPDX8s +vuBsgouWSVxqkh6n5mPlEcmz4KFrxqontv9mQ3GSQdldDx4S2U/IRsyywSfn +5VnVCB6ay5k6OsHA4V5kqIR5DQ8FvEpYqo3jwNi4b3tbDw/9mtKrcBfDYfHB +PW+XzPJQr5XXovalOJiU7V6fpE2iPT7M56IyOESpLvvaaUn56nr6fosVOFwR +j4+p3kMim1IzPEgJBxeVXaZOlM/qerqeFKjh0ND+SDKWqu/NWaddhjRwkJNM ++ds3gUTPtSToyjo4bHFYOMfPIJH+zsfZLgY4FI+VxCsUkSj77LadcUY4yLKM +DwxXkUjl7tfZxg04rPQXaz7AJdHt+tAMoTkOaV4Pt5zuIpH0T3lbYwscou28 +D+n0Ud6TLJvw3YxDzmBx7qXvJMI37L6TaY2DxmB/y8UxyjcHxjf17MBB+6vj +SeUpEs1ExP6SdsTh9n1Pj4NzJDqZp3lzuzMOqvlRJ//3PdmP1w0oYh8Om9x1 +Q6opf3nMHP5WcQCHIKs3p/qpuEdRGDfhjoP50wW7MqnznTenbtD2woE2dlhX +dJ5EbceM+9yP4SCVdXHF4mnKnwnt0an+OJxNkLF5Nk6i2hd+hu0BOBTkd07M +/6C81SvWLRqIQ3b+WfeBfhI9Y2eFW4Tg0NhVPnLiPYl0dax0gkJx2GnkSk8n +SZTl2PumIAIHJ/kli0/Ukkg5KPjcUBQOymoX074+I1FKuswq5VgcWl3trQSZ +JJJqLCZd4qn+5uYyym9Q/pUaVmpKwaFm7WHvVSdJdN4kqlmYhsPbVP+Db90o +7x1cedI4A4d2km+ot5XKx2O32sxcHBw0zhm9l6Hy0THj0/MEh60r2o/qCXmo +ZzZJalkxDidMVGL0v/BQ2xbePxEVONjFj5qa5vDQNt+j4pVVOCgmO27dEsND +NYnskok6HOYU3YyZPjz07PPfIh5cHLLWxTjeUOchXZEPT1Nf4cBMPe3ny+Ch +LN1/97S/wcFeeMLmTzcXpfz3JMeiBwfvwncVm2K5aOl9G8egPhxSVn8vYPzD +RVeaBucKBqh8/zJQDzHhonPSStuVR3AourrxS8FnDpoyrZh04ePg02o+71fE +Qf6HXdLipqj+3J7q8S9y0PfLE5ub5nCoaEm9ZO7IQf//P0nwUvGRc1DmoP8D +642UvQ== + "]]}, + {RGBColor[1, 0.5, 0], Thickness[0.005], Opacity[1.], + LineBox[CompressedData[" +1:eJwU2nc8ld8fAHCbZERSXxFSRqlESUanbNqSUEgqUVmpiOxS9srO3q69Rz6P +de+1N5nZe+/td39/3dd5nfOc53PGcz7v83pd3hemaq8oyMjIqGnJyP7/a5Dh +s3BwQItZxPDKmxYTEebNxS+1S4uNpF0a1igiIk6zlGefNmkxE9WONcZ8IrJ+ +cM0/a5UWY2C7tByQSUSdIlU1s4u0WA4FddBsEhGJsjwkE5yjxTKEMhePRRKR +91K/uMEULba6s/aE1Z+IZluM30eM0WJsHN3mIy5EpJy9Eds9RIvNZ+pdcrck +ong/lx62AVpMyux+w+EXRETxgYXlQQ+p/vS/NsO7RKT7KELJvZMWs17RYY8R +J6ISsfN2+FZajMuoOfsPFxGdYCvMJW+ixWLOObOUURCR5ar8jHQdLYYC/UcT +xgjoYp6uZk4lLTahJ3dKNp6A3H7NeM0DLUb1zPzxniMBTXy0qhYqpcXitcai +sp8RUJS4n2hULi32e4uTn4eBgPbYuY16M2kxnWR9w5FBPNLeSI1kT6PFbq+9 +rc3PwaOjhdUMnvG0WMvg4bWER3hkFqwmR4ymxS4cXxpu5sGjeqt/1pQRtFi2 +sonM2dlq9P361rh1IC2mSTC/Z/y1Gm0WC5e/dqXFJCyTOJB7FVIPK9qIdqbF +aM8d7/dXrUJZNooX++1psciP5caP6KqQsfTzsEdWtFiwbtbLa/aVqP+P/8eb +RrRYwjn21t9PK1AFti3EcZsWe/bk58PCDECnol2fP1aixfhS6pjZqQHZOLIF ++cjRYsrjwQ7BmmXoiuxFKlppWqwZx3HOeLsUJVbqD6wI02L3blvJjJ4vRh54 +ol8DEy0m+/iy5dzTXNQjcCumgJ4WE+WMkrrsnYMEfxZlRdPQYlPDCYanKrJR +9e2U5o/7NNh1i/p5K4EstN/sznRqngZrThbfDJxIRea999xMGmgwcddiRfuy +CIRJE0I0a2iwv71clVY5YYgpAiXLVtNg2a/Fxa9nBKOU5yJE9j80WPK1gfr9 +Uj80OsZCAzgaTND856PAHVuksdjuyOxBg+38lGVasHWHuId3fbdcaTCb69KT +k2d9YDm7OmrEmQYL6Xyu9c3eD7w/5kOBDQ0Wts7kWUYbBAOdF5uiP9NgzEXe +CVFXQ0BYInHA/QMN9t7oSLiEehgQt4P29N7SYJKjSeaXXkQC+7MjjKqGNNi6 +GEPKh6QoePXnB+cVAxos154+xDkoGigcrKXontJgwoa8q/zPYuHB0JLqsgYN +9szqr6f55TiIkDXW7lOjwfpuqHoM7MWBFPVT60xVGsxxuz3st00CuL1u+xGq +SIMZiN2VzRZOhL+E28EusjTYHwEeJ5P2ROAXqko0uUGDHTu+rFtgkQSWbtIF +mpKkerk4/Q+0yVAxk4uXFafBWKreh7v5JQPL3QudwqI0GBzKSx8/mgLP0+PH +2C/SYJ6uyUQL9xRIZz61RnaOBivpCE8/uZUCu2aBVDNnabCyTo7SpmepoNrK +xNbBS4O1PcbG7fJTIVjMlQ+4aLCTaU0YBw0OJgIORJP/o8G0aZ1tAm/jQHz9 +s6z/MRrs29DJqfHvOHB5svjwKwsNNmiWYUdRiIPWwjf6how0GEdKxuOhARzw +cAyZPTxEg/EmiFz4uoOD5OEXzQ7UNJjCx/zVGYY0EE0dvZRJToMVKAWN6x9L +g9IPr73/7VFjWXKUbf1saaAgPTnPtE2N+bI51usdToNGKuN7N9apsYSHMwJT +mzjQbJhJe79Mjc2m37S17cfB0K/3jL/nqTGVPcUYriIcGOsuvKufpsYsDpHn +trjjYIXfvH5nnBrLMN44HPkYB7YLy+fPj1BjOs/U5T3ZcUBTaOmu/Y8am69o +vRrfmAreDuvTP3upMQZ7h/XFr6lwQsVKtaiLGku7pf7X5kwqxLBsJ0+2UWOh +jEGGahUpkBuz90apnlTPZvKXYzQZZN7aEz8RqTEDwtex82+SAS9GLphQRY21 +XAxYxo8kQXcV1QTVH2rs8nV9p/HyRHjh+V3xShE1Vqx4Ot3/TCLMPqZLMMij +xlpbVfk57RNgf/zwq4o0akx4NXmFkzMeXDM8q5aSqTHtYypsBN04OGLFfIY3 +gRqzws6wZIbEAt+hoyP2EdTY/V9riumb0aB8nkNfxpsao2gVq1D+Ew4tK2HY +O3dSfCUmeIaGUNAu5eIJd6XGmqL/Msk1BcP7u7z/tu2pMY+emvv8uADwMxXU +KTSjxuJc9X3/i3KFvhxxLTE1asxlrl+s6589emVbWPjiHjXGz1OT9/3aNzQv +L3nCT5Ua49Q8mVjm7YbIO2W6FmWpsZj5UT/HAj/Evyn/OF2MtJ5spU/Tpn4j +M+lHD4WOUWMSX8RnHkelIM5aoe63LNTYHZ20wKxjOER8QqafzkiNZbo5zG26 +pyHuD2lmYjTUGG1prsZNmUzUmEzrI7NBhR1Z9f+8JpyDhI+XNj7spsJ4YydE +1rYL0d84P42ADiqsaf1xqVBWEXIRNRrobKHCZqin6GVfF6Peu+zzT2upsFBD +XovS+hLk5mLG+LqEChMLYCy79qMMTS6dufPlNxV2Iur2qE1rOQqw32krDaHC +OusPKVzhrkA3GVufHvyiwuajrcySjCtQkKD9WxcvKoy4hsWG7VUgRb1uNy97 +KmyRt/BQOGsVWp7NYG2xocIodx6e4VGvQhFfvocetaLCrubzDB4NqEJrv8RS +gs2oMHkUvSbAXI3i6j1rYvSpMLNul/1TS9XogfbLh2M6VFjdpgC71Fk82p2Q +7BbQpsIyHvzg+PEEjx5RTk7i1KgwCeYgutB8PNr3KTNbuEeFpT1k5lUbwaOU +U782L98m1Q/7feNlIiAKSVm6AjkqbCheXm9Bh4DSCSd8thAVlpt5inXEiYC0 +Hy8cl5amwhiYmzz/kvItzUh1pJ0EFUaRgj9ZhyegLLNwgfIrVNj452HVfFJ+ +frZvkUF5mQqbq6Va/EXK33QeKtcUL1Bhlpfi+V+T8nvufzzwQ4gKi6zWeMhH +yv/PE9cV685SYe+oFThq7xDRfl5hYikvFUZonwraJfkhrOoLXToXFfbcfO1c +zicikmiTNor8jwr7ptSSPe1K8svQfo3PMSrsrp2SZVQgyQuL2DknFirMd2Tp +v9YYImI5cHL/wEiF8WUF537FEVE6o8Lsy0NU2E1Ox5LoHCK6w0l7V4OaCmOO +S2WQKSSi6XM1aUrkpPVkoZi7R/KU63V3put7lNi6wEe6LpKnzijfNT23RYmJ +rh+y6CB5qkKDufnkGiUm29UZq5pFRHqvWkQYlyixcyyLdteSiWj3g7/v/iwl +9o1H/vbvCCIKdXq8vDBJiYXlGBZ89SWia77HHw2NUmJ3tB/+7XEkovbI7pzW +QUrMbJtKqMCUiCzSw9iq+igxAuslt2NPiYj5j87HvL+UmH5fxq0tOSLC1XF3 +JrRTYng99u1X54hItWdIPLiZEnP3OVyhx0REE5OxQT/rKTGL72mHZxYI6DSN +oNa7KkpMbMikuyaVgDC26SIdjBKzoXwvLPidgHT4cBz3Sykxxk+nfl/QJaDg +myJ9l3MpMXNBnQAlWgISv78szZdJiX3RoRk1+otHbTq5v9lwlJjhkvHQvUQ8 +YrKR0NuIpcToZ8+/cbiBR7if2zAZSYlV50/79tPgkUpwKU9PGCn+d98TTzVU +I5e8m8Ol/pSYfaSot/mjarS9oPzKyZkSC1xSvWqqXIWC9+nxH+wpsSH2hhv7 +ZFXoKmMD/ysbSuyl/dTTyoJKZHbu4aTSB0rs4flK71M8lWjspdZbRgNKzMiY +KGDaX46cPpys39elxGyTCxgof5YjHqd+4UVtSuxirZDSZbFypB2pP9+qRok9 +2b3zxt8ZQ83dRubBspRY2sdQqqXzZaj03pfPfKcpsXhLYScNzkIUUKUgqH2K +EttV+KFRol+A3kuydPtwUGLFnuB/LyEfneJPktxnpcT473duGl7IQ/Z7HXt/ +KUn90Z6huCWejWRxl128xiiwa/9tfKDyT0Icp/euVA9RYCWKKlKnOBPRShBx +bKefAiOeKXLpTohHcc56SkadFNikSkMKRUUMon7qSS9PoMBqBm8RDYRCEfHQ +lM9WEgVWeOF+BXeBBYqyz70lEk+B9U81014/oY+s1+yXX0dTYPrqQVKdQdfg +3BC7ensIBbbQEOaxyPQR3Avlj2e4UWBvpg9Q3ilPeHnxCHHsOwVm2RznN1bt +A9JxvVaczhTYn1PSd6wX/WDW26Lnpw0F9i/npJwbTxDcM4z6/fIdBWaiMJuq +MxoB/P1v74W9ocBy5Ds+B2lFwb7atYOWlxRYwQW9hunr0ZBxo/E50qHADlKc +AjtHY+BHbgjLJy3SeE8MMFzJiIXn515V4B5TYOeCvORpLEj5jX2Xj+MeaTwT +qloRg/Ew6U5of6BKga1KUXhf9kiAcnL/b66KFJjoy1c32i8lQuhnXfEyWVJ/ +MvJ1pnWJYDEnNLF6gwI73/Aqb143CVQN1oLOS1Fg2niHMOnpJDjdjSm/uEaK +35LhhuL7ZGirepLSdIkCUy4atlDQToGIEqYreecpMHPd/Ar/+hR4k139J1SA +AltUsdIZuJIKosm2Sg58FJjveoAGm38q7EaKtbzipsA+7qGX/BOpgA+c1r59 +kvT85YUhmss48PGMHhU5ToE5v/JtTTbDgbaLpgn7UQps28JhmCoBB2dsmDd3 +mEjP37hoxNyCg3lzvOMQPWm9X3sYVyzhoPDN18MEGgosw/Ri8Am6NHDSu/IL +R0GB7YvxqzGR/HRHY+aU3z45Fv45NDGa5Cv2uzFJn7fJMVv3409aSf4alNMS +1VknxzSnQhqjt3CQInmkVHaZHPNsVTt/tA8HlpcJCoLz5Bj3Iv/187k4uCFo +18Q4TY4dZZ0wX3TEAR33Va2VMXKslV9u11iB5L9js8N/h8gxx4jPKXH7qRDO +EPuurJ8cszHM20xKS4XXlNrrsd3kWHyz/OFvaqkgsn3E4WcHOdYTYIBTmkuB +7UXCIdMWcuyK2YAKuV0KVE3Y+as3kGNvIl8vV1KlgNfAVS7JGnLMOC9WLdYx +GTQ7ZhO4q8mxXSWK7NzVJJit0C6eLiXHvEXybGv/JEJ+EYt8cyE59n1c5xk5 +WyI4ZBIb8nJJ8bREnWx6ngBsEeJDDjhybDvVnyF+IA4GAuaMXyeRYzEZaZMz +zHGQ5B63ejuOHKsoo19QlIgFaWtWuuPh5FhWxM8hvEk0vFSfv5jmTo6d4RIw +uDofChdvxxf6uZLmh6CGqdQGw+atZ7JWzuRYZtcta8qgQPC4VPtYzoYcq/3Q +ydhF6Qe59Am23cbkWPaL5YuCbx3AjlyHBl6TY03ztXva3z6B8uZRn7gX5JiS +L31dB80b6BtzjDXVJseev6U1Pf6fAaIq16mlViXHgmPoXkU9dkePPx87ISpE +Wq+zr5RlJ2OQrBhv7bmz5FhjrNJMkHkcurggbMvHS47VHeWYF9mLR3SG8oNs +/5Fj5jf4bl3lSEbFGh+SNuhI639okZj5MgOdEm+R+DNJhpFZMHFzU+Qj+uW+ +6bxRMuzx6ibuYm0+2kibDE8fJMNiOjzT3vgWoOazZORRf8mwz8cDXP9xFiGn +Y5dqnIhk2F1Va/8vZ0rR+KqHlnISGWanSBXGMY+h1szgw7fiyDC16085DeTL +EbyL+3M9igxjyI7JfRxSjoJHS3jPB5NhDlxNUlSoAqm2T08x/iDDzkwMF/FY +VSJxn/UwGhcyLCG8MEKtohLx3aG4d2BPhhlOf2+tpa9Cu5X/ZS9+JsW/VMiu +H1iFMnKUv7QZkmGnV3rttgKrUbipunC9ARl2XaHZVKS1Gv04/3ygSo8Mu/GR +i/vpYTx6EftZNv8JGWbMvaH05jMe3dNzXk1/RIaJX13vuZ6CR1InvRMS75Nh +5zj+6vf34BGbfwJ9iBIZZq1oftX2KgGR3c8u9ZUjw/aE/B4b6RHQHH2ZiRsi +w2jiolgZXAmoB1/D4yxFhi0v/7iuiyMgvFNHq8010ng+TKxoNRFQ9o0hF0sx +MuxAd5m4RcrXkduz4u8vkWGCo+oREqR87pG/OfnqPBlGsNkpZCHleysLqjBd +ATIs6XHLHweSB6J+/fc7nI+MdP9TszmkRUSEwouRPdxkWHd8F63FOyKa75WL +PsFJhl02vwAFX4mI/UAzVuMEGaZS7an014OIbpw2iQ9gI8NcNxZ8W0KI6JWC +c2LrETLs+78HPdFxpPe/CU4+wkiGcTxdTFRKI3nOPS313iEyjO6XS0M5yVN9 +6RVpHtRk2CNqAyNmkqcoW7syasnJMFrByLFLJE89nu42YNk9gNDRU5unSeU4 +Eao3nqsHYBgbFzNZQEQrny6+OzR3ADFHmkQdSf3J/tE0+zZ2AHXuTLJzJL/5 +Ujpbkg8cAIeiT94FUjyDKmlWXzsPIIKFu0yOFO8lny7brcYDMB/f6hIhjceu +k9zxI+EAPp2Oql23JaIGTuFvS3AA3e7+SUFviYjTQOPn+8IDqOc60nRMk4je +Jjt4TmUewOmUorEPskRUvJDi+yr5APi00UAuab41bQ9CdEIPYIPeIHV2lYAS +K4Qiuv0OADdQ2zLdSUDrdOoxj91J77OKte3JJ6CAX0kpd20PgLNP+GSUGQGN +9Lam11gegOdO7G97VQISPb2XrfD+AIo86zCD0wTUlP6wREaXND/OXJQP6vHo +1JoNFGkcgIDejW6DCDx6J5VQefX+AUhZvSz1N8EjeuJ23YWbB/D4MfWy/iE8 +UhyK7eM6Tep/r5zdTqga/RJoHAzhOIDUjp+24nNVaPT95uixowfAJWk8opBR +hZy278wxUh1A5RmRePeLVajs6Pre3tg+jL3czsJxVCJGbR6KLwP7UHbRXepY +awV6FqVKs965Dy/CCs6e+lGBtoUjmeYJ+7Acoex1fbEciSsqcw8k70Ofj1Fa +SRaG0q1Cb5a934eh5OdPxWhL0SAWth70ah+aXIh4RoUSxHroN85cZx9og99e +0nAsRp9DIk+cvbsPonfGvqSvFaKbxXGL7sL7IENuZrzRnIfadtKjtGb2gLCr +X2TZl45o5DM1xEb2IOaWWxqZfBqS8MhiYOzdAyYXlt0PuFQUzplrhdXuQZj1 +8JNjjknotUzRA4GUPbDjzBB5cjMGbdpVkq292QP/iNfSUtd/onOEqvzG53vg +a76piv/hjJ4x498lae6BGf/wLbYuG1QeSfz7VHkPlM1jOFwtniA3rCGzQmAP +Ct9qnG/ed4RSuqbX4dx7cBrnf/nY3ndYeNDM+en4HijW5Zk+GnIH9aHWH0K0 +e0D7yFfgPs4PuCj+PvcZ3wWC0cBQ3acweKDazW48sAtvaDF+beff4OTXUy/X +uQuyn+gHKBwiYfx0v8RG9S7EfNBSE4mLhhNvB+ab/+yC9Vq/7p+fMXA7519c +St4uFO8nFpe+joVMueEjuvG7UFjy7N53mngYdh/BX/u9C0o42j3Gmnhgax+1 +Zfm1C+Tap1acnBJAkXNcdMZjF6ZmBJwJoolg/XJissplF4K+cFpBdyLgcJMR +Eba7cCF48r8Hn5NgYHVK3cpyF1omci4/P5wMst9msfMvd8EEUX+PZk+B6TCy +4z7PdsFWOfIm4/cU8Mtme7+qTnpfv+/XidkUkKwRrNS8uws4saxR3tupMPJP ++r8/CrtQZFX6MCMqFTzWH5jy3tiFkj3RTue5VLjC+Kr6m/guFEjvFweQPNXH +Z31y+uIuUL5edPz7Dgcukp7m9wR2oevB8QnFSBwIP4wmZHPvwnX/kaG/RBy0 +G+ZxHT+xC9xRfAk/pnBga1fzwebILuAJrXEPydPgzK/+mn90uyCwWeIhciQN +6lOXuOXJd8FNeFGVjz0NLCuoPyVt7cA7myOHhY6mAWf3f/UMyzuwkf32mixt +GlQvXDhtPr0DH78tWJkt48CERtaqY3gHRpXm8vPbccDOpdF4vXcHBuWz2f9L +x0GZmPGZiLYd4C9e2Q63w8FrVbsvFPU7UOjFRKmiiAMmfb/m11U7QDnCQX+W +Ggf5nxP460p3wC6g7axkSSroehXbXsrbgcdDD+P93qQCTXxjq3/aDshq/WaW +ZEyF9JJhwc34Hfh3+8hpmeQU0Ghdt3sWsQNk8z6NydIpsD9J34EF7kDyl8jr +3oRkSDw4df6s9w4MeV0v3FNJhgfsYo4/XXfgJKN/A01VEmwKK3XN2e8A1h8n ++OdqEihrmzrnm+3AmMGwuBNZIiyaOXdzGO1ATnQgfalWAgS7Bl2y198Bos0R +va2UeJjKhV4lNVJ9AP/poatx4FfXdhmnugM+BZ9CwDQWJIcnXI/I7UDBx+yw +QzEx4MZ85Eq32A701VUyqi9GgSj/GTcZ4R2YfWS27cMQBT3SEoPRZ3bgk40n +/qVcBJwzfu5hfGwHlK4LqN01CYW6qszRnfVtMMqyXL1z1g8se6skny9sg/uw +62/FCW/gXP7rUzWxDZpCb6/TvHOHd9zkMp5/t2F21sbologTMHx5+OtU8TYw +bQQv00XLo3uXlhVufd2GEPIPHBxdv5BUc8Zs3cdtWBf6HaTnG4wEzd/7a5hs +AyMTI1n+wzBEmTM5+FZvGyj2/YI9zaNQofg/m8BbpHL9w+t83AmI90Z91gz1 +NugkRbAcHcxETP9+an7a34KXHp84XMKy0K690gHZxhb8YLqxtqCRjTrLK+6w +T25BeYxA8qOGHOSmUDRxs3YL0n1WX3nm5aPVOwlcgV5bwJqo6HtCtxQNzRlU +8bhuQeHP9Xkfxj+o0Yv3bar9FlRnWL2yKfmDkpvDCzGzLWDwcwpSYQWkq+7/ +aEZtC3LkiZ8T2jF0e+3B9sfbW5B6y0pl5kw5kghkiiaT3wI91oDHzJbl6Ojf +n/PHrm5B75fTXbVMFYj41OHnzeOk9jyMqYtXKlHeroxIHfMWDIkkfWS2qUQx +v3c6H9Ntgdcc+f0/UIm+/vt05u3WJlg/MveKlq9Cxg5X6taWNknnSdYZvEsV +0uRdNneY3oRXQsbCGpVVSNTgPfzq3YS0uAnpIKlqxE11/jVP+yYwVX4SkPhY +jRjiJxlS6zch9qWkypm0ajQ+bqCN/dmE5PFAC+w4HrW58pLfzt+El1F8Ii9U +8QgT/JfYkb4JYn35fqI2eBRmrL02HbkJayM22gpdpHzLuHC3LWgTLi41Xmeh +ISDpTOeEEu9NuKAakhgmSkCMj04cxLpuQrhxdnj/MwIaWMM98bDfBMr0cybN +LgSUHnwr0/LzJiTFaTa+TyEge6lOOh3TTZDP6mrIaCAgHseDogt6m3CF+1Tt +YUYiWuQLYGV/sgmV9YGEk0JEVI4XfLt/bxMsdzUMS0ke8TP6UzmuuAnprZci +pki+e8Ggxtl0YxN2y5cqI02ISDRj3LJAfBPcZMkCeh1I/lKzaYi8uAkm7R0X +Qn2IqH2Vmf8H/yb0XrU61v2b5K+gODuzU5vQXNonFphERJaS17s02Tdhp0K6 +qymTiBT6Gy7dYtoEmhPaOS75JC86vPghRLMJHu9zhnKKiGj89MYgy/4G3M9P +GnpG8lx+tfv17bUNcDP3DrYn+c/1DY/f8NwGhAzmP+TMJfnpcN507dgGmJ95 +ViZG8qNguopcTv8GhCl6reFjiWjzwUBYWMcGlItQWHYFEVHNisWqc8MG/BfW +edLwJxGFBtLefVe9AY+2lK5YWRGR8fXwePU/GzD/Qd2I8RURSfWJ7EvnbQDX +zv06oftExGBfrXE2bQPQtzeNzeIkn/JqZzDGb4CtO4cqDScRpVXN066Hb0Bg +7y+rxn0CsjN0fj4QsAGCnazrF/4R0D36E0V4jw1IunoCE/pDQIv3bxkH2W6A +AmcgC4MFAWHLHRX2lhsgG3vrw74yAfn+Mj755t0G0DbstsVxkXzX618v8WwD +Oj8GqgpheERhJ3iWV30DWt09eNi9SPuR58/XQ3c2YCvq/Yd2LTyyfD1+sUdq +A1jpjw6PT1ej/CUJX5uTGxDzvrRVd7UKfQ9omDI4ShpfZfLhlqwq9OTaC9k7 +hzdgUrl0Qu99Fdq0dV/h3FkHTvSY5mCgEknSDTwu61mHmCdtV5zTKhCccuYg +D12HCvaAJ44UGKLxOXfU0m8dFHTO5dE/BXSHvPXwhNs6WDilTgtllKG/Izx7 +9TbrYJpMG8Sg9gctJ5X9C9ZZB3m/0JO034oRv9h2nAjvOrimSqT+ystF7+Ki +f8f+tw6qBUU8gZs5KOeYSiA76zqcUrIXuCGVg25uBrnuUqyDrsaTvVnIQlp/ +rhoTR9dAuvlg+IZ/GvJQMr/0PGkNJpS02Lmno1Fr4QnBtihSuaE3yvBrFPrv +HMajGLIGUvMzF8z4I1ACAzOrsNsaHHYR7DbxCkZYC2514+0aSBrTGHFruiMa +OfU545dr0JWgb590+Du6m7sz1v9sDQQvjCVrNTmgnkDVrsq7a3BNYD9fRdAY +rTydLPK+tAYaZ5WfC6MvINngnU0huEbKQ3QfLnc5gsONa6kfedZgkal1WMj6 +OzDwfg9/yrIGfcvrscnW3sA/zmcvsLIKj/INeWcvBMO7J3WfQ2dW4dfZaO6I +c6GQQ7QwYxxdhXRLhws8HOFwM7Vcf6Wd1D6hgPZ7cyRom+nJQ/4q7JnyeMyr +xILLSP+8d/oqNCgaj97liYN0jWchzxNWQX2GbKx2Lg7IZbTmyQNXYflFVELo ++wQ4l9kV3Oq5Ci/lCz9kcCeCOp+GXOy3VVA7LnX4NTERkg49Cpb/uAp1n4JE +7+4lQatti+yx96tgmDQydvtnMuwu3J8be7kKUVYe2T8OpwC/QWNQ/rNV+O/N +gN+8cwrc77wj66q+Cp2mf44bL6eAlUrd7JM7q2ByhPh2SiMVYkpVggTlV0FT +RkLjWVYq1F8i3tqSWoXzGY4yueQ4WI9RnK0RW4WYi2lCo0o44GGvDgw9vwo/ +rM3wg844UP0pd+st3yq0v6F4FZWHI5175TNSJ1chgTF1j6MfB79NbwYyHCXF +48J8WXUbB/jhspv99KT4Fa+rCDGmweJjmZk0ilU43KkpmXcsDThqSn7Zba/A +tTC52FmS1+SlJW/eX16BD+O4hiaS10wyCqe5p1fgzGGO9OdLOAg+fe3X4tAK +TAf4jsQ046DiVx4q716ByTjqgrB4HMzQXZn2bVmBbS9rDjUzHLDZZge8qFkB +057hxEYRHNxYEEFi5SvA214deXIiFd68yJiiLFoBhxnPCXn/VPDruBDQnrkC +X7hjaDWvpkKpMu5GfNIKHKu5KvSyIQXGS85NfYxaAQuezqNfnqbAkUvJ/orB +K2BNun3i/iXD9RiBG8d9VuDV+0wjJu1keHEsYXLCdQVWeDle5NcmgcePM/6F +9itwiULqWsnlJBg04Z3UMl2Bz5MrpMtnAtAPR/qdM1wBqyJ2x7ULCXDl8SmZ +Hd0VwKneP2RpGg+uUif9wu+tQE6y2oFSVyxcpDsm/e/CCkSgt92UN6JA08Z/ +POPsCgRKxYc8/RYBTvMsvg5cKxDtcGjJ1i4cOtqZxnkZV4B5D1ysbwWDbTSd +z8vZZeBniFKUE/SCBDZXyaujy/DjU7fx+ds/odmVeoy6bxmEaDRjPjxygTMm +FJKJdcvwkHyFq+SiJdRJ7o5MpSzD6bmeuJmNT0hS4sy/wZhlkBDyrL2364CS +rt7p6QpdhrEIzqVS7+/ou0h4c7XbMtjRhPReXPdBsvzSf6KNlyFSbkl9ICsc +FbLYBmqdW4YOGb+XOxEpSIA5zvfB6WUoeH8u+agIDgUy1HsocSwDd0thxbWK +NPSBltP5Kj2p/et1d3XLTHRxr8SUZXoJNqxjPySH5aC4yR3lmuQl6L38duBL +axE6Os4nj0UvQeVQTndJQDFyGrmNCkKWYGvQ+oPv4xKkNxB2Nf7nEqRXypc7 +tZYijnap045GSyD21WBYIR/QzxYDLiv9JRjIybm5dQVDm43uJ0y1lmBdbqEo +3hNDnTW9TDoqSyA6qiesKlWOfMFmR0JoCZqnZK7e/l6ByP7Erl/iXYI1fVrs +aUcFMimuW+L/bwkeH53o6T5die7knZxkO7QECSf7iPOFlagkW27kMPkSBFWt +ypqQV6FzmW8HKLYWweJkfYSwchWiSy1pX5xcBHLBQRnJ5ir0OWmkaWJwET4E +NGlYspB8FX+4buDvIthRXiSrfFCNKqOeltcTF+HC5xdzn2qqkV3gTlpS0iL4 +9sctS8Tg0YsX4irnohfhi2RTX28THildNB9NDVmEWiP1pcAdPDqCH+fIcFuE +i7JXL9+4S0Brvrz5Is6LIBgo/YD7AwH16Dx7mG2zCKMVlk4UQQQUu9bimvdu +EVK867dK/hLQj3IGvmuvFsFE7In2z3UCeuepVFaoswi6GCeNEisRPdRy0pLU +WAS/2GvSS+eJSPzsn9WSe4tgypvq7CJHRBxLG94ySotgFtGbuqdJRAeloucB +LcJprr16rXdENPrjPf6mxCLsDH1WDvxKRET1JP0KkUX4ekmuJtOD5AmekV05 +IdLzTOLyiSEkr81yBVfzLoLY8Xubn+OI6FOhppgSxyIQRGdNeEn+eeri30hk +XYRhVVrbmBwiuvmg0Uj18CLUDavf2C4gojOch6jrKReh18+QW5DkK9Zm15th +mwuADCrbzpPKvYZ7nyKmFsCSYlKbmuStuAOLtOieBcjufHCQS+rPJGhyJK5u +AeinjTWkSO+7dkmXI6l0AUyzHW6GkOIhI7Q9SE1bgKLCsMkmUry1uiqu6REL +4Hv6WdUgaTz+62V/srwXIPUM3r+BNN5nXldWcx0WgO8ltX4waT74+VPOFZov +QNR9fgc5kkcX/3Drl7xYAGrraq8W0nwWPf4VVPZogbRLcz8oCBOR0xx9Y7n8 +AtzcCtKNIa3HnW8OVNVXF8AIWRJmSOt1jGtdksi/AJqnJE3OdpM8nfvWvO74 +AlxxldV+VERA5qMaAy1b8+BzIOn4m7QfJG3r2Tqm54HndvO5StJ+oWKTvf23 +dx4KhlLXFs4SUKDchcKBP/PwxQCHWTbjUWkMpd+M4zycrRh0amXCo2+S1sR5 +i3kYEVxO6uyuRvda5/eXDOYh8Si7HFtsNRoi73m7qTAPfG5COVoi1YhGP1OB +mn4eflpgUTPiVah586wt3c4cqFI0NAatVqIQn7Dsw7Nz0Ku7ewIyK5Ew9p2b +tXEOZJht52LPVKKH3Dpbp/zmICdQY79tpxwNFzv49zvOwSmrQzY1ieXIQiPu +Qrj5HHSfNhd/pFaO/Dxn9P97OAc9fAb02rEYat2xrj16ZA4Ipyq+2b0vQ2p/ +A8PovGbhiQPXcpReIRr+UHyV8HUWWtnaFhODCpAF80DTt/ezcBOXNJ3bmI/8 +FM9SUd6dBYf7MPxcMg+15ua82zs8C1QdnsOuh7ORmm+zzPLPGfCuKeGffpGI +hoVXuzKtZ8DYn8ePojUeWRCPW5gazUBo7scvInJxyO9AN2FWeQZU7i7crRUm +ee39HNME7Qw8ZO/LDVMKRC8OsSTHb0zDMPsl4b/q/mg57orcy4lpCDCROnvK +2Aex9tl8HsJPw6srck9v6XxDaqr0g73fpoGgduWQ2voVGB678CX04zTwQZYK +Y4MhWDg+ZNN6NQ2b0QSTe/c/gV9hsHKn/DQQJy4uhil9g1Z+gaxmymnA2h98 +OuAPgBcVqre9V6bgUd752umXgbCsYzJ2d2QKghqeGwsGBAPrr7z/6iqmgGbQ +a1yiOhweUco7VTtOwQ2XXHrFKzHQKOX5LMRiCmJxpcwq1LGgatkp/t5gCiwI +d5xaGmNBduzNDJvCFLhJ1K9S3o6HMq7s6smrU2CNvyVtvRcPkho7kaX8U0B2 +PcyVPikBRAme6i/ppiBAICeZbywR0g86L0psTcK88air/eckOCfBc4hhehKK +D23aRZInQ4KZ0ci/nkkQCsswNHNOBt7k7D85dZMQfhu7NbibDOFDO0GupZOQ +P/hQfOB9CpzgULB4mjYJ9+3UQ7U7UyBAzevOpYhJ6OrGLSqKp8IR9y5+Su9J +8PUSn/3lmQoelTzkXfaTcON2uLlUXyrQ7Rr1pphNgmEwdYjwaRy4XMnJs9Of +hJ3tkAw9PRwcvNv1VlObhEM3uiXq/XHwJV7BmF9uEp7lEBeMgeS7fi/5bbFJ ++HdrjXB1GAcW7H9PNZ6ZBHMu1XmBXRzM3+Pdij42CU70pTUyJK8Zuxq3faSZ +hNljNTuWJK+NQ06aysYEnMmof17PlgYvNndduSYnQPA/wSPyh9OgX0TxxdLf +CbARRs/6//9/MCNv6eqaCfhnrNIaSvJhe/Rf9pDiCZg23rjuUISDBz28S+9S +J8A0aTbAzwMH9axv626GTwBTPeOpvxo4UL6dG8/mOQGxTrHKmidwUOW8Zz/5 +dQKeU6rByZZUuFmqqF1qMgHkRmMvhB1ToWTV+4qP3gTs0q0o/xJMBfEL3Uwv +H0wA99b94heEFMh+dXrq2q0JcNh+djlGJwVSOnN//zs9AfTFBjQ5ZsnAz7z/ +OefoBNzcvYLi55IgRklJzZVqAp7Sd128/SIJQgq7aS6Nj4MoPiaaTCwR2JZO +D1F0jYN1n4SYpHcC+Ai9K+kkjINQRKyfzUg8/AjdN7VLHgcNG91jnyzjgKpN +SVUtdBwubptxvciKBYfDvmf43ceBS74xr2Q8Bj7b8nU3vBsH5RuOtEJS0fBa +V1mWS2QcGInyQXacYTAc6Mu5xDMOz2LQIp4vBHSbetarWMaB//oKzyhXEDy+ ++T713coYvA4lYyub8QP5035spfljEPYyrNBi1hm+6/5Uu50wBmc0q0XfJnyF +mlAHn55fY0Cb39ZKuiLDvaOmDFuWY6Dz2BYnjN1EmlR3qMTFxqD486oCeu+K +3o5Tr2ZkjAKNsWLx13/RyC/Fui02aQQ8fZujXpTkofZxMxax4BGwyGYMqXDN +R8f53tyvcB2BjJDR4/cfFaDwMI26wdcjkBCOv2U0UYgSPMQquc6OgOvMo0eM +ZKVokniOPI1tBOy4/2FSFaXoPPVpJE01AmlTbSf9nf6gzK9HSrRHhqG/tS8J +7ZWhYpO57KDoYXhU6CsbPoOh3ZTRRX7fYZiqZ3+dIleO0ETvxXyHYXgy1Viu +HlqOqvRqU9r1hoFv486cglwFanyQGMNyahhmKF3vnXKqREc8IwajGIdBOCJ4 +3KehEj2q+XVKZG8IjEvFJq4er0J/b7mE3usbgpPaotYTcVVoSFTfzz10CExM +vv/EJVWjdOdUc0O3IaDma1Z5MVKNvrSvPZD7MgS6g2mPaDnx6OgnN+YdrSEY +8/h2aPc7Hg3i2+c7VYbgIaXlrGQRHuGOczdmXx8C23nHn0pTeKRQlONh/N8Q +aIoU8+JkCYiVfv+t4qEhuK9teWz9LSn/aivfPr01CEk3o/OX/AgoJdXv3P7k +ILwsZpsILiCgz7t9h3r+DkLaKZnxMVK+lr8rMJVHHIQ4XXq1ti0COhJhTvQt +HIT/VPECz44TUd98SeL7JFL7/v4qG1EiSkY0rirBg/D+S9jEhdskH/k8eH32 +xyB0TbVkmOgTkexQqAK51SC8OWoVKfmRiJhEx870Gw7C5dtXw7y+k/zjdImq +6MkgpPINTBv+IqKkNuuRAKVBqEsful4VTUSWZ6oqzK4NQi5XYlB0KslXH5li +7ggMQltG7+f9bCJixGs6Ch4fBKexzOxukrd62GOfU9EOgtYs/TdRkq/uNPXY +Y3P/oE0m0oeOVB4zM71h1fAPPN5S9j0ltbdjpdq7lPYPktlxrcKk/o7nBpdM +ePyDDtY+edsUIsp8fOFL5Lt/8F+Bs+HtKCJS2SiXeHLnH2zqH2kP8yei4WCN +DSbhf2AjIfzD1IWIbCRn8vCH/0GTkMkY0YKI2PrsLe1mBoB0qmam6JJ8+ZVN +TLxuAKzesR49oUxEitzJS3MpAzDjGBTIdomI/mEymfFuA3CH2UYw7igRWb1o +NdExHoDffrzH69ZI6xe/M1MvNABRO8YCy9kEJKfkk+JyaAD+leXidz0JqG/y +jJH0VD+MFBqV5rwmICbhe+OpSf3QkTSUiVgIKLFhOM7gRz/sfGg4cXoEj26a +fjY4+aYfhDSeJtZl45FFdtSgm0A/SG5bT/rdxqPD6lcjZWn7Id+RuRFjw6O4 +tRqd7fE+eNxdLdPZW406JVZ6jBL6QP0RRU2vQTWSBIUO5bN9QFbGn6/3rAq1 +Pe/xJ6Pug5IrK8Udx6rQOwpTtcLRXvjP09LKmfT9RCgENwnE9YKtaHZNzrVK +RFk/XUPD1wvpbk2a+ZvlyDKxlm6KqhfQPk6lL6UcjTqlKNWN98CjmzIpNU/L +UfV142rvlB7Q+3HAzl+MIdfEKeyEaA+8cNzASbWXocPOkwXnbnWDQ/99bWtZ +0v1Ocjz+nl4XcC64xX07nIpcjuFHRW51wfHzLfTOAclodTGe7yhfF9TfWqvG +n0pCHYmvorvGO0Hr2KT43LV4FHRsLPy5SSccGlqW/EIViU4ujfhbfO2AxVjL +a29+OCGP+spWdb0OWCja+qeY/wXtJsayXLvVAcF7h/Vk7MxQv66B9w5VB1yR +F2AR4r8DkfXDbi4e7dDuy26g9dcFjiRV1Lw2aYc+j6wXsW9+goNzDJ3Kg3bA +WW/P6A97gr7ki++MbO3gZyQ9Ma7kD3xJQ46BYW3wOc/WhFY/DHjcuX4sfGkD +5pdbLsdMf8MpEy0vZe02+F7a0iL2PhI4rrSEbp9og6nWANqL4dFw4jhj9KPN +VpD18jn0yikG2LeVE3FdrdBjlK9I9zwWWDEsRzewFa5xFzvSkMfDkdjdooKP +rYA1qXucqooHpu8S2JHHrSB54tE6p10CMBhZ4o2utILTxM7wyMVEoL+TWV9x +tBXO7hotanQmAt2l2daTKy1g85lD+qllEtCwCnZbtrZA1bCMYRddMpD/jRzj +922BJgs19262FNgv7p2xN2uBaVd/2yseKbD7+/jy3/stcJixWT5rKwW2HR5t +Xr7UAmHnBu/f0EmFTQPvfTemFpgboIqpy0+FdcU6qtG5ZlhbtOpRpcHBqhDt +YZmGZvg+AVczbuNgmUGOJRDXDNHx2d5z33GwuGB3fMG9GeCJyqvdApJ3Wou5 +lN82g+2b051tAziYzVvni1ZthmUZfPz7HRxMB4ue2xZqhjn3ROlqkocmbUxE +Hh1qBkaWwaQukofq/6i/12xpAuGY5IjYo2lAdK63pvdpgq8m/lZCtGlQpSL/ +vfReE/z6+OHa20UcAHOpnwljExBE2JzeNeGguEMskqe+EVS/RsSJxuEgPyw1 +tdWtEb7+A+8qExxk6/MVuqg0wrdbnl3nLuEgXSCsSpyuEUSfnc42HUuFlDnW +lkl8A2SR769F+KZCQo5bf+i3BjjidfIEXiwVYqwppu/IN8CHuhqh1boUiEBf +1vcpGoAiFnVe106BUOpliqzyeojZm9dLHkiGwDojZgOHesBkA39raCWD5xMt +QcJeHYyWTuiXX06CH1wtV6xL64CVJlon3TsRXEaUb523qQPRupaFa6MJYGsq +oe29WQunZiYsfMzjwepq5utbBbXwI8Z8PDQlDix3BD6sfKwFI58Ls4U9sfDW +9bjHk5UakLCXDcnniQHtyPU/3PNEAIMOk/fe4aDxyqS2BUeExAE319gvoaB2 +frzT+S0RUtIPqxpoBINKQcfCxCQBHg2Uqg0P+oNEUy5v5ggeNK/XpAgFu8AI +XeXFggQ8nK8cq6assgcv2RapMiM8bLRPeZ0T/gQjeXOP6xeqIYb7RenBlhx4 +hfO7Te5Uwajz5nlJdWc0YhS8zMNWCb8emj5NLopEXIc2v/P9LIOa8lbDy+U5 +yMKWLfoycxkUhPhzsTrkIuKCSAn69Qdokxyqvt3IQxadRgtPo0tB2ltZq6Qo +HxFje58EFBXDiC5X2ZeEImR5AwSpp/Mh6ZfKrwBZQLVZvbJHzfLhDxv9S6N5 +QNxnN5/xrudBlIsz8eQdDNUevuwrQ5EHYTLuUZnLGOLujtn6yJEDp894r2Vd +rkCWd+CoS1Q2iDY97pWxq0C10HvBjz8b6kcmBt/WkOoT2F6ki2bBTONxQ5en +lShgguFXw690AFH+L57vq9Ag++eBnIQ0cK9S3mrEVaHzikMCoaTvxOMH55GP +01WoIi6v+HV3CrjoPmdpfF6NmNq5qe5OJ0Pwt/tHzEOqkTal212xnSTYlmNt +1WyuRkv6uoMHnIngvZB0v1sCj6R9iULjFxJg61HNroExHv3ARD/U34iHn48l +Hx4PxSMeblqaENK5pHGs5NvACh69u2d+3948Bm4y8qqNcxFQwdfe4FdO0aC2 +yRe1r0BAvwv1nrxUjgQ+HRPz2z4EdOX4lWkR498gF8m8/pGUP+s/0n3dcw+D +qgAtst+tBGTQ3sdcmxYCJTqsMqWLBLQtmhUT2BQEVw1nI5oYiMjP99tVg6Vf +4LbKotfGT0RCi1rES0cDYOJC4l7lDSLC7l18unvFD2pjZGUj1IlIM41inqjh +AweXnknrvSGigePp5OeXPOCJZLYc1ReSXzo0BKqu/AQrkfhNt59EJO13cEfH +6hvoK/2UXwokIuP7SRbrJY6Q+3pe62oMEV3+L0aE+8AGhKUGch+TPOTlv2Lz +8LslZL8+cvIhyS+dJ928aE8agySBLZyf5BseXm3Vv2oakNf4wbejiIhwHfa8 +X27dQJ4TVRE6JA/tUHum1Ra9QHvDxVllhUQURffxcE6HGUKm/BRbuUQk58WH +OdyzQp9+zbMwZhDR+NFWy3sEe3T75gFuJ4GIqu5gbExRzuhnw4Wp6nAiCvQ+ +vmD5zBUZph/lf+9DRIatJjW9J9xR1sl/DCuORCRxDB8r2+GFBkf+89EyJyJq +HBO0K/uis09fz8SQfGRyV1KYTsAfXf0kGtuiQhrP/KsQKepfSJpD32WS5E3k +40tjOhKIctOmYqf/I3nx8p8PMeXBaG39vW7vPgFZW7LdO2QXjh6YunwJqiCg +4WM3S6SfRaA8hXcbxtEEFN97lU2CKwoRVkfkZexIPvqq7/h2Jxr168Q4L10m +oIq7G9e+Tceg/nuqhf10BPTplOd8RHcsQidGZPv78egfFD5tLYhHllh52QUn +PArwucc6m5CAtq/pU7s/xCNl/VEidWAi+kG2q8rGjUeZFEfEr1smI68GQwl8 +bjVyUjA8EiWShugqLf9Y1lWh+m5OD8or6cjyt1Pob9cqdMykldbwWgbqFyYT +nrxVhdTrIg7YIzNRheReD1NWJRpfObTRH5+NxtiqJaa+VCB6hcGxtzn56IFa +un6FN6CLzCWxXFcLkPO/7+t1XWXoUfcv/ab8AjSt4ENZwFWGwt/f7hctLkTH +3JrTEmNL0aXA/PYtrBj5iCccRWFFSH3Co9K1sQyN6AmvvFPPQVZZho7XHwCa +aqyJmP2RjX7byKKZFkCEm08Cb/7JQiu0tjqJxhjif8j0avxsJpIOv9xNb1KO +rs45a+itJaOmqvDmFstKRDHzoC9RIgwNC7llpORVohF5r+k0qWC06vXZy3m9 +EqVSthBmFH6hE1pqd65aVSEZ+y9ne0e80Is5WmKwTTU6Rx0XoNtmhlaPfQA9 +JwL67zoHn5yED2jS1v4eKSOgKJl0S8VXflCyyWNruENAJd0HNDzfA8Cpt1HC +1JKI8rO/CZ+PCYax+rPHVzKJiCH6dm5deCgol9mufZojonvtS9Y8buHAHH0u +2+51DRK+tKA4yxUFFn6OPhSxNShjOau07yAKOp3/mnz/V4OU96I24nqiIfz1 +9/NemrXo+J2v7ApfYoFMs/8Q669axPDmeNrIjTgwULky+aulFrHNc32a2ImD +c8LDcb9V61Dw0QSLAt0E8OK67szrWofcpcVK1KgSYYnJRz++sg6tGFMYLkUn +gjrZBBIiq0eMNSvFX68lQeGSzKk06XpkI157YqQqCU6OBOyKWNejx3sUFEyq +yWDXPtOTm1eP7vV945jFJ4NCQUhQ6cUG5AVnztglpkBS0uLHm28bkNGt09xH +D6cCQ6iSelViAwoIM9fnep0Kpu4RosqjDeiFQo+OT2EqtNquHannaUR83Nr5 +zylwIG5yZ+G+TiNKjs+XcZHDQYhebENbSCNq5BndXLLBwe6D7dQnnY2II0yW +JyYVB89lH7r1sjYhz8+ZPF6tOKgSS3qjd78J9dhZhGeSvCNw9kBxxL0JgfzS +W2qaNHBj1zhrSGxC1HW3I36ypsGGc6fjR4pmRHsPrKXY0yBpl9y8gKcZfREe +teFgSQPtjxeeb91oRrtDoCVAmQYM85r3pXSaETUr7sBgFgdlr11ufLVpRqEJ +rL5t9Tgw+5dxAUKa0QWGA8MvJE/xavZykhc2o54QFzbdDzhobaZhkOtsRopS +20+/XceBi4rojstqMzrz+bDE5noqiFfoTONZW5D6SkQHpKbCpOTPbrrLLejN +bz//8SepEJqTS1S934Lk4+6SW+2kwG3hwQKP9y1I4qNgv0Mgya9xhxMb3VvQ +wmoKK7NQCqRzXQs8ktKCDolGF17OSQZWZi/LgPEWZBlSY/spPQmqXIsMOqla +0Ty7gWcpdxJ8JBtTO8HXimRkVOcHfiTC3yWpy+F6rchGTn+RQS4B3IwNeQa+ +tiJbi1tfFQLiQXrEj5knvBWVfog4n9sfB5HtU3Oxf1uRcnlrSohWLLwuCEpJ +fdiGGCPbZ5mXIsFN0LD1k0UbsrhXSL+9+hvSQ8S3b/m3ofZ9/O2SyTDYsOlQ ++dvehiadTPX/iw6CHzePTlFptqO7twybNco8AJc1fKTZqh1lffdpU+xyhZbT +2RJhIe2oMDwlvrTDCTioH/643NuO5oUF2TYZzCG1xktAV7cDEWKJ+odefEHN +krr3hew7kNbk/epH7U5oNfXC59XIDqS9nbwn5v4DSXvV492GOlD4Q76QzeN+ +qFGN/nXBy07k7vCVqMcVgRZ7v8UdeduFPE1fDUtFpCK2u4/re9270OTMed7L +EmlIouzMagKuC3U/qnzL2paOHKMq5WTmuxBd2idTJeosxPqKfMTI/C/CHz3f +7Sudi67M2/JWfu5Gbb4MOXc9i5Gm3h0Vr+Bu1Dkt6XVCrQTZNp801yrqRpx3 +T3xUPVaKqrOLsYXtbqSodkXqVeAfpPF5U4/TrgdtKytw0N/EkDWZZcRHl16U +Eflas2imArkp/3ZOjOtFMZcgY1iiEoX64N90V/WirRN9OW9cKlExz39iMtR9 +qPnv84Gn7FWo9o3sCdOzfUiLpUk6m3S/7sl8uxel0Ic688JLrkVXoe2bZQSq +732omsssPP5MNaL/OYETT+hDvz/mf7Em3c85Wo74vcH3IStulo+PoqqRlL7B +s3qafnTjptyR1aN4dCfZ49Y+fz9SUyfEJani0bOlPH4RpX4kxeeGkD0e2TrS +Lfm79qP3sxJ0y0N45FFzubM6sR/dS1Zq3GcmoHCWpyUbhH703w3ZhkYpAsJp +uUQJTfaj0XefLz59RUCl0WnfntINoOT89I+/PUj+muo09hQcQCn25528swio +7zLZA1AeQOdno73PtxPQXrkaB9/PATRM99f0Duv/arrzaKi//3HgDDNTyE5S +SVEJaSPvIs8rJdEiJcmaLKVCWZJCCdGChCxlzzpKslPXOjMqoSgkIfs6GPv2 +fX3O+f3+vOe+Xvf5vM97z3k97pmZ1zCBn+feyrl0op3FHcLYyQQpgzfd/jXt +8Mwy4GSLNhOUor/VFA4Q4+9P+eRpxgSNrpm3g6v/Qmd4zMX3hDdOyW8O2yD/ +Fxqu75x3esgE81u6d07p/oXFvduai0IJfxQ7m9+3/wusmKrngXFM8CK91sp5 +/BfUhyW3t6cT3tKly3Vn/AX3TvOFvPdMiAsdWyP+5S8MSMs3CRDeym6VmDw2 +9BcebslsHyS8ZSm0ebiU3AGNIfQ32oS3ruTltTeJdUCCxI4NMoS3nIx1G0a3 +doDem+Mv739ggvtSeyV1fwd8XG1ab0Fjwv0E53xp7Q4gSSh3lxP+Czi6Kv3A ++Q74p7DubBrhw5CBVzEGth0Quesxh1gAEyKf7Qm65tYBozITe3luE57bQ7/v +698BIaonXzy+THip6aLz64gOeHf3k2LUSSLfO2M2+SkdkKctfv2AChMKN/pe +qMvvgN9Gxzc5ShKeLZfQ66d3wLqGZheNJQYwbbIOcf7qAMlNCguZfxhQv/rw +bsm+DrAeaIorLWFAx5lrYieonSDi9qWhzYkB/VMrVJu1ndDXPMM/e4wBrKiw +ec/tnbA8e51Zu4EBnF0f/7471gnZzSpLlZgOPP4G35lGnXB2+eDyxDM6CMv3 +VXXadUKnVarvnDEdttwSzBAJ6IRv85TBrKFqOEy67HKb2QmBn7e3ZU5Xgfnq +79vu/uqEp3WrLvMXVcFdQc0Wr95OCDp3d7zuThXkSm3S8OfugnX1lfmhhDu2 +qv2mhqMusBBxKBVtr4BVLmdjcgq7gOcYyMfeKAPZuxUn8xldEP+5UeSKZBlo ++uzhKP7ZBS73d6ldforBI0TAppzdBakOdZ1dKp9giPZFqX73P0jQtIJmlxL4 +1qNVMZL2D5p5t/6pKciDweEcl/GCf9AtqNvvu5gLVPbm7VP0f3CBo+RQNcoF +ROJ4utj9D2ymEuvUmDnwXqrUkHdzN1xyzPkelfkOwoyUB+SiuuF36x6bYq5k +yDZPilFM64YPGzQnmeGJ8NVG+NTugm4wDo7eKCCfAGQXVo5qUzfk+35dJZD7 +CtxCaPe0hXpgNC9keaLoORjXyApaB/aAM98Tn0P3bfHbrz3mtKgeoHuuDCtn +u2Lu+pQsdnoPjIvHMQ+wvHH2Tzk9v889oBO0P7V6OBBTuhX9U3h7Ido0PMH8 +eAQ27RtpHF3fC9OeO8vBIxLnDL6VUVXsBZ1aWV8hwltm47vLGSd6wSpzbZni ++1icu6y82P+sF7abdyQp8CVhHtK07p7YXlilbC7Z+S8JW5ALou687YWq1L8i +P3OSMQ/fAVWeul5Y/+AyY0ElBVsKzPsZ/O2FL6l/s0YHUnC+cElj9FgvrHm8 +1+NNWCq+tO7QLQXBPuAPuKEyWZuG8zcslzlL94EPvWD9BdN0zCeNBUp394Gj +X3T7hs50bCVz35xbsw9MDJV0FU0zcOE2zawTZ/pg5cWtglu1GZhfnrQYdqkP +JNqcBP73+8HLOyt1/9zsA+tQ6W9moZm4cLdv1FafPqBI8pD/9WRifuWj/TdC +++DQkXQzy100bK1KUc1P7IO10UHrPzvQcPFBht9yTh+o7AApccIjghoBjdqV +fZDs/71LrY6GbTSPywT/6IOR6lN+yoSXio/w3Pr1rw+YihXl84SXBHW+lG1i +94GBm+TUY5EsbKv3VOAKdz94Pyza+O9/72c4ddI8W7Qf1l5i/CbxZ2FhA/6s +Wdl+4IzQvDm0QMN2hnULSKUfnhYwyuP+0nDphRDdwKP9gPW2GsgW0bCw6Zmo +BsN+aOSLOuYdQMNXLIT719kS42W22BaeJHxl9WO/lVs/uKk0C7esomFR2zC/ +DP9+MDJBesNFmfjqVcPGiYh+UKnOz1i2zMSfrovLqKX2g/OXJmup5Qws6vTr +5sOCfpBq79cyeZ6B7Z0jy74w+kF63jaFLpmBy9yMBUSb++FXqOI95+h0LO4h +aW7a3w9Fl1y13ATT8TXP37Tk2X4IfxlB7rmXhsV9zXRV1g2A9MVWTdsDqfj6 +I6kozx0D0GZ32IYWmIIrHv/tqz4wAKZNtbXV9W/wjeeX/M5fHIAuP+elAa1k +XBVrU3Y7ZgCUQ/UznpbHYyUyZ11GxgCEh9nkri+Kw5HXXv35UzQA2g8qrRY7 +XuPr//2Y12oegK0yknaXqNFY9DtSERQbhGO/eNUu5T/HXv+1aWnJDsJc7/uL +7eRg3B9728Bt3yCYuhexDjx6jEuvvXVsOzMIsdNxffuOPsCXyRsy0oIGIaU0 +3Flq8Qx8vVZQ+Pv1IKSSji3807kB+78bMPizBkHmjPp09qg78MQFdrt8GYTz +7wrzp6f8Iee/GSnNVUOw40WEHvVCBJCuf3/R8mAI3LbAj6XoFLj+/UYi3/Mh +EDavnn8nnAY//1v9HuKHgOwYfbr7STpkkNG3N5+GYGueoAmnDw0M4rJW3VoY +Aq/N7tmJau8h4XuAJ4/rMNh1OJRVKBQAzwHZp4d8h2HaiSR1rK8AXOJwtNOL +YeDbUFDXk1AIOtenC36+H4YHpkU3eUSLgUW2nkgcHYa1z70EZQZKAR0AO7Ur +I1D15qesjXQ5SD951Lj59gicndpj/NCxHDj+1Gmu8h+B2gxH59sfy6HsvuWG +pqQRwFdT6goMKwCYDxoc/o7ApkXzXG+3SpCS/KxhODoCOhPDEXtLKmH5mjBN +bWkE2jiCGdeXK+GTQJL/qvWj0GJ4Xv/s/SrQMKpSSzw/CsGPLu6fd6oGqXS+ +9ACbUYi+GGI7k1YNy/PnxB1dRiFi4Uzbgb/V8Cm2h6UWOgp5JkrfbmrTIZa1 +03xLwijMqfjfM75NB6/Dbl9WZY+CeXrpT/sUOhzqpaQ01Y7CTNpA/PgyHTb8 +d1qktG0UTimtP2gix4DFwJf3E4dGISN4/4+fpwn//P47EjA/CiG/fWQtXAkv +7ZQzcVw9BiYmfDvGIglfeTsxDSXGwNVef5NPMQPuNRSqqG8fg3KdjkCRVgao +ux4XXH10DE5QN0ptFmHCBsZzz7GzY9BgEJgSrsiERYnWwSarMdhwt/rS/94/ +0Ga/5ULpzTHI2Cmw67gxE0pL7asT749BvhhD2ec6E17xf9gbGDwGdo7fOxI8 +mXDPciHOMXYMrvNM9r95ygTTHK0157PGwDdbTO9pFBPUuJ96qJeOwc6eiJNn +k5kgeb6xb8uXMfCa8vSeIzwzn7rBcHUrEV//baEn4Z3WOeuKsf4x6JASkPxL ++KlYL2vXz5kxyNmQvmYj4aXabx6nzLlYUJpUrK1KtD/OSPk18LDg4Hh5+c7C +/31fq7LkiDALnr32rOLIZcLr43YTBetY4Kzz7092FhOe3uLdobCZBUUefL0a +b4j8Y95ZxMqxoBevW86MZsL1qrMRQrtZUL7AGzL3jJjPyMxXX1UWsV/CTu3w +ZsIJ8VdcsxosSHFoVj7kwAR1QAevabMgp32Pv6oJExSvdDu1n2TBTfs/tZKE +Pzc8D0g9Y8gCrxdv2geUmMBXrNheZcqC69EPvqeKEfXvqhf9z5oFn/QVeC7M +M2CY11Uv8xoLzFwyFZfbiPVXXucj5cwCweS2bbEfCR+bfSx87sGCwKVuefVX +xH7wvzTG7cMCldsp79rcif3QnG46FMKCrvwB+/8UGZC24tbJEcUCvh3LZJsV +OuRtO2IrnsCCXTuEbhjU0+GbS7uj5nsWNGSkxT67RoffMZns80UswD/2HhtS +oUN/hfud6+UskFE/5rpjuRo4hUQevmxgQdBiVKN9QDXw/9dBzWphwXpXhZD7 +usR5wiLraUUnC84Jkv7F8FSDctaxiJFxFkQ7drXy+lWB7fF76VrC43A7fHfK +0uVKuOV0XMlYchwoog7O9msrwful+AeHLeOAE7b4qNRUQGRPdmnU3nHwLJvo +WStXAZ8f9NSNGYyD/trrba6NZbCr+NR0zItxaC1WTZboKwH1zvV338eMw8bc +lS7YVgI6qwZW6EnjYOsZcKXjcjFYnX+4euLDOGQvPRyh/i6EsImCDTqN4zCp +dffj+dI8mJXfrMUWnYBQy0C/PbVvgdtglLF64wRorhYP4iPOi0J3Sk5s2joB +nYWhUrVJmSDPMDyvqzIBYVGJ2kteaWB2+fHVeMMJkBcUcyPpJUJFzGTwiYgJ +6G0omFyHA8GYneXy6/UEfFCTSupx9wXWiSvGVm8mINjwFpvf3ws2Lrdtcc+d +gBas9SJa0RrcLel5Sd8nwODrFeunXJ5YoOh+tFLrBCwpXDL6sechThFS8y7q +nAAHYytLya+P8I+Kdzp1rAlQqxl6ftU8BCttjfo9zz8JlJ65ZDKOxNWeZ8v8 +xCfh06p8v9sF0dj055o3glKTwBP6NiYr8RUOfOTjsG3nJFz4pei2Uy4eS3eo +n32vPAlPXI8Fyq1OwPn/zaiqq0/CrQKTTO5/Cbh74Bqngd4kvDJJTBm4n4Q9 +Dm/rbTOYBKu/9ZVFR5KxUEzHZ7uLk4TbC73nON5gjROGYZ5XJ2F6Ym/6JasU +3JQscGfVzUlI5D3/xphKPJ+XasxeuE+CBt/UZcvkVBz1VmN7+qNJ+FtrveMo +PQ3vps7xKgdPQs1eP+cF3XRMt/jA+hQxCY179vHdZKRjs8IbTcdjJ2FOhLs7 +TC0DswXlihvfTIJR4D0Bo9QM/PhqV6xF1iT4nIaaNJ5MvLni1cPB3ElY9BVx +uWdDeE3S6Ipr6SQ021S8qi7IxKechU5yVE1CkNLXBXdOGu758mXPky+T8GBg +0u3pYRq+J+svLv5jEiZZCVtmPAgfeaKF+NZJqGdv0HqfQcPpTfN/FbomwcM4 +6mRuAw0jpbyq/IFJmKqRGpgfo+Gf/o7pmuOT0N+uNXafnIVv/N0R9HWWiIfx +dS3hLMz9X/ctIw42vE5vSEDiWTgmJNaoi8oGmzNeJHehLLx34IL6DQE2/BNK +2j/IlYWZmiKbZ8XZcGKwfV3UCA1bRNeSH0qxoU7vTMmjbzQ8PfFocM02Nuwq +VzIrTqHhp3qH6yJ3smHcU8FlvxsNyyQvfpBRYUPZYEkK6RDhy8X8yLfqbNDQ +Ufi6bSETnzG86XngCBsGAwKGMrMzcX+WglWVHhucH109+MosE3tRerVPn2WD +ZbXvei5SJhaziFdovcgGnq7NG0deZ2BawUVBGys2eJIuzdjtycCHBcWmxq4S +8a2NH/uUpmOn8sBP5DtseLLtsHhzURqWlbgxvvcBG8QMswRZm9LwLwd9WctA +Nnz1L3Lyu5eKNTasfVwcxYbK3c/2vFiXgsdvzZf2JbDB6W4sPnLxDU6u+TMm +msGGUyFvuXufJ2Pe28mGjsVsMLRtBI/eRPyp9lHAqwo23GoeFMjhSsS3ZK+V +1HxmQ7vcIFyWSMDNDXs2y/5mg1GXgWP4mVicooiHmxfY4H+1eeJkYzi++DBx +E4V7Cjh/uP3cE/wCr2n1M9jHNwVy21+8eaf2HLs8OlH4bMMUBPOtWp5qCsCa +XS0PDx+aguRYY5cvDpdw20u2JM1rCm68KU/0Mg2DkNFfJ1v8p4A23V4UeP4l +aB0tuU8JnoKwOotuoQvRkDHxoNcybgrcseWhRtV4uH1SIEesbApOKrwICrqZ +AsJc8se9OafhK/Wan3f0e9BxsLht4DsNpbtP63Sv/QT+07t4pp5Mw8vTQQo6 +jE9Q6cXx+uWLadiVepOn1gWDRnBCRVviNNw64nZ42LoMlLP/rbErnwbdWC/h +d7RyuPVfbvzqmmmQOn979OVCObwr891Hq58G9tQ9ivLxCpBv2Go8/ncaDjne +u3+xowKkJ+yS7y5Pg6vM05dqS5Vg7vGfqhRlBoREQoQiURXEkFZ/LlszAxfX +PFc871MF4iIZY+SNM+BlaPv8O0c1nIvx8EmTnYHaSwprvQ9Vw3MZPTE9xRn4 +XnWy8Kp7NfApDx8MUZuBtF87nJv7q0G3tLR2r9YMfEzcWnFCig6PjjyzbNKd +AeH6g1F/z9CBZKjkL3lxBlwCouSPfKAD+rMs8fHSDEQmjOxf1UkHT5u6TIur +xP0Spjfr+Bgw6+rUkOw+A+Fvz0ifNmfA/mVkfez+DBRetd6y+JABzv5CMwOP +iP7zRxzDUxmQzd8V+DSYaG8cpIjXMGA0ImfDrpczYNOUrXynnwGKmx6+a4id +gRP7V4KLyUy4mnr2sEvKDKBNvYtN0kxI2SXbJP52Bo6fz6UxDjChu4BtV5Q3 +Ay2O3lJP9ZmwBVXPm3ycgV/MhE3SNkywYIY/W66agUqfnV/v3yZ8pm8rnfB1 +BvpungvOfER4qnn/B63GGTg3UiUTG84EiUtU7d7fRP6uCy/OJzDBcOBXc8C/ +GTi6LfDgjwwmhN5Mu6YwNAN8vacqhHOYUD/nvlw7MQPjZ7K2iRIe4/c5/txp +nrjfKP3DzyIm6PFIyoqQZiHFk0y5SHgsIHQwP2/1LNR/P80bS3iMLlly/ILQ +LIT5d3MmER7jTnrSNi8xC1zbetyvvmWCpoKp42vpWTj1QFZ/gvCY1wdFEpKb +he3q1EKNGMKfakthXbtmQYXPeI9+EOHFytrtfqqzhCvEn8kRHlM9EVu8HWbh +7HPF4ZobTHBpdDj5WXsW3Izk8f6LTMgxhY7rp2YhUGio+uYRJrC6BZwFzs+C +yZW9Al6Ef5VudJBzzGbhcrrGrLkwE9I9HyjMXJ8F8XCZ5KxfDEi8m3bD2WUW +sn892vy1gAHRd+rejd2dBdal1cHd4Qx47LpRuf/xLJT2Nn8TO8EAH+cjbtah +s/BHc1Xkf7IMuHvzWmFH1CxcO4IPXZ2nw/UbReotabPQ9+zIFE8CHayvdXgZ +Zs9CWzdeG3CTDmZXqeUNBbPgQLm3XwHR4ZSN4dHP9FmI2jh9evlXNew2Gz9Z +0k3k96ruT8JEFciZSISoDs/Crrpn5LV5VbDZGL5/mJwF+7ilHaOuVSBs+Ow8 +jTQH3KI7S7onKoF9YofFa+k5uE7aNDXaWgGF6pecvE3nwP3wM+r8tTLIPhiQ +s3B5DmR0hNctSZRB+n/v2LevzcHwJu4J0mMM0cpL7k4ecyC0aKlxW/kT3FOM +enApcg4erfnk6upaAmhDQ6hW4xyM2HUwGYSnmAsoj3piHly4Lsu9kkqGPzMh +R7edm4fofqm+stBEmJjsaDpiOg+0SGtRr9UJsGH4/vSD6/PwR31Mx20lBm62 +lakuPp2HL5zVe0YUQsC/WZApGT4PMUxGhkXEY3jVaHnhwOt5GFgWfdra6wv0 +rxx33LLmiXMl1IX7OIPkR1TMqp0H/ppHKp/Fb+NdRSG6Aj/ngTGvLhqTfB8f +yeto3dk+D1cfoaClZD/skHV/wX50Hrj9zUOlLgTjytdl6j38C3Djp3zZiaJI +3BwlWMu1dgEUXd1TWb+i8Wi4pdmWTQtA1fucdKDvFZYI4vCy2LUA6xRk5VWv +xePrXgi3nF6Ar712YddnkvADj5DTs0YLoM7dWUGuTsYRbh1/xS0XgLXv23t6 +4Btc5nCf45zTAlTbDB88Mkv4yL4+5Jb7Ajx9YBJLT0jFg7bSm5/fX4DdgvNm +i5ppxPO1TPNbyAKQq1XebLRNx/Imgt+HIxfgQXx9detAOkZGlla8CQvAeWjq +7ujlDGx4NntiR/oCRGc8v3y0MQPbn+Z4qPN+AUYEHyfXHszE3nr6InZFRL7a +QVNuLzNx2LH4JL9yYr4S2bF7BzNxuhZrX3LNAjRUFt2d3EvDnwBVVTQswLj5 +keWsmzT8Qy3kXGfLAmSXPtt1gfBFv2pH90onUZ9Xa3IG6ml4ed9uV6nBBSj7 +VlNhMk7DIrvvkw9NEPNXunownZqF5RTrw03mF+DkbnLQN5EsrCEnvc2DtAiF +Q0V1NWJZ+KysU34kzyKkh7PfRq/Jwleky7QLhBdB49h998MLNOy5QfBXk+Qi +rN56RryqnYZDJSzt2FsW4X37GgHZQhpOFc2eEVZYhOBUI78rj2i4VJAjYM++ +RZAurN8fdYKGG/j0JfTVFuHCs04PTKXh3lXxaQ5ai3CV55Bmb2EmXuRm/fdM +bxHu0mUEJS0zsRAnqsk8uwjPy21JV5cycLaSZxGYLEKn0PmUG5EZWN+0OP2H +1SL83XM0bkw+A48FzkTZ2S+CsKSnyHJuOg4qUH68cHMRakfizqXvT8dKPTc9 +gu8sws8J2z+k7DRcK/zOXubBIqxxVj29cXMa5nPYoacXsgg6oL21ZzAFZ8bY +qv19uQhFF966ftRKwbo1SQrOcYsQvfvhA1rYGxwoK8UX83YR9OO2VO3elIwp +v4VrB78uQpOJ6+OSlnj8ZpX+R6/GRTimErfKaDgOH9n/LEu4jZgf6+70lrWx ++OFzatDBoUXQvHz4gq9WNObQWTz1ePUSNA10X11afo7jXA+AlNASKJ0uY3m9 +DsYaSW67ciSW4A0WT9Pf+gR7LrMEWrcvgX5UgaEx6wGez+2p36G9BFobz2zN +jz0GUV1byj+eXIKCJfkH7LX28J+g5fszhkvwMM7qE1vnNty+1vr8jvUSuGqu +Tfor5g/szXUGNT5LEG7/uGSqNRxGgwobr+AlwNGX84/qp0DXlSfNqf8tw9dv +lnvilvIhNmxcvB0tQ4M1KeYGswAulhkZih5fBor313bl0EL4vlb2+33jZdiU +0cehsKUYKuilX4w9lkG1sOed4u6P4DWxhSfEZxmcdnN3q459hINSgTr0x8ug +cOC1sDrtE+S4GlbvjVkGwWsTjq0CZZAgO/qJt3QZdlmMZz13KQdT/XNLmlXL +cPfJg0yjz+Ugca9Yzf0r0X9VvDBZqgJCfvgXdrctg9G9QufXFRVw32dTzsel +ZTjCMKdET1eC+ls/1iR5Bba2v3XYDlUw2zKkJM+/AoVzd4ubiPO0057CzAip +FejPMzS1W1MNlh36bxxhBRRIsWp7uOmwga/g35tjKzDy59KGCHU6NKtu3NJ2 +egVEGnMla27RQT94IFbHcgW8cvhfuDXTga/k9B+vKyvA2FzzqIPKAGZv3vo8 +pxUY6JMLnVFmANLwidz8YAWs3V8uCAQwYPFq/0+jwBXI89Bp5XrLgMLwU2JB +z1dg5bdofWADA1zKc89WRa2AW97lta8mGLB7RDJ0PmEFMlMj9VWEmDAs8aB+ +d8YKnDKb9NHfyYS0I338djkr4GdkvnFAmwnWTidPvi5egW1dijPzZkzY9OrD +kx8VK7BJiKnvc4vwDWPd59VfiOszdBvv+jIhYtJ7FfpBxO/mjeh+wQSDTb3a +br9XQLtLQqw4nvCL3gk/2r8V+PLjldo84Z3PbjmVXUMrcL9A1SKJ8I5/ogRp +HXsFRmO1NHMJ7xz+5oVOL66At+sqAUXCNyv3buHDJA50/lD7JR6i/Sf0TbsZ +hQOZfjwEp4nrS9Kal9x5OFD0ayyx8J4JUZ94N4bxc6CDE6u/8hPxbjdqqL8T +5kCjqrTEJ3H/e3/WTZPP4hxohDFwxjmUCfs43nj0SHKg7C+35hk+TBASb47i +2MSBWkp55Z46MWFMgbdovQwxvpdMQ4UJEzLuDbyT2c6Bei1iZjoJ39jWMlIU +FDjQik0eT6gCEzZLpbzet4to6+tw/hJgQpuDb5jaPg4k2ii9L2+cAZHY6omW +KgfSdDt7YQ+xXmcFNX301DhQlrl3gD6xnp/fLzmaaHGgodENmkGXGOBParO9 +fIwDgTdPXaEqAzTPFptd0+NAnjupN2N5ifVnu+ndPcuB4vRYQ/k0OrgcNTz8 +0IgD7XjTkjB7hw67IvYdeGLCgR5T3WVEjtIhRZW1LeYyBzJczeJkN1aDVcC3 +jUl2HMhbX3D0S1Q1bGyhiWZe40AzgznlcabVEOZxlVTizIEkrLaXX2qrAp+P +XX9aH3Kg+O+JQQ7VlaDBX97Y9YgDOR+06jp8txLmzOO+DD7hQAYHHcWu7KoE +Jw7TovkXHOi/BWpHY2gFmGs1hUkmc6BPuoW2YcfKQTLsw5MtaRyoJHfDTt3x +Mmjqfu4jT+NA1T6U2PyoMjjhf8rpYC4H0mjau76pFsPBGobexSoOdK0rvjCs +vxTETheTors5kEhyfVF4XT58vRjntG4rJyrm1uJWc0+GE0dc1rbJcaK0K/GZ +M6uSoHbn8U+xipwo3yblWHtMAnzjmOSVVeZEHYSrO56/hvoU7VQlLU50xU++ +jvQkFPRD1p8a1+ZEeWMyB2kfgqHhDov9QZcTfWgfo662fAzfT0QfPmDAicK6 +Z9hhdd7QODHyR+sSJ+I/pEza/s8Sn2ur8KXYcKINrwSNVWRu4abqlwo1V4i2 +Y9vsSdpd/DNS884pJ050OKtQ+/emR7hZI1zU2JsTrW63Kd5gEIYvyNmXrH/I +idbW1/2gWUfgFiGwavfnRKF7koIy7SNxa3f/u8tBnIhi1KvTdvoVbnusrufw +mhNdnFkDnSUJ2NRFaGJ3Aicq+neDfiA4Ef8x642cTOZEEQGSn3RMknD77pBe +dxonumXqULn+TzI2l7R5ppbNiQ69M1HPDH2D/3IdVF7+wImEXE9wBaAU3PHz +34OHJZzIncZV9cU3FVuWFcppY07kvKv6KWV9Gu5Mf1a3qpITbePzP7Y/PQ1b +vbBy+0LnRL3KyS+O7UrHXfdUNwZ95kS8Dp8U5LLSsZUtX5X+N06UUbqnn74l +A/873Wkv8p0TTQ84louEZGDrA/lCP5s4keNHpe8r7AzcveVJYWQLMb93jsae +ZzKxNZ+lhckfTvQHW5R6v8nEPVPKFKlOTnTsgEDAAisT2/5dndXRzYn+SXM6 +9+4jfMFsP5vUz4m61oWaqzrQsG3Oh3mbYU4kGLb/Qm8cDffFBCTIsYh6CoRE +DzNp+Iqfmc7QJCd6eM446MgA4SuHvWNZM5yIO3DHlwEOwkMXqBFOC5yok7VG +okUgCw9otqnvW+FETy3nrwmKZ2F7hff/pkgkFKcmOBpE+GpQ1P9xIYWETlBK +p86tysLXli/uuctDQuvvpPNYs2l4uG9X8yF+ol86qPvTLxq+3sDtzSFMQh3P +PttfzaHhkeKWrZViJFQl0/Xhii8N35OpnPy5joRkySoVFTo0zPOUVj64kYRy +SZ7hiyQajmKHBy9vJqFHusUmmz9kYjkzbzPhbST0/ZtHxyHjTFxQfUVhmzwJ +qTjVPracysDaSgZzB5RISPvA5MWoR0T9V2TDL+0nrt8iahoelI4n7fgvux4k +IeOefc73udKxT/3M7kANEnrozevW4JCG4xI+f83WJqEcoAtQdqRiJZ7c6Cpd +EhJYvbl1o3sKLr31+krzKRIKrKge5fr0BrdqOXFzGJEQCjN6/0EpGV+lGX8X +MSGhBmmjix+Nk/CsqFb8dgsS+rjd74DYvUQs3iumftqOhCLWrV8NqfH4TECJ +c+xtEpqr1qmzVo3CHaxkzZy7JGRS+zAin+cldjAOEqB7k9DWbVyS2+vC8FP5 +S5kjj0gobfnTfKNiCGZ+pfxTjyQhxqVZj/a1d7CRCitb/xUJ+bYXDvLZ3sC9 +r1u8rONJ6NCh0E69e/qY25Em+TSNhLKPU8KNgm8CCBkY/C4koaHnYjQ/+2DI +N3xdfqeFhEI9XD/UDSdBUvu++HxJLtSyKLc7Pisfpv+KSPlJcaFetqEy2b4A +dDsnY85u4UI6mnUHwrcWwsS/Dy9ZO7hQfo9xUm1UERwe2Bcsf4DoPx7m98W5 +FCIGRdbMqXOhJlfHmx+2fYTBocnHDMSFpma/Hp779RFCRz/4W+twoX12hV/V +VDB0Te7zijXiQivzggkLQ2Wwf0pk8boJF0rvvvbtxaFyeDw9eUfNgguZ6DBS +F56Vw965D67NtlzoMw85fo1CBTxY3ndD2I0LJar12fMaVkLjishQxx0udMt7 +8RUrphLkONlX3nlyoeDCyK/6nZVQz5VrfcKPC/0p7Yo2sasC6dXKpv5hXEho +u2NalEU1uPCItp6L5EI/9U9SzxHPGyYv20jmFRfas3c/OtxQDU78uWfLkrjQ +fJOgVowaHaoEwhqCUrnQxb7evTM36CAh5HLaLJMLLR9P0r0aSwcsoqw3n8OF +aDbrt7vO0UFYTLSGmc+FDNYylUmyDLAVZ2u/LOZCPglcy09OMKB4bWOVzScu +RK/1auFzZgD/utzDyhVc6KZ7hq33SwZYSYaVkehciKvudlB7EQPy17toNNRw +oa26/L5bWxlgLqV80KGBCx3Rhg3GokzI2SRaqN7EhRyN+WIPKTGBspmtwtvC +hXxPyWfNHWXCxS2NH1rauNC/dt65QMIPb2Vy96R1cKEolXKvIQcmkLaGvXPr +5kJS0ZcD199nwvltLjuP9nOhsn1uOWuDCW9sP5cpMsyFzH6rdf2JYcKynPKO +rjEuVD3MqX89hfCWvGhq9iQXWs9v6VP+lgkpCmxZ7xkudKbn+um2XCbMKzYm +nlzgQpY5fW0lhUw4pZQrvWGFCwl+OR9vQXgqcVdY7CCJG31gSVowipgwvdtl +QxGFGzncv600mc8E3b3noh/xcKPAu8HO/whfvd6nLHGenxvF2Br9iyR89c0R +3xAS5kaJPe//HU9gAgdNt/KrGDcq3bfGpzmcCXv6myQC1nEjCfeIY9oBTLCS +veSgtZEb1RXEUMLdmRBmOVy5LM2NdqKTrXRbJlS/ur2uWJYbXddx3dZuQOTT +THJ0leNGyz+2vvyjzgQ5saCq3YrcyL/LVJopS9T3zDrJ4V3cSGU2dimehwlP +niU7pu4j4vMGvL82yoBRcomklBo3qt9itKr3HQOkD2s7tWhwIz8fT4HYZww4 +49VQHXaYG7Uczsy9cJUBudN9Try63Gh4Y1f4gCQDevc60+knudGBdX0XPrPo +sNZxeb3PGW500+sBvaKKDh59oozZC9yI7/xrP2E7OkCz5sZeO24U9lDzS1c4 +sZ9Fa28lXONGXq9XdJTNqiFR/wLT1JEbFfz1fPVjSzVw1zg4/3DjRk9uGRmu +T6+Cz0UxNWV+RPzJ6uOFiZWwOLVt071AbjTprCdoaVYJO/fmuKg+40YTKuPm +0eKVEJLB3PQ2jBtZPdKtHPatAMOYKdeYJG50UYJznZRBOXTcO73FrZwbRXq9 +PdPg+BGmgeuuwhKR748x8iauHNi/kDijyklGN7/f9Hyt+h7c8g+7HCGT0dMO +i8St17NhStHnhtkaMuqZXSCnZmYBex2nZfBGMqK+dRk5aZ4KE5PLRyYPkRFd +ytTHyTAC9r6LLV/RJMbLM79kYPMCbtlraPBpk5GHXVufgmcIjHd4qm49RUbD +nw3yVZ75Aat2cYeRORmtmgn5Wh+4A+8OfJVy2YqM2GapVpoFttjxiLqMky0Z +EQckMvWjKx4tvrsh0IGMGP5n5KpmfPFI6jx/iRcZlVQvWfyce4EVL0c/YfiQ +Uc1CwGT1/gh8XergqkZ/Mvole2VG3iYSD4fd4RwJIqPKWOGa6bBXWFF/nddc +KBmF/eA7nBsei6/xFs2TX5JRB039lK5WPB58MDspFUdGvrR7mpXrE7H8oUgn +hSQy+rdoZvVgIRHbz6qOqKaSUVbyrbyS70l4wOF2r/47MvI+aH1Cyu4NlpNf +e9nsAxkdJXXTKLIp+EpP/t+rBWTUVcP2GfqVgvtNppt9MBlxj788c1A2Dcut +jTAMriQjyfaZGsfSNHzlu8r3GAYZKenU4f/00nHas6ZTaV/IqHFFMdmrPh33 +6bh+ya0jo2sqP68onsjA27jFdMp/kNEOseiHSp8ysC3Orar9RUaf+K6M39qW +iVM8zmm2/iajhVNyBwZ8M3GvCvtj718yahU47+DTkom3jb84OPmPjBSlTPbt +kSV8RNtXsNJHRmvv0EoGrGk4xe7HPr5hYr18UmsTYmi4Z4tztgSLqM+TXVX6 +hJdk24V3bmWT0eAD3pCxQRq2jspJ3zNLRqnXuYrcubJw8jmDbRqLZHQ67aN5 +v1AW7haYSNTloCBOmskBdcJLA5cD6oS4Kej1y0Sz7UT/aIHUYjOVgm6NDBke +Je6f4M2Ti+elIN99m3kjh2l4xkLP0E6Agjrl22O21NLw4ofOB0oiFDQ8TDId +SKZhjlXub6fEKejY4/WN4840TDbl/10qSUGtW1+XHT5IeCk7meorRUFp5bOC +3TOZWIBbTVlvCwUlVT7sbadlYtELDZbC2yjom9P+F//zkgTN7lnLDgrCHiiS +dykDb+RYLorfSUF7m5yTDSMz8JZzYb12eyioStg/dIcCsR5p8iK7VCiIx0PO +LiIvHe/WN7r+UZ2CzhjBq3vv07BK8kikLyLiRb2uWieThg/OPqzWO0JBHb7O +5i+fpmKt+GypVj0Kur837MejYylYh62tl3CagsRkbttuj3qDT+j8uX3lLAXN +n/r9g+NfMj7PWt0wfZGCdoU+ekS3SMImR+KXPppT0CWHYuH+0ERsGblf3s+K +gvQkWPNZnxKwPbr8UMSe6B86kf6KIx57hpSq7L5DQV+GsuIGrCKxT7eB1cw9 +ClrNI1py+GIE9v9vIOjTfQqKiR6NGjkShkM6xPpPBFDQ8qvVcXgwGCfvdoy+ ++pLIP8dSIULxLv5cv3klMY+CPpzmp4e3PoY62UIF+yIKKthqVcK1PgQa3U9d +2PORghx2nLopXR8Kf6TvvsdVFBTFN7eOejoSWE6Nl9t+UJB6b3Cr0+cEEBd6 +xBSboCAL2/7hIJcsCFaVuXlymoK0wiRM7Ne/g1XmeJ3fPFEfrYt2bpeyYSFj +xp5NoqLirv1yVqtzoOPIlTU/RKjIStWkted8HqS7HzcIUaGivYobFgVrSmBL +XM884wAVnVSdvlQbUgqvqh8krRyiIl+8rJV4/iMECRezHbSpaL21xi7+tk9w +iyb/8qQRFdVL39gh11MGQ9/p4GdCRde5qkUioRys56z6Sy2oKKM3em1oZDkY +acccULxCRY0+jMy+oxWg3sHbxnOHipL1soa9nlZCHiXN97AnFcmfUWxJaqkE +pZ1Hdno8oKKmGI2cDtkq2Oxxz2sgkIrev1/pd8irguh4ie2bg6iofeecV+p8 +FYgycusuhFJRN/2iG/1QNVBER6SZ0VS0IqrVGfixGrwPBtasxFJR7++lGxLz +1TBrufWWahIVHSfrhl5SpsNQllllSiYVecnTBBb/93lJ49y19ndURG/pjj3Y +RIf2+XBR8Vwqiv6lqMJPYUD9sW82fqVEfqui7c5aMuC4gz3/xzIq8m49+Tgv +kAEVYZQCdhUV3TzRVPksmwHqJYkWijVEvBy/a02NDMjr1FhlXUtFmg6ax/2n +GaC06nd2TAMVLfwJiIgWY0Ka0m3jH01UhGpvr/DtZcJmQxESbysVndF6l9Ss +x4Tou+8yDrdTEfZRWDtnxQSRRL2zHl1UNCdOuWx/mwlPmX0L73upyPGbDGVH +IBPIYw+TBwapxK7/NrUnkgleYtInN49RkVDUwVifZCbMqJVOXZikIh3x2S4J +wlNOVhdiQ2aoaJPu6U2ThKcGA9jazAUq+jkYsE2Q8NL/+/9A9P//P/D/AP3u +9VI= + "]]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.05]}}}, + PlotRange->{{-1.35, 1.35}, {-0.28, 0.28}}]], "Output", + CellChangeTimes->{{3.666103232476616*^9, 3.66610325591256*^9}, + 3.6663558934059267`*^9, {3.6663585913236856`*^9, 3.6663586042140923`*^9}, + 3.666428207132573*^9, 3.667305754086033*^9, {3.667305889619493*^9, + 3.667305903743442*^9}, {3.667305941278796*^9, 3.6673059566540947`*^9}, + 3.669468667059832*^9, {3.669468880331677*^9, 3.669468894288822*^9}, { + 3.66946893035918*^9, 3.669468944326997*^9}, {3.6694689896028643`*^9, + 3.669469009279861*^9}, {3.669469043824361*^9, 3.669469066625276*^9}, + 3.669469102203643*^9, 3.669469202410699*^9, 3.6774163621730833`*^9, + 3.677416437922155*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJytXQd8F8Xyv5CEplIUFBEQFLuoD8X+fFZEUFEURekgGgUUFRWlJfSONAHp +VYpIrwLSIYBI7yC9hYReU+Y/352d3fvB+/to+XwOcpu73dnpMzu790b1+nG1 +6lav/2nN6oVf/ap6vbhPa35duOQXX3FTdFQQRMUFQVCmcIDfiX+1/5ifT/GP +vfkvv39s/ouhvn2JPuabL74g6tOHctpmmjePKD6eKC4Of6ttmrPRsWMU8TN1 +KnfIPTZrRjR8ONH58xTkMM/GEi1eTPT559I9rsOHg49k8Gp2lEOHiNq2Jfr3 +v4lSUymTbZ41i6h3b6IOHYh++omiTXM07djhxkX3/G9WopSUSIgmTiRq1Mi8 +RwMG6KtUsybRG28QjR8f1LAdpKcTDRtG9PLLRLlzAzwKFIK//iLq0YOoYUOi +ypUpu3aDd8aOJdq92z7KcKxbR/TjjwIxrhMn7N/4+VGjiLp0ITpyJKgqU69q +R5g8WUYFfpcvdyM89hjRf/5DNHeueV9oceYMUevW8vyGDdm0+cgRTJHoX/9C +N9Vt8/z5RM8/TzRyJNG5c65jngX9/LOZge8Y5HvoIaJHHiGesuuY4aGKFYlu +vpmoY8cqAjjeOnnS0An3lWy/wH9SkhDlOsslwBK4oWBBomnTLGFOnCC64w6i +8uWJtmwJblAUeQIGdS1RMf5LLxE9/jjRypX2r8xa9NZbgNm9umWLTFPBicKE +BVKwwLPPGkJVsI/z32jcOBkptyUegEpLC7HPpk3Bjdo9SDRjhrnTPkDP554z +7wS5bBtmC8xu3kxBXn0Xg2VkmLv3BTQGNgrIZvhiBIsQr3z5iJYufc9ifvdu +oiefJKpSxQyhUBpKnzplAESnc+aQhxKCesstYJBAu0HnX31FVLgw0bJl5B5t +355o0iRzl0fbmjQhKlOG6OhReT2KDhzgfxiuKMwq8Lw8fjzRkiXm7l3bBrhu +v52oa1cFKAvRzp1E999PNGSIAXjfPqI77yRq2jQENJ4B0w0cGJS3bfv3C9Mx +P1jyZBXaQIUUL060d6/pD8+VK0dQRbmVYc+eFQl/8EFQ3M6DuTJKWPdDO8Sa +NY7OjnosUEQFCkDcA9UWUEvgPdZsHmSwCqjKd3Ha1rMnUalSIZGPMfQBTiFW +TE73eseORImJniECq8KiBUNALt/V0jYgevBgnZ9pO35cWDL8HAQSE4ggKZAG +aQm9C+3x9tuR7zJBDKT2rQiQgKm8zMyzZgVv2rbVq4kaNJDHi+tzY8YQVaqE +IYM3bBtwBOH9+msKCto2KDBF/E367tGjZDDNd/oulDZ4hZst6EFmfXzBAqJb +byXWb8Hrtg3iAh5nLe7phG7Bl3yXPQTShAkyfG59DvIEUf70U9uf0A4siIuR +6LqEFbAEKqRtgwYRFStmNLuCs20bUZEiRFu3qn2COMjjLLJQELgrbdsgpVDd +LJUeeoD64oswKFabimCAQS+aJYRszpygjG1DE6w4dKB7DhgFmCze2t/69WJ1 +oMPcc/XqET31FF520wkTzRJDZVUY+QKEfvaZYC4jI7jetoGL8+Qx3BwJun23 +iratWkVUqJBR1/quYoK1pH8XFALsW7cG7whIzjTv2qWqPKiobUDdu++aWeWw +bZCg33+X4dWGhSyAlyJIpW1TkAB50aKQCv8uwIQUsQqCwooACWrq++/N3Su2 +jdWxtaAUPB2eFfyws2fdc1CQGIqVWHCXbdu4kZQoborwqypWlLYLh4dwAakj +RgQvh1gUcr1pEwX32jbYL51prjBIsLZ16rh3gSWYVBDECTE8COkguFvbTp8W +j+7gQfduv36i71noAnEzHDs6a89886JtQw8QDUaKpz3QBi9mzx5HJPgScPgi ++BBUghIZNy54ybbBLXv9dTMr3x8wDnfr1CnXH0ARqx3qD77ta68ZHaf9gYpA +Je6yhbGelTl4N9WqVYueeeYZ9ixfZhZ+0dz3ZFtx+vTpZ8xjWVibLWCZq2ce +KVCgPF8TqH79+uzurPQjg3fgnaanOwjhmEILbt+uxMrKPHGG/cAB9F3JktSQ +NcWT7EK8zdq+C3ueSUlJz9jH9uzZQ61ataJ77rnHQvYK1ahRlzXZIHThSA+v +Cm4JO2k6qqoqDhAsdFloypQp9A6zyNKbbqKu995Lr7zyCtvgmkyPiYEOeY6l +Y+jQofTBBx8wSe40wwKyH9lfZsgs6oRvY9mYnWR+q0NvvvkmO1qj2Kp6swrg +q7BbhLlNnTr1Sdv822+/0QsvvMDG5mv2w9epY7uMCfTJJ59QhQoV0KyyT7Nn +C/b27w9utm1t2oic4i6HfX0Yq1oM1L17d0pOTlZP/xRz76+//srM+hILQTzu +gydCf/vyyy+pdOnSrGImA6EO9p0szDVq1GDheRbYyanQwIQMHGju1G9ELAGv +G+QVaK5jw7vaIA6oGQ8zBEeIgxX8jGOH9p133qH33nsPKAqetO+MGDGCRfDf +rP5/4sf3GgcJP4xS9phHcoDwvEFOamqqtVHOVK1h2w+UMn2t2s8i1hPCQfC7 +jlHt2rUN954/fz4oYd/rwfESZrh48WLX159//sk+/x2GJ5zXDrUkfTkiQLWI +K6DKNsZww1NskjAO81Fm25zB8tmiRQv2CIuzyt+lo7PccNz0HwZ0gvNYZ84k +/XG0QK+fsaWyvarOQoyGaNMDEM36oS9zRjmQz03oL5Y/kB8TKmGRw1JtoAFL +nBMP0YRlLA/O/+rNGgiaADSSmTjHZi6HeiDvQVaXzv+CUrubgTt+3M0GEg7u +4hkEj9q2xo0b0zfffMMKIt09B8dfAzIdHmBVYj+tT58+7l1mbDOVOexCZFY6 +I/CwChU/W1gXAKsbNmxw74EFoUIAr47Zv7/ELXApdA5QK5Dks2zVioeI9z1r +NcDMv8uwmcO21mAT6qJfv346ImsKgzxmdjciCwix4oE+dCNu58bn2KWDDrX+ +l/5pNks+kMzM630yOEtVqoTYIxqqhXX9a0a0/2XbvvvuO6MJws916kSs4Y1N +coRM49lD03ft2tUahWhygsd3t9k2mHY14wrLUTZar776KoTPw4c0SP78xJRy +4+5jTGGK69evd/DN4ucA8/EQs2AMvMr0c/1Nnz6djeDrZm5ZdQyNuti4qSxA +NBISEpQ28hxsPEKaqVPdGCDmpxwisWVzsGAeYJhFixa5aApxR7t2FNEf1PnT +Tz/Nft8q9S2VV6Hu7rvvvkgwIVaIYRhM7Xbs2LHGloD3H7ZtrfmZZrDXIVIh +bsmZU8JzJUu1atWMJo+YIqKJ226DIgoK2DaENuLA+eeYnw0alyxZ4sn87bcX +sdIhVmhABTsEDj7MDXYSc9N5QHaQPiAiN1/WYmZuzFKeHYBHlvcwK4EqbNGN +W6XPQeU3kEDN4w8OO0KTEIuAfNAJQ4YMcfBBT+jclB6hFIkbA04OTAgrYDsP +Nx1MG3/azzZWXQr4Pt9bR7iYbQP6KzLnMRju3b//JrboMlS2C0BKTEz06hE+ +GksLo92FmDCIoN7ixV4hYIpwGlhlea8YEgkzK3fmX6g5aAcYbYUP6hHzYIlz +8wBqG1sSOFhgwZEsYFIpLGyMDUeEn2vZsiWVKVPGzNfBAg3UrVsE27BJpbJl +y8KFCR6ybR999JFYfr7LeQHMrC/tu64LKKI33ngDxsp5u1BME0WzBw/YNlYi +hkPBjepzQoBhxaHdlQOMRWCNz/hx8S+aqlaVKepzbdu2NRKIO+1vxowZ/FzV +iHFBlrfYc1y+fLmDD4pEp+jGZe9BSaWoPXhQnFPofX1u7dq1xmOBv+iiCh/V +ODKDpPBCd+zYETwYIingjiQBGa2BO3UGYBiqWAmPikQ3jNnPIsFWSTDN01hh +7ZzPjhzr8J3z2PHa7xNpSLyIb+La4MIjYoDevN+2wRJiWmzWrOBxv+dPslKf +QrSAQd7GYWz6eSeUK1asMEojLFFGUqDj+e522xaO93T8pUuXGh+SnJDzWCcP +sDixoVv2E3sUG7gv72SYZNQFfcBO9urVy9zpHBo1auRwI89JdhheN3JX5icN +Ejmag1J2MnfMNbjSOUH6gQPgRcNg5N8RdobHhvsNewLSRsC/e7Hgaf9fEbhi +bWJYELhSWOFCwmHx+MtGzZsTj0/+B/0kdiVaM5x9cI7HKUP6jMJUo8BOljuk +CxMlMd94K3N0B9GkT4gSosC/8cZFacVcNq46e9njJXJlkVYCzmRGgYzCEtxn +2+B9qyxnsmwHOiNIRY7AMN1QvknIFG2G4H+bMwAj3+HYYakDpRM7MQgRcae5 +AIg/Ip/Dhw97DQf6LGLnuMf9HuT2txDN+IYtzyHJok2f7kDmmMJopm3btjmQ +oQaggsiJY6xZM0GCJ+MIo2RKHaIWWW3//ERbVgwTPzY0Uzj++OMPKlGihIlZ +tN+PP/7YGXIHL+jd8TbtSeBN4N865BPUgAFnzXLqA4FLB3H+HR7YlzJoT0lJ +cfBu2iQu59ZN50Quut/n4UXfgPfQGoEjCmBGwW2Ngn4y/AD9g07hwcvgOTBB +ovmsM1tko+TGAX1ZJxPlqxZNsZUyUcFaN1D89/noRNMAwxD1YjerZhliSVPY +2UtmHm1u7u6xbVCjnyNp7nCdw+C62murhW7clRnqm5soX42sFFsxigrWzEbx +3+TyQ3VhNjy2W4YRvx3GC7Eh0/Uu2wzEwzODOzVp0qRYndPC9kSdC8pA8Znp +yx8KUb7qsTKnj7JTfL3MMlALNoQ9S8k6UUqK8g/zjfGFwfI6J+ZHY42BOp3T +1q1sCvKep8NjW4J3ZE6fZ6F8VUPoa3ibn1PPhyC/sZac7PdQE2TuECw98YRJ +4quKgXTBIpGzRjyrExykjHrXow+UqpnVzuo6iv88kx2KNcDoD4nuKwLx11kB +hfBj1q1b57gM6RJEJp5SNxAc77nt2SfococM1TSGvvwun0cgKPVlVj/UnHjl +uL///jsKUb9htjffbAqtGeob6yRHiYa/bvot82mWTBR8gEeDDwMKKgb4P5C2 +GGrQpKggrTmrt+ENVbbKly9v7Azu7grRCw47vCeVFXhyrz20hNLa5pPRPokO +/nG4ellkuA63sl7dpHzH/iW9wWo9AzmRVauK2hGxXlWu3BYkVazUYy3zC+kB +o9Uv9I+D1YmSRxswiht8o7KEeB+ZBdxpLAQPdR5W2EJY/Gvubkpu+ZDFYuZ/ +HKnR7TISsyet/1WxCEubjHxkgwZBUdsr/Nfq1c+xMn0B1kwxYAxYB4vEz3P9 +/4PFUoNv88hgbVn3FbsVmRqnk4FIcF9aKM6DnkCsF9bJrI2Jfq0QxuQ/061u +Jnn2NywCnYsRRhw6dKjhwQIFtpD9sYaK3cJTLG69HqEMfitzpSj0Q0Flvj7m +qw5f9fiqbe8rBebveVmSqeV1MGhES350mvvAgQMmhQGLoNwIZ3OSXeSMtmOe +3Tib0ppfTxn8fuZK0Zc2ZrVYmVk7xuq+5W7MrYhui0tCQ/lx1aoUiok5ypxy +wj7H85z+tXk/gxV75sqXOGbVaBlzCBvv1NNuTGT4VotH6sZE5rNu3boR8zTW +uNUNV4hbhInd3JiHx4yhvdmzUyqHjDomnIx8+TawA7LNz3PLVPN+BuuiS54n +Wx0zzyb8/2893JhIcbWTVIEbE8kfeIBeu9woXKr4bRZz6eNWi5FxB73ouJUZ +9RYO8tQXtT/HdrEFE9l9pm5e6bw6X1/wxbo/aMlXW75a8NWQr7p8VZFBGvWr +yWb2Zhlo2U9ucv050G8Dv5fv7rRtyGFEiiD7FzvmMEKzG5ftmW/vubyx2//b +Mm1edkXWuqynWRx78EGqVK4cbLjiFnm2b7/diEVCP/zMBtIFT/+ZRo9e3vBN +isi7Q0vBa3TaB9mekiVLGu2jU4czhAy1t+g3iX3q/aigPS7b5Y3dt5rIKmzi +ir4+AuIwYwxrdQ7ynK5FMFe9egtTNrF9uy074uF3LRDMN4tlzN91ecN3etFj +PnmLozqCjDVSd+CmjjhyMYqjQlTf8nNjef/HIoz24pc3dmNrZYaUBFsHERmZ +vBKLWhOyuctDXlLq2e668dWfr8F89eOrC18JVoqs5JzclShTa8rYnekrJeDV +INWwefPm4A7bpjlAn+TKS+n7WXu1zmk0+OZFP10ZDHNbyjQ7FQjF01L9gTUO ++Izp6ekKBlxjGAeP5bwSutkuNm+dd2Vg9HvOKpGyUEQOFUhyde7c2dwpDDBG +CxcuDBlAIceWxsItmweWuTIYdicKs0Npbxz3D+S4zax4QIHif5Q/IXNufhAK +WYHZPK/zlcExu6njWjp5MELgkUWCwCsuEGpqBkXpsap/T0+PTbOvDIbeJaSP +MRUNPSKSYbdI0cX4mm6Y0m1KiicTxxf70EF3vn7hayJf0+z/w+xQP/BVS4bp +OZNB3bOEUc5+QWPufd9KN112vA33IXNQxLZhkUl9e4WFTh+mpEZWRy5sR6Xb +lb5yWKZ+Lv304dDlvE8nY6Wpm80pFrZtID30r9e1bJ7+ni3sg0g7acOVwzKN +Wb77AwLLL3FhTsSiBKPGoQS5EKyReg64mbZ2/UzM+MAXqXTbUldHGna1jP7e +tUzBwJKQxpIKBvJ1M2xdn6NM8maj9s0s5sRfG8q0Zj117oSjDFKNmmdQyiDP +gJwGsuXRFpaTf02htKbRlNaC9eXB1VdHmZ4Sp9AsNi8VKiB1efQohGPUqFFB +Pmr6ekfz52MA9cwRyl49u7j4n/PViq+BfE3iK5GvVXwt4msCX32tfH4WGNAK +xRUSnbKin+nvbMMcNP6XftFmmGizetanTx8zv1i0man+v79pUg81Elj3QycC +8a00etRIOtytjBklddynpk4gS5UsVwR1sQbFaPTIEbS342Omv787PG/H8jyM +hV0scEX/b7DNb5nslBFsIfnp+7uVTu39m443yU3pCTE0Z0Djq4IdGJ80rCed +b5JNjPL2PyxDy/iosABjyd3/BDvGPBhDgwcPNuuLqBNws8lHC7rVMRhKScjP +fJJy9XyyarDpL/3rGJrdJkH5BCaiIwolL49Pli9fbix9mE9GMZ/QsDI28fPw +1fMJ93eixa2mv+PN81/EJ8B1D1NCenl8AuWEJSXfXz4k3uhUfA5KZyVwLfhk +IvPJWSgTuMbvP64J6rwmm/NVpZLMRNF0qmE2+qKCKfakqIpRYl6/4qs9X0P5 ++p2vtXzt5+svvqZYINoE4qQycJk+zOS9suEfCss0ykrvlS+fCYMFWHxIN3YB +q6KxaLN4+X9+Ez/arLki/Ve2bFmTg2ICD4l7WPJjnf5DlJ5q5mK05BXAnaVq +FvN+tffeovNfSkajXY2nneYuVaoUFSxY0Iyc6X8Dra+hS/Bl4cKF5TVJVmEh +hTJ6i87pWOEt+7c8Vww+o92MFV/tedEFrfIgFRBtUf4gB36PY4VS7d0/Ax5j +EYwaD5taNz8YoV6lUnS2SQydaZyZ6lcueY2YhYdNEB8uqWH2QMHGKiYCRHgQ +l84pWD4FuUKc0j/uEdP5pgbYZXLmmnBK7YqlKbWxcErHGk85TkGBToECBa6E +U2DpLuIUrA78LLgZFPew/dtNV80pfcoXt9FqPrgEpw8bdUCpp4l6iCv3a8O+ +JJqYKFu1bP9d9yy1umex1T39rO6pLbrn3vr3hoK0Y+KbYdTFnXXiWLotJ+V3 +bokXtSe//PKL51e8zn4QEiJpbdhzPb5XY6mrgEymhimWe1KWxxCeHtnuSIlS +ydGjR5s7rQfBciRC20OHDvmY8o+mooh6vmsWMrS8+eqxFi1uGzA24m0HFzgc +y2soJVOUYTkTcV8EyhD2/1RM3l81+JqhDKmkgnlkYUDiGAcayv2wTHQhNVFP +6UHLK6uoeL9NLir5+A4SLF8jRtvHfTflu9a5mFP2KGgovxhp9wqFqQlnJykp +yS+RzGoo08IyCWVoauiqsYYFkZ5vm9VCFrhfysouoN+/k8F+/QCLkjJYTnq5 +9csXO/wjgkiHf3ggDj9yQdbh7zq9q58Hig8QD7W6gVlyp6IBNYrDsTWLfBER +ZPBt2RzisXg6majrXQLd+l81WrsKyGSlEOtsiMjnt7I5lJc8loW14RAdCpVg +YYkOpYQeOtYAexI5WmMoO+Y3kDJtTUk2fq4CxAjJ6fWISo7iDrWfqJkN4w41 +GkWKFDHujMs4zqivVLVtV0dSt9EQhdmo/QBZoayO7nRj/vDDDw5LYbq+//77 +kZhj+6cqnlYPwzZDs7cEq09XAaPjukUdfYLd0xWCBvOG1XSlK1atI+kaY+ia +Ec9OYttbEGZcM+RFgaT8T+/iZuFPijOQ+0CVwOlkR6WNezdenILCYAMCSUEh +FdWVr2aBJGBtCurEGV33gQKxWco+z8DRC6MAWTjomvy2DR4O2lBg7PImfZ60 ++qeM7fLqwHKUyUiTVBH6Xt5Lh0PxMepmcKdgYaUJLjqyWY4ycA263S0hxNZp +1xSyQ2tlfbRlDqy7KGRIFTZFpVQIMhSXaQbFQbZ7seGZ0y0LgJbXlJRLuwu+ +Bj4f5mYEI3BMUSIXJiXcTrQ5PfD7t/L6+Jpu9RM7j7CZ4pogDqtgSPljjKXd +dVjkm1HXGUbcZta5F/kHrArOdLjXvH5kybhrRtIorH9EwbYHtv5GtJYbOqfB +AFKjJRqX8AsdGKtJINa1rf0fwgzXtaqM8fWwr/16P2YfX1j6T+yms4cnVFE2 +RLHrL22o78PS4sVsk4nSmsYi3pZeb7g6iJBDxEoqTG7yZoUIpTgovSaJ7R27 +oA4YJVKOXaZ/JZOZ/Jkt0bpKcH6t7xWR515kHBFKJycnOwQhS3qRxJ8/RWc7 +3GXWdVOWTY+1pLsCiGTrbHp6JOMOsutlS3uESaf2NUy6i6wElulg/TsXYqfi ++DUh3dGd7JCyWW2WFTGAQoRdRVOl1DCCdIjytm7d6kk38weJMNvXsKS7QkR9 ++CHRihVOjpb3FBGaaA5rCCEhh9nhCsO9JDGDYirHeJGNs2JZz/7/iRfR3LVy +Z9EJH1hP1Ig7a549rHSRGke2CXe32LYNGzaYmDGCBOdP0vlOd5tJH1owObMF +ComwywBG1qLmz3dUWNFXeGLAc2GORS7yCXYc4T0oFcAXqNeJAGr1UKkQgVU/ +e0zrtuBuosrxMoHT/UZI1lCT2wSwP39WTC1ZssQsn4cxpSVeWH3T59Iny2LA +lk41HWtcNprwgyC5d29vm8CxUDS4PAFRgzsGm7JDYMEPxDJ0BK7gB3a7W7Wz +QHb95ULmuGmEVV19nr2QcIiWjxw54ggXTvE6YDaOM+5YSpNClHH2+BWjCVEm +NnTqJhEkOtNFgs66c0sCLXXCRoMHHpD9AC+0fMEUNGUyxU2xWuYkQ/NVZ1Cd +wJ2OMdnG5Kiw9ZNFJIDJQq/qtjY4fdAVfnXHq/l1rWvaLjPr8DKkr7LSIise +XQq5UYncrVuEBRz8snXpeusAc+bMoXfflRMaFBDIsJY2h2XYBfEr+sZaWBAJ +oC5CVq0dav4JM1m1xz0cejfJJMHJ8b0KUMOGDV3orQDBi+vatWskG+xeZPzL +M60KoBIk66UgJ1aQgx8cN4HzH877imE2Lkoqh394b3C6EWP67YdpZn0UKRVH +p9mNdFnZVfVjCQsHi4TwcmmIgQ75Ib/0t3KgDjF//nznqSko69atMzokglLg +XqXUpomXwzWobcU+sBUrIg4kyG5Oy5C6Rsb74d1UqUclylUrF2WqmInyfJKH +ag+oTUnHk7KHZzDguQtnAC2IYkZAq1tYEYpe5G3tW24kPL19fko9kSK9XvdP +Awtk6AbRCTsPTh+nbPURsGcyrLWpo6C7lrGpAvn3cHyFxV0zie73WlxcZ87Z +wFkKulfvH8DyW3fmNpN+RpZzfUPc4VqBjRQbWJu6iJ4oqNcgfMuUS8YGEijY +xDVvnscGdIDSZUU/hQT7n3U7h0ICMYxMxCH2Wie5T5T2nErKbCHBVlxsssGp +DJeGEO5qL3cVz1zWOkeYLkj/qaFWumg6IELcdNG8U0G7hyf7pSFk1iy7n7bA +hXNqi1WQJB0AHoOW5+jpBdhRoMGCQ0l6qhTaA5gNv7mDDnC6ha3jcjvyFrSx +2dm3IrKz4IEtod3zqHmYIOePXID5LFIpeDo5q4NSDy/RLVSayH3Q5uLGhJOt +yAOj+FWhZEtrtm9g05rD7DybkBhXzR9u4c/x8qyELT4IX8ALpw/r6yhZ1F0i +Ogx84sjMkk0w9H1KhlozXCeEPD4Ofog4bESzf6PedVCqW42NrWG8aQbeDXNg +JWUkxNC5ljfDU5dcl0s208g4W4jyjs+osOWE/xrebYZNigjh4Zk4T21+OwdV +oTAz9Hw4Mg2Kg8h2GMWCvXfaJUo5v8B+vgicsNbs97S8vnaE6xU13Ug/tc7j +01xS/dpIzIvbPgfgUf07c+ZMHz6lbKPUhOx0Mj4vXncn0mBLiqVzeO7QAwsX +LnSAAnikLI+FysNpcWebdXrDaTicNKE84lgR+Oht1442TQjjAzsAkNzSYUA4 +3UIRxseZHsIjO6eOcvwQ2qtnDyPQ3Z/QROI6hOWB1WejXALE5kkKBMoOixYt +arSKbtgEV8HvWb169UXoO9EoN8oIb9fmvcvsLqFbw0RBkTxSUdDf2iscakTv +rMc8BtXVGP66K+6hXm9Z/fC+qweNi4tzPK39YaVJ9006VLFiP/vTs+b9A9MH +OVTBoMvJI17zGo31iM3NTQ/jA44OUlI6EjQv0lTYz+/xsVV2oOE6vsfhY9+f +3COcuZtRxaS9YjNf5cqVI/CxceNGo4mw099x3rJeBvYN8W/5w2JQ/YftzhfT +GfvVcVAQ6zTLQQzBpllE2OXCTkMIAlTTwlnj+blDfcDn2AqGYxkU06d6iWt8 +ePrPXvMcOCDBIPmdnTStnqOcvhveQ61j6H5uv+c5xlRq+Chst3aJHYqygT7E +tedPETXMeaG3Doog9TJr1iy3tRel/Ti9xMInr0+sJbNpjg3KGW5CrBvsVmNr +NkPqRfIjYbxhtQvwh/GmG6QjszMvaVpRj+3AkTz2cAt/QE3/D+SxiZ851KHw +CKtMYdRhuzjMkl8liZGNkMxyZ+JzUWrKXjchBK/33ouy7QvPM8JGawRs7NV5 +gk6xu36mf+UgwHkIWEVC/fH1oYmijSHzIfTy3ubdfc2fjEBp2bJ6Lpo7i4TZ +T2yjWfBsryOBRfRkCB0JbALbAJWjz7Fa1WSXOwYFnIhdTeyEe47/c7g8B/fF +uy6QZFgrdKmvo4ARQb3XQTHQZiLFCZkoY9ciNyG4xfBv2Vq5Q1iU6Sd+4qDE +TOC6YKdFGG+wavy3EN56hRd5tEvYPpw9chHTN7FMv32mjoQ0k2661pGwHwDq +KgJvWsD1Z0iEsW0Yh76tXHnhSVL168s6awQEWLjAQiYEYvss7RlH9GClGkpE ++Qv7VrGjhl3Wi9MsHHFkHNrggMASKo5VcweLxcgWWajgrnfCRIVNMOxg+/bt +Qye67TeqxB+zwP+uHCRz7WfWjVR0kKXAqZk8a4+CHvfLo5M88VjLG5966dKl +bhjYLvhU4BHPirL9jxZ18nqZbZldP7UMYrMDqOrGjP7+Q1+fNm2aWUjAWSOK +NxjZ6tWrI6a/GG8o+UjZmsNBKcmFCKZfP9nirShGDeMNKp2No5sQwk3sksfB +Bh5vA2VC/f8NbnRzkk3v5s7qkcL6BjbYIE/Y7jYMqFPDjgywPxhQvVdsMAMG +OYLxA4aXXRZ3dgMiyMGBBeTPaHB7EqfUdTkJ6EYMAwzqMKjZhs7ARmE3DExL +m9yyNJa0QW0tFhKsu+R5HNtmOhUULO6YoxPCnlmwBLvRLhMBrMLdgFPIbKGD +pS61mVc48BlpRbVjbBEAprrdg4yhdowVJrAvfPWsocGgj/r37+/TL0NetbzW +wfkK2IFQosQFJ7FN+MiiqU4EmrBhPIwmkP/RRx/FaopH05HtdDY+J6UlZMHG +0duF1FrqTYPek56Hve9y/TBGEH0oIY7StCMYYtABJpIH0qdTE0M56Yx03fls +xMPnT/Vp7PECcZHuYrHQvrEdAvsB4DSyr/xfOWlB27u1GfvXQcrmeT1/xphs +BtaScDhIYmKiIgrEuPvuu42G9ssZO+hM05x0tun14B13MN+kOLfCpI/ibDLk +J5C1YRqGsQEnCNhgwXAdq7AhqMlIUz8gdCq0Z8ozRzxTbpygPUDxwpbhlJ70 +9HQdD/t3gCHsJOegzGGIA4ajP0p648T09o5hcFSPHKFkdYMzbMj2I1QHf0VY +oQS7OXbNaAl4s7E/MdCU7cIvQNyFigSUe0NmkLKA2nQTP7zJYPMcyq2TN98T +oUqipRDlVFKs7Rm5YJyuAJmGZkSOAb4C2A6VNgjHXNid2M3mzh8HSlWdIN1r +K8m8uzXUulv9ywQ6CfjekBMQCkKNY3bgO0I+sXyFAzHcJDhET+n8gtQw/97F +YRNaSw5G9kr53HFW/4WFepsnSw/ZjfrAkXP3szuBuErRhpUQnPOG4z/YjLoB +WThNPgiuUwhrNtFL8ddfiDXwANgDGMNebIQajz32mMHavFDe6+wfHWTh+kcc +zpHhMIQUHg4qHDTIOhaOMcAu+AuTxc8SdUSmVuxGWCxdzkAOB4eBQN+wqXar +HGnnKKWt7E48PbeH114TcAKCucujj85uHK4i0x5gpBH8oXMOllzHyI7acjhG +maY/EEUg+YkzxiJYuaXNJC/upWodSgCbjXAoENPIdWz3ch7uUioCS4iqUao4 +dKiHGIfUmKzZTVAf2gPOVVm1apVBBcul6xibuDvpolgfTTEiPybn9YQgnmDX +hrqzaaF07QH2Ap3C6oY73r/CWLy0FjkAhsNxnTpENp9p6aouhZ5oinOfHF21 +DAlnKJxJ8aBIDHWk55sR6MB5inDF5861ydIYKbzVbNaiDhGWVsviVg/TpD2O +gL7I9UWNI/aKwQPa/5drxloXeB+q8VSSgwEnbOGoz7g4uxQQ4zcrYkds2ln3 +qKYCe/3LrRogqL7vPjkHLCJX0/Z2eXbIq64Ze8RxugeAWD/GYRjrPji0le2t +iIzzYnB2mGwHCXUO09XNIqLHA7m0eZndz4cBzqS4zlF6Yk+Uc7PDFmukGqE+ +t/3uvjuANOLgV6SXCbV0DRPQ4QQqtlaeymazUZQMduqQ6+Gg3WqK7Vy7FjgY +gGHEHKzVtVc9zgMVOm4KinVsjTx9WB/F2TVSmxBCwt6l4h7h2jQhPIXTfV6T +XmbUv1Ow6XwqxL3QifjrrAQXPSAD18ymzw+ucV4lVsjtOfK36KPY6gauwiT3 +LhVq2aMbJn7ivZW0c27V1Qbu5s6hTzPuPxWHWnGOP/PHqdZ3atxVLMz5Wk3c +90kHNs5sMqlMhiVpvY6Hs7VxTDOzjR9v80TRMIhQ9/+lPZwY+akIZRccBZRm +saVUg2nSA3kdheAZN75OHXAXoyd2MU0oWKFtMx7W5tXDhEtAz/0rrr9w9t2R +azj4kCLRlMnZ0pS+L5hTGK4LYeZ0RxG+w4PiIg6Gt7jNHxb+ZtHSzfzWbtDt +M93Wfv7dgYjDpAAi9ugcWKVPp06TqpJDCcWAfif/ICY7FeTynKFssVgMdjUs +BnlGO9jYNrQ7G3FiU0aaX8re8JtJhQJlpyZ+72aEvekI1Yj8qopxU6KE0OvH +ZNPekYvV3bXQtsd2uQpPWFwclofzyN2XDBCOt7Lha69H4VcFri/2FlJ/lIK0 +PV0qGEgjTNZdd5nqmAL6PFQpIiQjSQ3N+WRuZjhPDCYVmN44TnPk4YO+HTv9 +ZuukWtwAK+igCXn4SY3vxPE/XvD1oHgcX5WamiuSZwEqju5mX8hTYRvLbLtb +bDBSxuDJnRWH5NKUuga95xpnYXdrkg+NcFAuTiyeM8cuSsTKeWwJ9tyVX96E +ovd9bZ8tcbeyNkNd0EIdPt2ef3ckgUvRyAo8RHnVYH+E2uyG4hEgYd+9ZiRJ +IOSo527QwIOGWk571ICZ5vE9HjQg1KSdooQ0W6a60wSRDAN1cVypQ9mQupL+ +TbArRqzPXF/sjuu+GEPipPWh7EgPOar06FELq0t0IDiQI1N0GLNWKbkD01UW +CW12zhVNgB9oWyz24tQBWaCkE5uWudFwmj7OnRw3ziYYuMs/muB8N0uE+8Qq +HpevV5hu4f8i5m1uxRIFS2dSbrdd6sH3XopziNz8LFvGDAKHlZaqSrTjB8gF +z3exu8tRH7e4kzMjWPfFKYwZGfYYwBySolEcgmUw8bW/yKIVfnYxlKPKy4II +nkE2aM8SXdzAhwVAsv37Q1AO+J4l8kYrTlnkVLcT9mxfeFSbJ4mJAsk0Z3N0 +Z0TOxn4RwlJOz3kzQI3GiS9m01i8KWQAY2hZhM55cm1Enj61hZp5u9zikgLJ +zDy/VYYMBUZFg62UXLjAwAuRnczQV5BzlFOvQkffI0yX7dUWpMwCgnbDl9nC +vWb4E24WaWLoW+fws8ArF84CeDt33B2dgLUhOSUm/D2S/bpO7ftCXURo+BMJ ++al/XSy4ZNgzx5zrY0+vN3eiv7LL+nYRnnzHkqhrEN7FIkL7vJT88wf0efV9 +UBxSLZ5VhHBeC0ZCMXFdICFjq4rFTT0jj2WTj6TUfJ5oTBUxfuA1dq3PjP+S +Pn5tQeRHVhC/WXfnLh3mBCuHsVXEK4RKg/+NYBmZk72Jeu5TWLXfpEPPG8DD +1pYCbniJcD04qp3Yagg9+vAZHDvthwaYUvBggyLnXSMOx1duevcOPY44B4nZ +0D5g8BniiMmTQ8/Blm4xx2C5r+agvx9+kI9l5VZQsb6CJfWSJZ1HgbW+hx82 +X1IJ5TOi5ZNJ8okn+8mf6NB5nKGPOAAg1HEkJoYOkJZXk5NDMOLEZHjXu3fb +AMj5mvjkFgILHCfoPkiUWRIwNj0B3Q1zx2FCxKcVMPDs2faTITHGG8DXG+Sj +TL4nJDO/+UbWfUi89HHjyCeH1wuacXpwRoZ+fwRjIoCdMiU0C6QwkFyeMsV/ +hgmSg3O6k5IsNZ1LDBzKMRm+RCY9xX+axCERMQNS/Zs32w/3iCXFniNYGYeV +yINVXaUFiotsRa2+jk03KMrCekXo9T8G7qC9qw9Hvg4w7bd87ATUvYKo6LnM +4jJmNYBhaQL4MT/gJAyF4Ov0aTcn/F2+JxV8YNvCX3uRSCaLUXk41t2etirE +QqC7ZYuLv8OL9/pREviOOCHd9xVjcoRYIkKsvnAhuR2OkCMr8W5FFuoWn/sh +9aidG4qCMJyQCmFliVFnDTCA2ZFZxk7nDRtCK+kIoVAPCRHeuTPiU244cHj0 +6KC6bUO0AaKwcnRFSLCacMDA0m6qoAgYAKhFtnHfPtctfAyEPpUquW5h0FFr +BxnWpQxExPh2y5EjCmms9I8CVuAcB5SwtXYOLaQN5UsYMi4uou5FOApJCKzy +oWrWsgP6s59VMD/Yd4EgFpklfizWktkcdmyjLPOzdq3M4/x5n2fH2PiYDFA8 +dmx1CzLUCTB2440CANPELTWB9+zX25z6wdd3rKryS1IoeMKC67Zt8lwm1Ce5 +HCL+gu7xEaaUFB0YegGKCR9JgG7Ad3L8mrpMYeBA3xY2D269FPjAqjJwPnKk +QweoG/4oHFwdqOaVKy0fWh8qVr/J5n5YuaH+MsAYUoIrI7rgGofbYfEyJgbF +qq54BB/Js8VlH9k2yKP9dp5jZZTTcOfmOPuXX7bfaoyVOWTPLn/DxZ6vky8Y +EatAtGuYJGATNkB5D3MEUMAnyjSYSP5DjjhOUfvGQ8uXW2cqMPD9jy9Nhn8P +ov4PMStfdg==\ +\>"]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"B2", "=", + RowBox[{"Show", "[", + RowBox[{ + RowBox[{"Graphics", "[", + RowBox[{"{", + RowBox[{"Dashed", ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.35"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1.35", ",", "0"}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}], + ",", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"0.25", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cos", "[", + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "]"}], "2"], "-", + RowBox[{"1", "/", "2"}]}], ")"}]}], ",", + RowBox[{"0.25", + RowBox[{"Cos", "[", + RowBox[{"2", "*", "\[Pi]", "*", "x"}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", + RowBox[{"Axes", "\[Rule]", "None"}], ",", + RowBox[{"Mesh", "\[Rule]", "None"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], "\[Pi]"}], ",", + RowBox[{"2", "\[Pi]"}]}], "}"}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"Thickness", "[", "0.002", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"Orange", ",", + RowBox[{"Thickness", "[", "0.005", "]"}]}], "}"}]}], "}"}]}], ",", + + RowBox[{"AspectRatio", "\[Rule]", "0.2"}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "1"}], "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"3", "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"5", "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"GradientDisk", "[", + RowBox[{"0.65", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", "5"}], "/", "4"}], ",", "0"}], "}"}], ",", + RowBox[{"0.05", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.35"}], ",", "1.35"}], "}"}], ",", + RowBox[{"0.28", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", "1"}], "}"}]}]}], "}"}]}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.666100567894807*^9, 3.666100597072871*^9}, { + 3.666102062995983*^9, 3.66610206359197*^9}, {3.667306036537244*^9, + 3.667306037826198*^9}, {3.669468948366453*^9, 3.66946895111517*^9}, + 3.6694690182100554`*^9}], + +Cell[BoxData[ + GraphicsBox[{ + {Dashing[{Small, Small}], LineBox[{{-1.35, 0}, {1.35, 0}}]}, {{}, {}, + {GrayLevel[0], Thickness[0.002], Opacity[1.], LineBox[CompressedData[" +1:eJwUmnc81d8fx21SZFWSihSSpJIkdYSskCQhUVZCRlS+EUKRnays7L0yL3e8 +P8nMCNl777233/3df+7j9Tjnc96v9/t87nk/z+NxeQ2tNUyoKCgoaOkpKP7/ +bZQTOL+/T49pt+2TP4CwgJP8N3foMcnZE1J/dwFx26Trvd2gx9T4XxjdWgf0 +n/r1bz9X6DHfEi69ezOA2kTLa2YW6LGe0MqkrR5AV1gfUAjO0mMtI9w6qjWA +AhZ7xY0m6TGtL6kC8j8BzTSZv4oZpcciKqyeTAQDUsxbT+gcpMcUlx3brtsD +Sgry6OLoo8eWbJ+w3bgPiMqOlVW9izze/v704jlA+g9jFHza6DE9B4dEkw0S +wl+94FzZTI8VGT3tjaokIU4OXAHlX3qsbKwsIjqQhOxX5KalaumxHeKwtLUW +CYkU6mvn/ybn80C2IKmViLxDpv3ngB7zUvpxhjuAiMbfOFScJ9BjdXKeJZ/l +iChWPOhKbAE9Fu+x9vt5AgHtHj39sjuXHrs94iI/oUJAuusZP45m0WNbjsGH +ApbwiB1XccgviR5jeNjy3PoKHtmEa8hWx9FjAxBz63ddKapz6P+POoYemzjz +fcnCqBR9vrE59l8oPSbBE8ux9qkEbZQK/zL1pMca/mPK+hFXjDQjS9bj3Okx +y9Gpy0o8xeino7xIrws9Vu2EVKsji5C51LPIhw70GEnt9J3AL4Wol/jtjfRL +eqxrbOLEU5l8VIZtnee6R491NPkE5b/JRKfiPJ89UqDHzN6xHLbmyUCOHznC +AmXpMan59AW7qjQkJiNCQy9FrrdTtuyxgyko5ffzvmVhegwreWl+0CoO+VZW +B9Uz02OxYtYG7yQ8UZfAnfhiRnpM1HI0IqTZFQl+KfkZR0fOV/b62u4/e1Rx +L73xzR4dhnHDU1Odh7DX6MN8ao4O42mQfh7O4Au23WreVvV0WOn3868+eCcA +JlX1XbuGDpubW8+mYEkC5hiUJlNBh+2kWbzhCUqG9Gei1UeJdJjzr2Ppt3zS +YGSUlQ4y6TChnCPyyso5oLXQ8vGwLx02DAfNnUYKIPGB6tdNTzqM6oNGmbZz +ISzlVcQOu9Nh3ImRfcBRBAFviqDYkQ5TEva80CBeDH1tIn/j3tFhY3rjP+XL +ikFYIqXPx44c30shZ0YJB9VbYbsGFnTY55QsY3PVEjiqx8Kk/IIOs/NSespZ +UwImRC9uMSM6zCG7WjNWuhSoXP+7yfCEDrt6RpNq6Qwe1AcXlZe06LA/6Zfu +h/nhIUbGXLdHgw6b8jNrqF/Gw03aJ//lKtNh3dMXtbLyCOBt+s8rQp4OU2Yw +T7t+kAgdVffCPWTosHduD2uOGBCB/3x5itVtOuzMe8J1yWwi2HtLFWtL0mFv +A4/cCN8gQtl0QaWMOB3mrf6+je82CVhVL7YJXyGPL0f3NzmT4Fl20uhRETrs +yZXwmbBSEmQfPrVKIUSHve78amC5SIIdm1Ca6XN02HKnuqk8H4ByMzNHKy8d +5vQ9YfukOkD4VU8+OEmHcdzNmJh+BzAevH8l7TgdhpZoKtMiAMTX3sl8O0KH +PTRo2nmAA/B4vPDgAysdRiEQWdXfCNCMM3v+gokOi5I9cfX+CAAP16DNgwN0 +WMyv7lPRSwBpQ4aNrrR02MW0GDfNbYArGSOXcinpsBdsAY4B+wAEO9OA/l1a +zJilwlaVrO9KTcwxb9FiLRvuVv5bAA005mq312ix58ducD9cBNCun856tUSL +7VcYVUYNAwyGvGKKnqPFLs6a6rxqAjDXn7esm6LFpJdlDatKAZb5beu2x2ix +Pj7EnP0DwGl+6cKFYVoMi3oldM4VgA5n76PbT4vt/BXmu6wHEOC6NvWlmxY7 +mO1O3X4VgFPJQbmknRZ7EvDKnpseIJ51K23iHy2mvspMoG8jQUH8rplCHS3W +4fB+ZdqUBLcsXKrfVtNiVzSoHFcESVB5lVIwuZwWo/jsR1k2RoTOcppxGiIt +xnnQvqbpEREM/T7Li5XQYj1fNQ0E6Ykw84gh2aiQFhtrN4u0LCDA3thBk7Is +WizIjJNqlooAnjl+5YtptJjg5gs2mUQ8sDgcPsubTIsVNbQGFt3BA98B9mGX +GFqM9wYp45ptKShe4Hp+K4AW2zBsxIkm4qBpORKz9CH7P9lfwiuIA13CSZ4o +T1psKnTzXk5qMbxS5e3fciH7G73GPfGjCIKsBZ/ibGgxsx/WpYNmBdCTL65z +VYMWEz19UKhsNhtMnHA4QzXyfgVzGHVHZsGcnCRnkDK5HnSYaf3dTKBsu9W+ +IEOLeZtwKOz4pQH/htyj7Ku0mFdzquHYSgLYSD18cP4ILSZVGavcEBQI3H/O +d1qw0mISFKbjF9V9oPoxxfNsJlosVvm4L8u7T3DaLsvmKh3ZP/805/B/dtCQ +Rh94a50Ge6bFsGr10REJHyM0POikwTqaA+N1OWNQR2KQVnArDYaxnDMLdYhF +Hlde9rU10WA7Ivdoq4biULfq0bknf2gwvSX8P3xOIvL2sGEyxdNgLPeCLfL4 +09HE4lmV99E0GKnpofRx0TwU7LL9j/CdBpO60EjpXZOHpJman+yH0GCWrVna +r5/lozBBFwsPfxqM+8Nt0P5cgOQNOr39XWiw263CPjq5RWhpJoetyZEGM/R8 +hj2/Woxi3n+OYHegwap3d68r5Rej1ZCr6eE2NNjE4X1D2zQcSqzzq4l/ToOZ +ylXaG7wqReq6xg9Gn5LXdz+UGNZainbGJTsFdGmwoSv1mZcl8egh9cREpgYN +xpk75fVoA4/2Akk282o0WKNYd0nFAwJKPxWycfkeDdbyaMjNOIWAqCRlGIpl +aTDB3rviFApElF3FGbiJaLCGpc3I8UAi0n00f0xKigZzy9H91txGRHTDFT+c +JWgwq1GlnGJOEvppEyXwS4wGk/n4kcmf3J/19l7nUF+mwTwEKh+rkvs3g6/S +dfmLNFjwAl3FbAUJFRznAa/zNNgYtzmX2ToJPUtZk689R4NpRMlnFp4FtFeI +SyHw0mBiNwNTuB4Aiix/z5B9kqztU+o9HQBJ/JN6+eM42Q+PQe9aBJlfBvdq +Ao+Q4/vfe2aIA2S/gAm5sZL9a8dmVDQCYt1387FjosFwy7MD3COAspnuzhgf +oMGE/pDmjJcAqXDTq2rRkuvfyf41chvQlFBNlgIlDfa5EHsAZJ7yvOHDfGOX +Gns2mOz1dw/QWUVVa6FNaozZufFJ3QagMq3DjSdWqTFhaXMomgVkYNIkyrRI +jdXlR70J7AW0Y/ft694MNVbQLMesVw0owu3R0vwENZa74TPGnQ3o+tdjDwdH +qLFD8gaC7f6AWn505jcPUGPenytrAswBvc6O5CjvocYYi7l8Ve4AOkx8+qaw +gxoTV+beZmcHlFl7ui25hawfTFrM9pOQctegeHgjNRac9297IIWExicSwr7U +UWNqMccC1s1J6AydoI5lOTU29jBCqHCIiDCOqZKnGDX2Njy00TaMiJ7yZXLd +J1Bj7z9s/nQivw/h0qI9lwuoMcuht7G53wlI/P6SFF8uNeakUoNWbxLQv6cF +0RyZ1JiQfZAkdOIRs6OEwXoCNRb1kkPxDAMeZX7Zgokf1BjV/tfInvBSpBRO +4OmKpMZMzWsq9c+VIo9C6SHCN2rMvpE3lOZKCdqaVzRxc6fG4u01hvZPFKPw +PcZKOxdyfqC1etKvCF1jquc3caTGbAIDLqVuFSIboQcTCnbU2N64TJh+bQEa +NdaxYDIi+zNVrdq/m4fc7E7U7emT/Y9c+CoQ/RPxuPUKL+hSY0XnWOg8FnOR +7o/nc80a1JgcR1Zg4Nkc1Nj50jZchrwfzNkbZ63SEEHt/Tu+M9TYxLHE8f7o +CBRcfldQ9xQ1JqrPfsMuPwy9kmTtDOSixgQ/LFzEKoLRKf5UyT02amyAOszj +Xrkfctlt3e2gpsYwAXap+8JmSCbzsof/KBVW53n6hm1WMHCd2RWrGKTChC86 +pt+KDIPlsOrR7V4qrNw68ljVpwhIdDdQeNlGha0FlZiUCsQC7RM/RrkqKmxq +xkT4YGsSVB+YDNxMpcLeO57ytVTKhViXgjuiSVTY7XHyGTGTC/+tuiyZxlFh +A7Qu+m99f4LQ4FHNlu9UmPgFpq/1FXngg5M7luNNhWEWsqKFnIVgLMJSPfqZ +CguMn5l5nFwIUondDtzuVJjmW43uHdEimAl43fXFkQr7+ITxOOWtYlB7ERtt +bEmFjbjcXl69WAL8vRZqkWZUWAGLiFx6XAnsaVzfbzKmwoxpl+f+sZZCzu2G +Z+gpFXam3OOf0ngpeBV8Z32rQ4XB+zx/BxU8PBMyKct8RIUdKvVOH8wi97ej +O3xcalSY6dBEwUUTAkz4VLWoK1Nhrr7l99dLCfCL8tsnT3kqrITnbUr1ISJE +vNMXJ8lQYR5+o69CdYnwevb8+MptKoz50drQo0QiKButhl24SYX9bKJu25kk +wplOTNHwOhUWmqqU8vECCf6VP07/e4kKE6gtuEMZT4IYPLNY4QUqDB8d81Kw +mwRmeRXECAEqzO7bfpHqYTLPpDkpuPJRYaOTfvlmtwF2flxtMjlNru8ro1Jb +M4DK0CndeyeosEf0Nzef+wEE+sWNiB4j7w+vr+3VLABdD22ro+xUGGeq++ZA +FcBZx8Mb28xUGM6vS8q0F2DOtvLjICMVVh33hQizADizDwer6KgwrWTdlqkN +ADcDsZBMKirMyEvr5+gegIrW9KmgPUpMNZ1FL4fMU0dV41PfbVFifGJ/8xXI +/DUgq3Pl6Roldt4o0DqHzFPpkiwEmSVKrLJ95uTEEID95aq7gnOUWPJY29mV +BoDbgs5/maYoMZ918V9thQAMp6/pLI9SYvuUJnTBYWT+OzIz1DFIiZXdcukV +tQeIOpRgSeqlxB6eiaHJvwdgSq27ltBJibW2jTLxngIQ3WJx/dJK1hJv9N2m +SbC1UHXAuokSC06+crE/nwTl487fNOspMW7S24/S70jg33ftpGQNJXZJKeRy +7jUSaLfOJJ+uoMReBMkNSsyTealMt3SKQInV0cVU/n5IhKISVrlGHCXW9vy1 +eP8eAVxzq+sLCygx2Xb2o/JJBOCIER90zaTE3OX8mC+P4KEveNbcNJUSM5SP +cGpxwkOqT+LKvURKbKK+ep+SFQ9S/7ExHIuixBpuMWzeES4FY805kSwfSox4 +jWnQQhQHIveScEGelJgYj/aGTUoxbNzRk3Fwp8Tej3wz/cFVDL6X/jySdaTE +XA+W3GtZLYQCxmSnTnNKrKqU11/WLR+cKZ/SgSklpn+SR0KsNw8UN9gDEw0p +sa2ySPEj1/KgZ/RjgrUuJXb0am3dkZ5coPn19A+tMiVmXyC3rsmRCY/eHeG8 +cp68f8W81e8pY0HmKu8foXPk+r12VlZeiAKReWEnPl5KLDGoU46z8zswvJAb +4DhOiendqoo5/OMblGrZpa4zUGKBEUVShoJOcEq8SYI4QYFJMAs/oboWhBiX +eqYKRygwnmNtQdKPQtB61kRU9gAFph11PkTwdThqPEdBGdtBgXEmyuxSx8Yg +tyOXatyqKTBcscVRCYMkNLbiq6OYSoG9PlWRpfUiFzXnhh+8k0iBcdHY5Y6z +/0RgmUi8EUuBpa5SDtYRf6LwETzvhXAK7G2d7vz5A/lIuWVqksmLAis1cJs2 +dCxE4oFrkXQeFFjfn4uFlYeLEJ8Kldq+CwX2zPQPd3FsEdr5fTxv4R05np1I +0nBxMcrJV3z/7wXZzzv7NxwlJSjKWlO4zogCGzvx9LHbpVLkdeFZX7kBBcbg +tF7YHleKDBPeyRQ9psAUG9Ppl/7DIzUD95Xsh+R426kXQ/rx6OaJgOSU+xTY +QIXlzR5pAuL4lsz4XYECMz31Y+j4GgFR3M8jfJWlwLxGB86sKBHRLCPJyhtR +YFGdu1E3vhNRV2UNj/tNsr93DVO9w0RU6dba7HidAit38DFoPU9CebcHPeyv +UmC+9+MOHLEgoR9bM+KvLpHj6ZgWBJH7uW/RxoTJBQrs1Jf8STlyv3d4TROp +L0B+Xspg+QwboNiQ49FRfBQYzS1DK7FbgKpwIj+6TlNgZ3stPGmNAc11y8Zx +clNgC3bH1gI/Azq6r52gxUneX+4OuuZEQLfPWCUFc5D9ukZFlpMAmdx1T2lm +ocBc1fWFTVoA+ZqFp7EwkeMpRFfljgIq8MnKUDtAgXngK9iSyDzVk12W5UtL +fh+i3JSlyTxF3dye84eSAosY3JL5SOapR1OdRqw7+1Cmu/XiBVknitKY+a3s +g14HLXFpC9DyWxHLA7P7gMvT7eUjrydD1Lb5NLoPDGmd29tkfvtK7W5P2bcP +6Sd7h5z+ARpQynL40LYP1QVby6lEQJcC2502G/bhtX6ugHsCIOc2yo9vqvbB +qW3n0OFPgOq5hT8tksGOP224Wt0QELeR1pdXuH04VN9zRPUmIIs0V7/JXHL8 +0UuyB1gAlc6nfzVJ24e2uzfFfAZISNtp//vTiH1wTnFr2LInoZSy8zGdQfsw +oqZxYl2ChNYYNOMf+eyDoRu1bdsGEQWHpKarOu1DptLR7OeWRDTc3ZxdY78P +qV40+Tw8RHTlzG7e3Vf7QJH1cHPiLwH9zX6Av6VPzi98/cMvPgI6teoIJVr7 +0Hf/htBkFR5Z3kz+fe3+Psx8/LSgaIZHjNVbtRel94FbqurJaHQpkh9M6Dl5 +Zh/8faWTTvbhUIhAw8B3rn34I9Vo42+CQyOvNkaOsO9DNu3X21mTxchtS2WW +iWYfOLq5yyQmihCJfW13l9xIbj/52f0eK0BMujxU7/v2YG6uee7epQKkF6tM +t9a2B5rVF34/jcxHW8I/mOeq9sD+r2ow+caExOUVT/el7UGg6emky705KNsh +Qpr0ag8G3komp51NQgNY5FqYyR54CTN+0I9NQGwHojNtn+7Bhoa62jxnPHr3 +/QfnOdU9CH/r+QdRxyDp0sQFH+E9wJTzvIxsvqJ/29mxOtO7YOP6TY/3mivQ +yeVqXR3ehY5XSz6LoZ9BwvfnIabuXRA0bn1wdtUXorgLHLA/uxBYqWh7vykY +TG+VqAuk74Ix1t5vkhYLG86/KVbNduH1tVd3rCIzQaiqvKjh2S44Y9UffOiz +Qe9wpWWq9i5whCt7dVnlwK8f1R1PFHchc6TDguPYT/DG6nPLBHaBRirbD1eQ +DwSGv6ZRp3eBZeSNyEfNAphXb+R+e2wXVgUk1xgWC0BzsNnrPP0uXP0toLF0 +ughOUnU8CxzbgT0GvOtXDRyoK3ceNe/bgXs2y6yFrThwC+qqk23bAe5Dlahf +swTGzvRKrFfsgIygzc81+VLgtOibayTugMjLvOvEklK4l9+fmF64Aw2vwkal +BPGQKzvEop+0A2Z1tjm8G3gY8hmuvB69A8FyVZ9NdMj9sGXEiTVkB2wjmyl5 +igggzz12Zdp3Bz4atyvJMBPhP+PxiXKPHSBmPJAjPSdCZuZETIzTDsSXXg/5 +nEuEvpVJTQf7HdAxPBnnv0UEmU8z2AXjHZBllr93yZUEU5EUxwL1duAP2zfB +0WISBOVxvFrR3IFFvUMKGuT+L1kj+FtbdQcMGaLeW3MBDPdLHSfeJftP570s +fhfAd03dmvf2Dryc1bOLtQAQYzKp+CS+A3W+ZaOpZJ7q4fvvxJTIDvjH3axR +zgDwkPSzVRPYgfWjf7c/lgMIP4iryju9A0wS1zaVOwFaXhSePMa5A5G3H3XH +TwI4OdfYObLsgHVzpq7nKpm/Qnpr+hl24JN5XMPaDkBdxuJpOcodaPLAX1wg +85R9Ge3b1M1tkMmsZbIj8xZ35/G6Q0vbMKuwmeBC5rGK+YtnbKe2QeEyvvzo +HIAVnYxD69A2OLOVDt/oJ/PYSa2GG93bsBMYxT5dC0C6an425t82eNwj0l4s +IPOSsvN7qrptmCj8c4A6HID5eVCjafk2MA+oM9m+Ayh6l8xfS9iGXImLkY4a +APr+pU6XCreB22CmS+A8AF1SQ/O3rG24eIIt0HGbBNn4IcGNpG14Hnzv+Ica +Emg1rznrxWyD7aiP9dVvJNibYGzFQrdh4AL7uWRtEqTsn7pwLmAbhq49M+49 +TgL1o1c/fvHchv2VQ/ODbUTYEFZon3XZhge9IdzEACIo6lq7F9lsg3FsQcLp +VQIs2Lh3cr3cBmXw9yPEESDcM+ySy/NtsMmsvf5EmQCTBdCtoLENYzit438D +8BBU++9ypvI23Pizp0kSxoPk0Lgni+w2mKVxaw1XlIL3YRaxzqvbYKB5LoBh +tgSu8J/1viW8DW7hjrQCjiXQJSUxEHd2G+7Xj5UU05aAkPkzX/Mj29AnVd9j +y4KD2vLcke21LaiLeFZxea8Q7LvLJZ/Nb0GZ+cqTKttC4F7qCCwf34Kofzb3 +DYYKwPI05S2/ji04PPO6cKw0Hw69fxByqnQL3KT030bd+wlql5bu3vmwBcp6 +qtSieylwszFnpvbNFnAr4uSY4pJB0PbVNy2rLWDRcmUZkk4C6vyJAQuDLTja +v/zukkM84MT7HUPvbIHgGfPsqyHfgfd23c9p2i1wLQtvsfpuCMz9X7Tf7m0C +xbT/8RoNWbTjorBPsU7W1Jo/LspYorZfZSpHJzbBNZ6XPu23G/K+WzIu/WcT +FrzK3+KpQtCKSvLJUP9NkLKlY7NvTkKDs0blPJ6bEChuWm98OQU1+PNaZLhs +gr2beekNv1SU1hiFw2w2QUzB+VSbZAbS1/z2cFpjEza4VF9YieWie6vqW2/u +bcIYRxbjRksukghljqOQI88vGjkjbfcTsXd8mTtybRPkPSn5i1PzUPUT1y/S +x8jzm9vqqVYLUOHOLdHaw5sgsXzISPpjIYqP3m57xED2Y4kdiWIsQh/63561 +2NwAV4kfwcYcxcjcVax2dXEDjj7n+ZUVXIy0eZdsXckXHb2RwMZ6Vhy6YvQK +Qro3oLHLZ/E+VQk6TXPBlKdlA4KOpVd+fVOCDiVNHMqo24BS3cuM5qMlaGzM +SBcjbkCf/pRefGkp+ufJS3mvaIP8O6DuGD2NR5hgf0pr9gYsKQlFf/6IR5Hm +uqtTPzbAQadAOPMGAVkyzav+C9uAKTvdadkwApLKdU/GB5Djn5uv1F4gIKaH +nPsJnhuQacr7s0eOiPpWMx/7kg+C97OsmmXBRJQdfifX/h05ftcrjt1+InK5 +2cbw1Jqc34oF+0d+EuL5uF9y0WADev5uHLyRREILfMFsRx9vAMeFKTqdXhL6 +VSlosae2Afbe5vIRZB4Jekn8PSa/AXPi3AUrtwEZHtLg/nt7A8yPxO4/MwN0 +JWfMvlh8A2KPEn90+JL5S8Ox/ofIBphJmv17lAmoZeUwvxf/BsjvZsb/qyTz +V1iis80psp+Db/tVewDZS95o1z66AW7HxPl/zQC621t/6Q7zBoT/sukT2iDz +oquh13m6DUi25Lv5ZQ/Q2Jn1Ada9dWDbY7rZTea5ogqfG1ur6xBv353KswPI +04wnaGh2HTANoRO6y4C0DxZO/Rldh9dd9iteZH4UzFaSze9dh9RTnYY5zYA2 +1PsiI1vJ6y1jBo2lgGqWX6+4169DWdXLnPloQBGh9KqWFesg5qEywOoEyPxG +VJImcR3U/jNRlnoE6GaP6J5U4TpkeuoxvzkP6JBLhda5rHVYivTj+L1BQj28 +ujlMSevwOXXxoMhvEsoqn6Nfi1oHguKEGcmLhJxfuD/rC16HvltDRh+USEiN +kbOk0ncdyndm1u1pyftz/455mNM67NRMRNywJiJsqbXMxZ7stwPpnzpJRF9D +zE+YWa5DzIWi0xaVBHSl+1udhN468HyYPGR/kIConAXP8WqS/ae14lRT8Ogf +D/HDAZV1cPsXpv/nNh7Zm46JdN1ch/CkoZvzz0pR0aLEV8cT61Bqee1kvx0O +fQ6unzRiX4fKYywBv+eK0ePrhjIqB9dBj++awqBJMdpw8lnm3l6D3MMvPE4r +FSFJhr5HpK41IEgbDQqM5SM45c5FGbEGZ51rVBV5shBdoBC7fdAapPbW62jX +ZSAVyuaD495rUC3QWB5qn446hnl26xzXgOKt10m90hS0lErqD39Knq+Qzf+A +Jx7xX91KFOVdA2wi7VgJrTeyTIyLTji+BgN3834TTnqg/CNKoUfZyM9/IS5v +mjgh6Y0wzx0qst7ZlIv+rYF0iNfMq0dWwesKd9GGzifwVbC99Cx1FSRCLm5F +78dCM45T8F/sKmwxZ1g/soyH40IYj/z3VSgbDdz0aEuA5EOH2YS9V4Ezcinh +U3wyYE2ZK+sWq6Auc1e8kD0T6GQ1Z82NV8HYLnuh2TQLVAu2R3v1VqHxK1Py +WGE2dIUqt/9WXQWNDz6SUQm5sPxkoiTg0ipULiioNXHmg2R9QB6V4CoY2SQW +lefkg+vt6xlveMjr50aXU8sVwCHez1FPWFehQaWMwG5cCPxjfC4CyytwSi86 +UMe1GCwf176LmF6BruILLJ/3iyG/+rUN08gKxPokfDN1xIF0xq/nyy0rwKh9 +mZHiZQno2hjIQdEK2Cc/bGg9jgeP4d65gOwVmPvq8J72Ex6ytfS+P0teAd6R +31u/p/FAeUtnjjJ0BfZ/fOvOyCCAUG57eLPfChQHnpYpoiGCJp+WbMIn8vyt +AT9WHSKkHngYLvdmBabOB/B+WiZCs1OTzJFXK5Alc83R4wYJdubvz44ar0BL ++pfB+Pck4DdqCCvSW4HP8XlNrUUkuN+mIuOpuQKm/GeC2edI4KBUO/NYZQXy +3grcfsgDEE9QChOUWwERP4N8X1UyP12qvrN5cwU45GlScG8A1uLlZ2qursBf +Wq7oRjLf8BytCI24sAIyGY7TDUUAyl9k71jwrcBEfHlp9l8yb+38mr55YgUe +rnLSWw4DRFtLhx5iXwFf0dpY6iWAyiGSdC/jCuSzDgjbbQMsPLo1nUW1Ah6d +1udKyLzGVYMPcd5aBi6p0c4WMq/JSUlK319aBtzgcetKMq9Z5eCmTk8tA4u9 +er//LED4meshC4PLsCJxaOtSL0BZSCH61bkMS9KVRplVANMMYlNfm5Zh55pr +CH0WAIdTXrBhzTIUdYv13CXz6O15UXT11zIEaPNrW5oBmBnmTFKXLIOMMeOO +622AoNaLwS25yyDhzOHrfRjI507m7aTUZWB62BcV2E2CMbzQ5JtYsj9nkaDI +eBKwXEr7Jh++DPje6OgCYxLciBe4fSxwGS4nnSCO8pLA8EjyxLjnMji4qJfc +6CKCr9fZbziXZQidH+Aj+BFhwIp3Qsd6GX4Z3rJ0HiMA49CPIKEXy3C1tkGx +04cAYo9O3drWX4Ye9mnfcGECeN48ERSltgzav2c83Z7hQYThiFT/xWVQY960 +H/hWAtqO38Zyzi2DFTHT6trREnCbY/3qenIZoho+lX8IxkFrC/MYL9MylL2y +m5T6VAxOcQyBxjNLQGNzbHHsRiEkc3hKXhtZAvXomFXZmAJo9KQdpe1ZAllr +/x2V/Xw4a0UlmVK7BMExZyT/FOdBreTO8GT6EmTCar0BbS5ISpztH4hfguyg +4adp6dmQek2lqz1iCeQKUUv93Sz4LBrVWOG9BCSd0vgkq3SQ4ZcixpkvgchN +5rH6wETAsTqF6ggtgeLtycfuIYEgcDjxq/qZJeAh2kYnjXlD6KE6XwWuJfC6 +JHH9SIwH2NFzu19jXILG943lPxhsQGQXb806tQiNTyiePBb/iBInthVr0hah +4PP9TAl8LGIf45PD4hbBa2wgvhTFI7fhe6j4+yJsjFi2mfxKQAZ9kdeSvizC +s3Sq14r4ZMTVcvPMx5eLYHxSuqDBLRN9aTI66fB8EZyWFJYEprLQRoMPp7XO +InRcEW/vVMlBbTXdzE+VFmFEx6mxkPIn+gqO2xLnF+GMicRQcVg+oiAmrF3i +XQSrR7XrHdcKkFVp7SL/8UUQxnlfbG0sQCqFJyY4DixCQ7X9gf2dQoTPkx0+ +SLkIuVzJu7t+RUgo16KPanMBTKs1C9+fKEYMGfiWhYkFcB10Wg65gEPvUof/ +jg+Qx0ufnGPMxqGxpIO1fR3k8XBOhxThEvQ79smvuuoF6HH5qHH4VClyDt3O +Sk1dgGQVuqff/uKRoaG4klDcAtjTPbncKURACiK2IxnfF+CoiYnufTcCYqkc +48rxXoCOIwJd0eeIaPUrb5Go+wI0E69xPrMloq6neg/yHBdA8ViyE38JESWs +NnkWWi5AY+4ji+9SJOT16xDfdZMFeLZhLizmQEKWfgok3NMFkGRbc8/JIaEH +Om46kloLkNpxYYF6mITEzxFX8GoLoNfC5iLEBohrcT3glgJZN9j95b4FaJ9w +5QKgBSivLWJtNQI04vWqUlpiAZwfZTKofQZUrZn6vEyUnP+CDKN7IqAsnuEd +2fPk57MFKWxIZF6bORlewbsAE6BtxtoC6C1O+6oC1wKwrAc/MibzzxOPbw3V +bAugIlBrbboESFq94aXywQVge2y6Qr7GoLPcB2jrqMn+i32KbMl8xdboKR25 +MQ9U2rKn/yPr7he7b2Mm58Ey1Pci+VqEEvdfZ8V1zcPcbf23PuT1rMImhhNr +5yHcJOhsODne9Uv6XKmEedBdI248JPuhqPqnnpE1D2tUK4q/yH7/6Ct5ZsfM +Q3qbPcUwOZ9vayTiz4B5aOlS/EEg56vnL7ZS4DoPlTpVNzSMAfHzpwvhbOcB +J3rAIZVcrwXi6ed4w3kIdlcIKSfXs+RRSBjp4Ty4evEbZJLr7TbL2PBLbh4o +PGbETHNJSOWTK03FtXlQZEmi2yTv15GTa5LV/PNwpUFU0/IWCfUVWNjWHpuH +lR93hKt3ich2RKuvaXMOIgKvvNd7TUSSTnUcrVNzUCTwtD6Fn4hoOGTudXTP +wZYmhxFlOwGFyl7E9RHnwF77yCajMAER4qmDpj/OQcMR5w+VqaXok+R/1XOv +50B+OLam4XYpUmue21s0moNy3MSuUlMJGqTssti4OwctSYf7WqZxiO557l1a +xjkIenurZGOjCDVunHNi2J6FM6FaRx7YF6HvgZF5B2dmQfJ+YdqPmUIkjH0+ +zdYwC1s5BRovWwrQg9NPN08FzUIX6aV9jVseGip1/db7cRbyPv59VdD1E73W +SrwYZTsLYu0xI1WXfqIgv+nnxx/MgmUe7fGMhBzUvP3fH3aWWQh+truFFtOQ +RkdoJIP/DAgqmKUcyIhEQ3al16o+zIDi99vx53zC0evDfX8/vZoB6fXgLzov +QlCQ/DkaatUZCKTv/8cm7I+aC/Itdw/OANagonSh1RBpfG28tfRlGjgFQv8l +MYXBkPBKe+5/0yD4rW7H/lIEvK4+9tr65TTUqZ8RPq4aDUH7+skzitNQEBBW +tkSIg+ZXs8zj9NPQ1sQpPl+RAoYHWNOS1qfA+4H1ljpKg6VEMVnj8SkoODe5 +m1WQDmw9ju8GK6dg6HBRiWVQFmgoMw50f5qC5niVrpYvP2Fo9OL7iDdT4LAT +uCR/NQ9ef3zAoWMyBTETl6z/deZBEC5csU2OPH5Pia75ZAE08wv8bKSeguyE +dpMY5yIwLFO+F7A8Cf+eNEgeZy6GpadWo6rDkzAS1x0/8b0Y2EIKj9eWTYIr +//gv4WQcPKSWc6v4OAkxudF+lAGl0HDTT+/760loLOdlcV8vBWX7NvFXRpMg +0fxSSUEPDzKjZtMcdyfht3ea2zMuApBO5lVMXJsE/ANj/kg7Akhqbf8g8E/C +HiNr3XA1Aa5U+WkaM0yCEtXJpzYviJC93yYisTkBqwnXVGJyiSAkwXPg0NQE +6NmBQvYqEZJtXg73d00Au9QJQqg4CXjT8oj5tROgGsyXpmZHgqjB7TBPwgR0 +6Vsm1GeQgJPr7usnWROQnPWq9eAACYI1/FUuxUyAefd3CioWABafdn7qgAmo +KtR3TrsJ4Pubh7LdZQJOBrPe2TEEYNh52Z1uMwF5kpUtK58APMTyC52fT8CO +Bcsz/0SAfcudAA2NCXBnyk0sJwG8T7przi87ARerBSiCW8h81+svt3V1AqwO +37bcHAV4fbTjVMPZCbj+wcxlicxrc2q8m3FHJgDseF99IPOauaf5vzd0E2C/ +KUD3ncxrY5CfpbQ+DqyVaTg5sjbc2PE8OTEObI6PA123AHpF5Q0XO8aBQGMk +rvr//4O9DJCqqBmHOT6zxQwyH7bEdRz9XjoOy3woKaYJQL2Ld9EyYxyKykqa +BfBkHmWzqJWOGofPmsphyrEAivcKkjj8xqHxUkgm40eAcvddl4kP4yBiM/PC +8imANEFel2A1DvtnikrsrwHgVwLEAg3GYWeJIHz+AID4xU5mY/VxYLawGA3o +IEGeyZnJ63fGgTS9GJuTQCKfowXR/WfGwf3em4MSF8k8fXjvXT77OMTM9Ar8 +nCZCvIKChifNOGQsZ5+mSSbCd1wn3aWxMQhv4ujUZyYCx+KZQar2McD39Mc5 +EggQeN4S31Y1Bt9uhTyIMiWAV8SetXPaGAhlLgUdz8EDzT8FZY2IMQid3g4N +UMWD68GvZ/l9xsA3UMhIaqIU3jnxddZbjkECE80hO7ZSMNVXlDkpOgZusRwi +ezdxMBT6lXuRZwyOPH4o10gsBv2/XWvlrGNQLeUa+FiqGB5Jv8qwXB4FzhBZ +poZLRSB3JoiDUDQKbN1a/ZZL+fBZ/4vGveRRoCy3vnn3fj7URLgGdoWMQn+a +TcVGah6osVsf2rQfhZY3UyL6D3+CNo0KjfjVUWCBA+gVcxZYjNGu5OSMwMZr +aS3EGAdB6f/9S0gdBk5fMUMWrq+oZcyG9Wr4MCwcPi8beC8YHeMzu1/mOQzV +mR63y/4LQ1GRWrUDpsOA4Q6NCf2JRsm+V3+fPDcMFFs8oU+PJqGJaiHKLA6y +NrxuWxqRjC7QnkFSNMOgvsYj8PJEKsr9wILXHR4CQvWVO2UsGajUajYvLG4I +hKgGdnQMc9FO+sgC/9ch0LgwJfuW7SdC490iRa5DwG+su/0HfqJygz/pLQZD +UOmipZHFmo8a1FPiWU8Ngfb3Pxz6AYWIxS9mIJZpCHrqZ+Vk+YvQw5qQU6K7 +g6DGeFber6QIddzxiFDrGQTcXV7zhZZiNHjleZBPxCDoW9V4v+8pQdnuGbYv +vAfBt13v4NiDUvS+ZVVd9v0gyGhwnhb9XYrY33of3tYZBJWMKu/j3/FooLJl +rk1pEPjDE9XDdvEo89jphrwbg/DeCvPOfUpAd0vyfc2PD4LYkij+PxYiYmPc +s5A/MAin5JPimYyIqE9X8d6ZzQFoZtsfoflJROkZQUJ7EwOgSDd29+EWEb3b +6TnQ1TEAAw3icrO3SUhOVWCysHoAqtWaTlQ7kxBLjG31V9wA5J1TquosIaGe +OXzKq9QB6FBxoDy+QEJpiM5TKXwA9D4vy3/gJfNRoLrpOa8BEDF51r6nCkhm +MOIupcMAqOEyi0LfAGK+Mnq298UAjAkIZN8OJ/OP2yWakscD0NbhoLpYCCj1 +33/DwQoDwDXvMp3WAMj+bHmZzfUBmKljTDEeIvPVG+Z4FYEBEFy0e3FqERBT +pfZHwWMD4KZ3qrdlC1DX0YRnNPQDIGbe/PEzma9U/na5YLP9IMi0HX6FrEdt +rG871PdDuNnvS52bgJzZaHYvZfVDG4njpOM8oGMF4fhx334QKban5BoAlPvo +4vsflv2Qu/9bHlcLSGn9l8RjlX54+6j3tE4eoKFwrXVmYbKmOuJFEQzIUXK6 +sPJgP3CNhsvk2wDi6HGxd57ugxiun51vFcl8+YHjqnhtH9iYD0Y/OAFI/nTa +4mx6H2iETCcqT5JQP3YrN8m7D7hy86pf5pGQg2Gz1VPzPsCK9pOK35JQetL2 +dN15svYKqqRdJCJZhcB0jwN9IHOYn/ZEChH1TJx9KTXZC4rUgQte2kTELKw2 +lpHaCyLDLp2xWQSUUj+UaOTVCw7/PU4zeUBA0tbvjE6Y9ULjLbtK3AIevc6L +HfAW6IW1T7mKCmfw6KDmtR8y9L0wEdzNnlBQihJXa55ujfWAkJzicr1MKWqT +WO56mdwDZyV+HejUKEGScLdV8VwPuDExjgzIFqN/z7q+UdD2wN5W/GxdURGy +pLLWwI10Q0FGkpkg+fcTczf8r0BiN7iu8Rz8slWAqOumauj4umEg+cl5f6c8 +ZJ/yh2GSphv2/I4e7Br4iUbc0hVqx7pAlO16XYHMT1Rxw7wiIL0LXOXe3eve +y0GeKZMY55UuKD9nplRKSkcH3SeKhe50AgvhsqKF+A/ELjmWpGbQDorF8zm9 +DgHgcaRyRPROO0wYWRy0Tw+ClYUkPna+djAW5wuZCQmB1hSTuPaxNjAOuJX/ +wygSwo6MRj2zaoO3lkzLLi8S4MTi8LfXH1qBqiCNKkEhG3zrfjdrGrRCWZKn +2EpQDuykJLBev9MKmdkaeVuWudCrbxSwTdMKdESTLqGsn/Cjbsjbw5fceKWT +CyYPFwBLalmNqVULcMR+X1mKKwBX93gGJfUWyCWWVQhdLoTnkoafmThaoMeL +TaZDvgj4Ugc/hkb+g6HIISMeVRzw+Jz0mn//D9yqPk4mNOLglJWOv6LuP4jt +LXa6oF4CXGJNEVuc/2C1ncl3VaYUOI8xxT3caIakwoNMrEWlcHRLMSWzvRlM +E2Iyhs7igQ3D8vVDm4HTmafm+SoeWBJ2SorfNINe26uGWS0CMH+WwFgeNUPU +liX1bD4BDr20r3wp1gzI8Nd/6oeIwKiSW1fG3gxBlg4UjM+IwHBppvnEchPc +SlfnP5RDBDo2wU775iYYNRi6qbxJBMqOH6P8X5tgLGVG9Z4LCfZKu6ddbJrA +4Ypf5UYpCXaijy113G8CijcZQsWLJNhyfbhx+VIT1Lpfzf3AB7BhFLDnzdwE +q713deTUyTwjX0szMtsIm2Muq9QOACvn6Q/eqm+EO4Z8fEURAEuHZFlDMxvh +/i9u9Uc4gIV552PzPo2gzzVR2tNI5p3m0pOKFo1AjNe0UxwBmClc44tTbgRH +P/4nIWQemgq/IrR1vhFsxcL4f5F5aMLRSvThgUagfZev94fMP3VEzVfaTX8h +GIU/zt0DqHav+48x8C8Qz/nJ2W2QeUVJ7jNB7S8ond/l45gFgMOEICumvzD0 +WbUmuAegtPXqD566BuDPCuparwQoiszIaPZuACl9vkbpTIC853w4D6UGkD7M +uGLnC5AtEFkuztAAYVGaz0NfAKTPsjVNVNbDY2sZ6uxbAMn53r0Rn+rh87UH +wb+YAeL/o5pSkauHG5qC0R1dJIhB79f2qOqBUtrIbjuOBBG0S1Q/f9WB2qyk +xFVjEoTWvjxs5FoHAwHM7V94SeD3WEewarcWFlWu3wA/InidbBL7j1ALXovs +xYVSRPAYVrxzwbEWODWFXbfGCOBkLaEbsPEHmI2LfyVfJIDDtVzTO8V/oAw5 +bV/4gwf7bQG75Td/IE9cd0/SEA8Wnsd8Hy/XwInskZYbn0pB98ca8fRcNVhV +bQyXhONAy8TqT1NmNQjy85t7suPIfX2szd2iGs7rVuq+8y4GpeLW+fGJKuBI +XuI+9qoIJP4W8OYOV0J6SBRxmL4Ahhl+ixQnV8LPP3Hlp2zzwV+m6SbpZSU0 +HLxyOa49D4YLZx/VzVcA6QrBsznqJ/hH8XtPbJcDDcHrUzZHNgy/DF/i4fgN +omJ/DScOJcDJAxuf+b6Q4FnE+51QQzf02okj7vJhEjTqfEyP0vFC1fOieBRC +BOm6ycEbqv7oddvL+SdxBFhw45CzYw9B1Qndj4NLSqFxIN9CwigW2d8GQdqp +ItBWO8RlGZmB/vzslmG3KQJXFb/iI8uZ6PS5DT3etULwuObJmiefjf4cvPz1 +FlUhFB36h3OzyUWnO+M333DlQ3lnl+GnOfJ5qgLsHrF5MHbJTCTaMx/9ge6L +Qfx5wKXje2PzZAGyT+YwzL7yEzQvzdwVkilEweOHQupDsmFvjcFSyrQYDRx9 +15efnAXhXGrmMFKMLsgPCkQUZ0J4/GrYwWc4VJZYWGramQ7eah8iiColiLnl +NI3qVBrkRT0JpyaVIF1qb9Wr26lgf3zwxL8LpWjxuf7APncKxNswH2vZKUVS +X6vPj11MBvsb920nDfDIC7tiV3c7CYKlLnOpAx7xnKan+/4sAUQJV9z7XhOQ +pZrtfRfbeKDI3DsxV0lAxR+6w03c4uCsGw3u1DEiisYZPDZW/AGV977r4jKI +SOyY2JSoeTQwNnYbMS0QUd0bhg+7PpHAgLd2eCJKQkYtPYf/ZH2HNZXBxe+W +JLR15Wd86N8wWDAIKcQSSSjo66drRoshEPx+4Fp1BwmdX9CpvsQeDOqzjHZp +DIAwNZEnO2JBcLT9zs5TMUDaWVRz1VqB4Lxov9D/BFDfsWzKC4u+IELHu3/e +hcwvrVoC5WJfwH6J7uX1GEBSQfsqTx0+gTTPXwqaEkDm91Nfr+E/woz+9wu+ +fwFdPh4venrfEXro/xusGwTk/23Z8cFnexjR7836TeaXthPe/vQnzGHj9FiO +FZlveHh1lTs0tGBCJDGibg9QZqsL7/s7t1HEM/nCHjIPbdP6Zf0pMUTvH1/p +jtkBFMvw5mB+qw2isDngxL4KSNafD3NVc0BWhO+RNycBjbE326tVuSBONnwT +ZyegchWMgznWHQUKcypnlQMKDTg2b6/nidTnhn9vZwB60WxV083pg0aq33+l +DwAkcaQyQabVH8noLIS1vAJEm8kMLYpfUZ3CF7UXZD6yUpUUZhD4hqY+8JLK +T5HzmTP5fpM2BG1VOLsukXkTBX6lsx4ORRMzAbBGIqHUy0S7+F/hyNIlXKzD +i4T+s+dQO+Achc7YVFiqs5DQ0BFpvJReDJriDjFdryeipO5rHBInYxGbowdl +lCeZjz48/2ixHYckVSldaOYJqEx1/fqnqXgkcenBRE8UAb095TcX05mA9n65 +7XbLE1A/4J40FychczbpVacAPAoOVGObSU5Gbyld3K6L4JHi85Fq2tAUFBxU +wKRcU4pyqVjEb9inoVhh34mslRLkdvcFS6xoFvI/lrzEeAaH6jq5fanFspF5 +3a9MvYhidMSqmf7F9RwkMU34u8hcjDRrY/aP/shFVPTFF9FsIRpbPrDem5SH +lPHyk8uu+Yjx7sCoRX4RSqxqzau6lolEDuMTTl4rRjRDn3u6KtLRw86Q53+L +ilFH9ve13AdpKOrVvd4rpTgkep3rXtDTZHQptKhlEytFPIEVR3+pxCLNcd/f +ng0kJH00IHts4wNy+Pni4w118ntBZ2o2KG2Loh1l0HQTINevKx7unBpomd7p +aYo5hrDWB1fd5u1BKupyJ6PVLxTcT2uPn/gKf8ujGpvsfyPnF/pnXqomwdB5 +75z0wt/IuxSdGKtNhhX/d/7ua7+R0JMY4Sr5VODU0VC55lCORG8JKlSKZoDh +LH11uGMFEhbZjEl9kQsrR+zAwK0KVewceDDvVgja9H+ih0lVaGzX6pwocxHg +N3icXmxXoVljam/T0CJw626QsLavRsLdxg9fRhfDaN25Y8u51ahMS+sNKzcO +FElOq29nq1HQMCSbhuHgcJxQnrNpDeKgw2e0uJfA66CPgVQJNajtRdRY3UoJ +tLl3WH3ur0FnZtlpLhuWQpTp5wv+2n+QN4cbO+UVPFBo9x5gC/mDPM781VcP +xoORkthESNMf5GWiIdu8hAch4aHEaOVapOwQekcykQD+J2+483rWot+Hekfp +1wmwyBz4POl3LVpPKL/ZfpcImhTj6DxFHaJ7SDSJDiQCbvHWqSypOoT/ksqh +3k6EE8PBO6L/1aHzs3JfRo+TwLlluqugsA4l630O0dQmwd3i72EEkXqk0PAo +IrqaBKmpC2+kLerR1YCWY2ZbJDgUoaBZnlKPlKR2JGYFAKx9Yq4ojtSjS19F +i/kfADQ7rbLU8TSgw842w8xvAcStVObvP21Amr9OpcSGAnw3SKj/970BjTgX +epDbJeyob2U8bmtABwnG4Tl/AJ7JPPDuZvuL7qZHhp/rI/PO1VQzg/t/0XSW +U5s4mXcEzu3LD/v8RX0sUrcH1wG8j2qde1H9F1FovnzMR+aldfe2j2+oGpHb +Eb67O2SeSt2htC3maUR4j2uVFrsAum8uPtu83YicDPiuvV4DODSnff/m00b0 +8d1xL5ZpAJKpx+0Pjo2o9ledumI3gE1/zkX43oiCV2QIJ6oAeLW7uSlxjcgC +/ynIL5ucbyPdIdm2RnTGV1o87iuAh9KVbY+VRsQipJSoa0POv+zpVCVbExKc +YLMjKZN5T/JLJ8PlJnSFeKi5iQcgIr+gWvl+E4qVnvKKWCLBPeGBYt9XTYg7 +rX3tFEbm18SDKQ0+TWh9IpzVlMwJ2Sevh7KkNyF3+mDjd2okYDvsbx881oQk +bqZWHq8jQrlniVEbTTNa3VxpIHgQ4Q3FqAYnXzM64We2r3qDCB2LNy9HGTSj +2yz2FCahBPA2f8HT96EZEQRG5CkRAaSGgw7zRDWjp6lsMbhhPPxomZxN6GhG +5/5mPs3gxYNpcVh6xoN/SCbUwf2MbQl4C75ofvv6H+J2W2Q8uYSD7O/iW3e+ +/UPiIteeMFnjYN2xVamj5R+SuP9j4OzTYvCSZp+k0W5BqVrqhmmHCiHz5xBL +o0MLeuRSaFhlXQBNZ/IkIr+3oKNlG9yhf/OBi/aB1+XuFqS6+OlA9qc8yKjx +F9DXb0Ue1aojjtE50Cipf/+8SysaG7pyOlUsG1YyLr5b+dGKzPS5WRcqM0HK +v67Se7AViYqt/sZ606BBg9G02LgNFXErCjN1J8BC96dEFot2hBV+wtGI+AGH +6qO6bp92pFhuQbxU+RkkSGdXkjPbUeBZ5m/puq7wMfa37K058vynolcrR58A +mwnl8EvbDiQtdMsz4tZnJDbnxPv7XSfKlA961Ccaj7QNVJT8w8l6Y+6gfWkC +cmo8YatT0omkiGmd7dJJqCKvFJvf6kSBVYMmTLKpSOvdhgG3cxeakffXtjia +jf6jsI9549GN+hq/CAYbFiBvxWj3lMRuVL4g2T62U4AiAivNOsu7kf1v+/6l +b4WolOf41Vu0PYhH1lmss7gI/TGT4bQ+14PEC3QXP8kVo65ci93Yuz1IeHd1 +LrC+GG1Jk6poPvcgxvqoXMsWHGL8Mp4pntyDCE7nX3GQ7+dcTSxBZpU96HVj +3/Pq2hJ087mRXh1dL9phlQ0/kF+KVNJ87+zx9yJ+yXu/XvPgkd5iIb+oQi/a +aG9c+/EFj5w+Mix+8+xFuuYiXrT3Cci35nJbRUov4h65x3E6g4CiWJ/g16t6 +UR7THTagIqJMHY/Y8xO9SMUio6X9ERER4rI+PWHoQx17x430Esn8Ndlm7idI +1oHsTtJzRNRzmUIdFMn6JUWYw1US2v2lwcX3pQ8pJlg+Ls0hIWZGp33NtD6k +MlsRljtGQqc0kkY+1/ShKI16thZOQCIRDTW4yT7Utsewyi0P6PbQevbUgX70 +v5rOPJqq93v81+VeUW/JlBRJKklSSCL7CalMKWkQkoQiSQiVMoYkSRKRJENR +Zpc7PJIkkbkkczIlLvcaMn7PZ63f78+99t7PHs5e53mdtc55DmJylIJcMZgq +bohZp9gFMs6rXXijMdi4G/qYGnaB9/Qyhcc5BH+UXrO5c6kL7D4fSFCrxuBH +TtTLC++CmYsTHzs6Cd4yrFToe90FHsd9Xe+PYngePfafxJcuONUkLLef4K2c +NknOwT9dEPpNRH2a4C3bVRtGGJRuUMw//OEtwVtOhYWdLeLdUFkulOM4h8Ht +tGHD6KZukGw/kiY3gcF7ofMD/+5umE/1kOz5ReyzL64VyRp0Q9B7efSqHkPo +gWWZmie6QXdoVNqdhiFq6FnCMYdueMuu9zZKwBB3f2eks1c3WP1I7lD3Ifbt +nZV3gkK6IZl0Mmn3MQwZLZbXEmO7oTdUs8F8M5Gvz9iForRuGJUZOhIzyQKa +dNCpuqJu2LP/SNESZkHZe0mjwcpuyFN1PZcUzIKqC9n7eL53Q0GdiKuPAQvq +BXRVpAa6Qd/eqTiezILuo87ixvw9kHHLfO1PFyYMTi7xX1jdA2Z6WY9XrWUC ++2nM7K0tPeAXGLuMWcEAnl5m17uDPdCnq+CeKcgAwZBjjVUne2Bz5C4P/nQ6 +iCgOVPQ49oDuyeX+YkAHOXfh16KhPSB7t9roll0p6JLPe1yv6oGYzStUfLxp +YCPQuPnG9x5IVvm6T2ehGG4I7//h198DSXvzLd/7FUOBzHqdEL5eoO3U/23g +XQSbtH7yP0a9sIcWxzY8WADLPMwT8mi9IAtecfSatyB/o9yk6FMvBJnU6Py6 +nQ37A3aSSr/1QvvG1gsCO7LAN2rlhffcXjhOksxfFpAJf7K+KNer/AL9tH2u +nKWX8PW3XvnfjF/g5Blinr38IQyP5HmMF/+CbhF1kuq+CODnbtgyWfkLoiIZ +b9TPhgAikyLm+wj95RnPZnVPyJVhWCzf0Adsl5eja8Z9cMxJtSGFp31wiO/1 +CUpNIs6xeZmglNEHhmUHpLnmybjmgoipSnEfpJqMTGTjF5jiwc7TaCHkeNmI +wgep2Csq66bBqt+wLEDn4YcVr/Hpz/LC9mG/obfypEe3Qh5+W/PbJuvpb7B0 +EP3eU5eH+erTsrmZv2H0bK1877V8nPNNwSi4+jccJG6Q1/MKMLVPKSRteT+8 ++pihspu/GFsN/G0eXdsP87WR3q6PinHe8NuNGkr9UP/CeKh3LQ1bj6u8/2Tc +DydPH6Zt3VCCCxbV5gfv90N0oqold7YUC5KnDHcm9UNAqLt4nQMdn6UUP/V5 +2w+2uqrRh7/SseAKTQ3Bun5YsWPSuf0BA9uunA0+1tUP9rqqXS1DDFwkQm+O +H+uH4HyrAzuBic+t2ee+TXgAgnfNyrX+ZOKidYtl12QHAB9dHyu4keAfWbyS +oTIAu3Ojpl0usLDdxjs2fPsHQOmpZTY3hYVpm/dnGx8dgFu0+V9PfrKwkCJ5 +PubcAIS3zz343/eD57d/MOy4OgC5xeZX/tPBmKYS9HRTwAAE3KgSrHfEWEjt +wODl6AF4JixZHBmBsb0GVaMohfCnC8bqZWFcuvdT8GLeAKzhPf9kqBJjYZ3Q +ZoMPA1Cfm+Vzsx3jC/sPb3zQNACeDcPVMyOEvb6g+/dfA/ArSH7ozAxhf+hL +2XruAKRn1pNTCV5yMIpY6cQ3CDoqsqvr/3c+g6mJTY7YIAiu3zLVNYexyDGh +7Bn5Qbit2YeaJzB2tKibQ+qDoG+45eLbPsL+VJRh2IFBsBE7kevWQNhbHX3a +YDEIg9yVSjIlGDudFRlc40Csp59DL00g+Mquabed1yBohr1bZeSDsZhDTPDr +kEFQfPYru5ngx4sXLZonYgdhTUNSh/Umwt5FYqNW+iDsOf629C+HhcXcvl8N +LB6EyA4NxQgmC1+6Flf25RMh//H6uT+Ahcu8Tq8Uax2E4eLTBpK6LCzhK2Vj +NTgIZ9YvZq5ZYGLnWz+zUmcGwbBUaPnRfCaWCLI2VF8zBJEJKpkPVzGxy12Z +p7e2DoFLSl9pQQkDl4d3DXzUHILtpxWv7Ldm4MsPzwWfsBwCt50LIU2xdFyR +dKHsesIQPC127khtKcHKFJ6616+HILXJynPT+RIc5/yso6NkCOpNucnSf2nY +ZU/TrF7rEByaFugtmirGYo1IXVh8GMzsqd+9egux3552PT35YbB589Q83qIQ +DyZdP+alOgzhiZaVHz8WYIbz2yvtR4fh2GUNSnBiPj5PWfc6I3IYIlZ7Co0q +5eIa52Laz8RhuLj7otOT8By8u/HYJ6HsYWg7hsf7v7zDgs/D+jy+DINCbqsd +KGXjvD3TMvuX/QGnR/RLJcx0THZpfPTD/w8s83zg65cYh10aL6esePgH6hcC +tkm9fYy/7RHIheQ/wP7Z6p9Lj8avKejrKxbh/7y1ZTQpDB97nr3Mfe4PkO6k +/f6TaIxfNIbeEvQcgYxP2d1RP2NBUFM+Yl/QCLQKzJ9I+fwUPJ7jeLdHI6BS +9FVauuAZHHKZKv6WOwJ87X8aT+q8ADbFfiJldASUDngJhw2mAdIERy2nvyDY +cfH9ny85IHvvbvOG639B4aasosKlXCB11O1fFvIXpAYSbISpeVB2x3Zdy8u/ +sGgvsPrh7nyAKv8G166/wArz7Zb1LgQZqWodi9G/IOwV+yqEpwgWnUWytBb+ +wt5HbdS5u0XAWvkyZNnaUdi976Jk1b1i0DlZoZVyYhSSk6/2iV8uAZnMFZmh +F0ahwKBDX7ijBBZnj0tc8RiFt6G2Ko8PlwIr6TdbK3oURg6tEaNI0iGJvd1G +7sUoeCxUuTX70MFP1+vLspxR0O5T3zT9nQ77+qlpLbWj4PbrQQlfGAPW7Tki +ymgfBZnRiT/ffzJgPuzJnZQ/o/AtZ6tMnSLBPz+7/obOjkLKofKyLk+Cl7Yr +nLkiMAa7D7V8XmIw4dlttyoLyTFwcbAu2kRiwc0Gmrr2ljHg23jr3iFggbbn +YWGBA2MgmTyVfz6XBes+Pbw1Zj4GmzXqKoz7WDAv2TbcYjcGpXcPaomJYmi/ +JHeKcXUMGkfaWvL3YWAwLn1MuTMGowzDnk32GJ4J5e8KezAGZm7nNC+EYLhp +O/f8StIYWKWlHL6cisEqT++/E9ljEDox8N9eFgYtvghfbcYYtJ0ZFqlqwiB1 +onlA7ssY3LxJ8xL7jWE2fZ2FQBsRf+eaoXUE77T9sy8fGxwD/bq2N12zGEqN +snd8mx6DvmqhR2cIXqr96mtqw8uGmdadlChCZk7LBDcIEvI1NHdz7n/va32g +64uwIammmLSRgyHxsONE8Ro2OMkFqgb2Y4hwX7512wY2TIS06D1vIfJPeHc2 +SYENxqvY13zKMLhUmMeuUmEDX1jzE7F0op6/0zVBGmxiXvrEPMIwGEs8453R +YUON6+WeBEcM2oD2Ohuwod9UNihqPwYlpz63ThM22DtcFz25GsO6h6HpRy3Y +cIfGrz45yIIVpUqdFVZssKzE664WEf3vrRfbY88GkqpoRMNtFows9zR648wG +bV/RBukDLGhXWxMgc40NKT88P1pTWVBjzaQ99GVDdERI7dMPxDyEnBvjC2DD +6G2B7203iXlozbT6E8UGg6UHJtG/GJCx5NVDesqG+F+0wD/EvBVu1neQeMGG +7l+dRyu3MeCrR+eV/blskBv4r1Dbjg4/E95wT5QQ+WjKUWemSmGw3NvH5T0b +KgWM7DzulgLPKtHAJw1sSA5ny04nlIDQnm7+7B9soN0QjZOTJZ4nzmZHlPew +QTGvbN/pZBqoZR+M/TvOhgI3/+2aj4vB4fDNTD2RcXBnSFesMy8Ed7fDyqel +xiGqJM5mqqQAbj+RyHeVGwdSC8/NCOkCiPudw3i6axxuiqToHf2ZB9X+v+vG +jo2DfFmMyn9qObCj1HQq4dE4FMQNanj0pYJ2z9obuQnjgO55F5bbvYRDy4aW +Kl+OQ410eBlv5wuwOxEoMJE/DlXa5Mev4hIhZqJ43aHmcai36Gruln4IM4ob +9LhiE0Abn9ym7H4H8x0b/SQgPQEzph8EyonnxVU+dOP1mybAO6r+E159Hyt+ +sjhhqD4BzSFVj263xGDr8+EXky0IueZqfGlSMi5P4Dwwjp2AoMG4R1M+Wfg0 +N9vje+IECJvi9MAv2Zht7HTa7tUEGEfP7JyTfIelF9vlvAsm4I5ZZr5PUw72 +tq0sfNk4AXpzYaarD+TjlSV34pXbJmDx0Q6O5M98nLZK63ZJzwRklRxpPuda +gJvK3x2qY09ArS1rxDuiECtvevpzVogDZQP+489Ti/HHW+ZlwRIc4vkg5yJD +joatvv33SliGAzyiO8bCEmk47G6A6+btHFBsO603GVqCZbu1zXPVOKC/daDG +/V8JLtozraGtzYEdhuMdtg6luG/ImeeYEaF/FnPGXJ2OfXU397cf44BK57ZL +Wk/oeFVCd7WjJQfuBq4/dGaSjnWMLWJuXeTA7EC71co0Bm5JXemz7CoHzDxG +Le/NMLDLwmfrR94cSOLuKxU6yMRP3+psybzLAY+WyXU8rUyswv9vudoDDvzi +p+paSbFw5dl8NiuWA0781kJPTrGwNe1yy+EkDnh5H5jNiGZhrrBCafMrDijn +8wiHV7Fw+MXepLPZHEASv0Z2zbLwhvJngcMFHFhQMSl/toXgNamTTp4MDji/ +SD3x3gxj02urTEgVHPgQvJWa4Inx7y9fdt77wgGd88wP8rEY35QPkZBo4sCM +Q8wayzyCj26hueQ2DgwONmzVqMY4s2W2a1svB/auFX5H68AYKRdWFA1xwLep +cf4nwW/fQq5k7h/nAMf691LSNMaXu7ZG1sxwwMD0pQ6J4De+PX3uJ0lcMNFT ++rFI8FtCVNLJXn4uqDwJCItfwHjX0Cntyyu5cHU65mXTFMZV+0U3zEhwIfXX +LvE3fzA+G19LCZThgpPYyAU5gh+nJu4O/7eZC2J1bUVaVRhHGOnWxW3nwvXt +p8v/vcN4Y+p8/kZ1LnSef/Hz7COCL+eL4t5qcyFJ5PToVXeMj1pcvaWpz4Xx +PH4/NROMB7O32VUYcUFrl/errI0Y+1H7DY6Yc0G5gSLRPcnC4meTt7VZciHw +bLNEywcWziq2FL5gx4WSMU5g9H0W1hUWnxy7yIUJWbfa9eYs7PY+jEXx4QLL +3/5RdQMTy0teHt/lz4WVa+KjvgUx8XdXM3nbMCK/nclogyoT66xbHV76lAs/ +qIIbMvwZeNx9ljHwggs7skQGSXIMnPq5Y0zsNZF/UXx4A5OOl19PtbhSyoW8 +F9sz1g6WYlbt3dBn5Vwoa9sTVexVit3lnemfq7kwFbBHQZinFLc27Nwg/5ML +Mlsk+/QESnCaEh5pnePCn9B/fBNDRdgyMGU9lW8SjDb2LLw+VYT/aws+prpi +Eo7vybha/aEQe9w1pt1fNwnr3PgOJT4owPt7fwTq7psEB63+X8dJebj9CVcq +y28S7AU341v0DBw1+t3kR8gkVJx7ouqtk471DtDvUB9MwrHJEzIFzFf49YR/ +v+3zSUiT3tw0mJuCr5uszBMvmwTZ8wO81uw4LMKrePg2zxSQntc88qvXhUOu +Z68fC5oC26DVd5YbZELI1A7ByXtTIFb+2KAp9TV88CMlPnk0BfpXrfg6lt6A +zoMX5e0pU9CnduwfJ/MtqOX8+s/x/RTIfS15drsvF9z3FCQLfJ6C6n1vjh8N +yIN3ZUGqWfVTYHmrKChMOh8UGzadHu+aAvaVQu9vRgUgO+GYemNxCnxbm9Pi +govAxnePhgx1GuKK2+OPriiGBLJAddl/06Cb1Vlf+6AYJERfj1GkpyFcOyy+ +MoIGxxN8AzLkp0HJQjRtPbUEHm40EjdSmgbJtacGuTdKYIXayN4orWmoQMI2 +jValYMhg1O7Smwb2N/750k+lcFf/vm2L4TTE7tz1uluZDmQL5RApy2nwThmr +yRynA+pYlGSem4aU5ie/d5ow4NaFujdnL07Dsg8elmWpDJjxdGtI9Z4G2uhZ +Gj7IhN2LyP7gnWkgXQhmrHnEhGshq6aH7k5Dks6BE8ZtTMgR6g2LeEDINVHB +JtIsGI3NW7fjyTQgbZkeUSsWKK0PfNeQNA0rFkufxMay4GK6ua5H2jRw60Kv +1tawIG2HfIvE22mQ09nUkLPIgr5irmNJIeF/lV6gqYRBDn2cPcOcBvmNpOJz +FhjOVj2+v1gxDRJPVgtv9CX4zMxB9kXNNFh5Xoj1jid4qnV3vl7zNOx2McDW +RRgkz/Eb9P+chvmb+c+/1mKwGPreGvqLkDu+jnzqxhB9NcN5259piLS2nDcY +w1D/z3uxdmIaTqiv/nj4HwahgMMP3WanoQ+t7Pq6iMFIUEpelDwDrIhPgS0E +j4VGDxcVCsyAsoZVpPU8hkop+uFTq2aAlhR8w5GLge/lvfZZyRm42RFykTuA +Yf82qyuJsjOgGEORpH7H4JevREYKM9Au8GUg6T3Bn1oLMb07ZmAm07XtPcFj +sx9qtwRrEPKfoYfuBI9pGCeVboEZUCsQNyt0wODR7GpSbTADtmjVVCRgyLOC +bhfTGQgqiOaliGFg9628tvIEEc9uQ6w0wb/Kl7spedYzcKpP06nrHQsyb/lv +m3aZgSQ6b9nNvSxIuZFx+ZrHDIyimtKSWSbE+9S9G7sxA24WdY+Hi5gQ7imt +Nhg+AyM2ruImG5kQcE3fyz6aqF+8Nj26iQE3rjrTup/OgKGUFodzmwEul0u0 +f2TMgFX2ATuNWjrYO3f7WeTMgNIZ7fSdrnSwvsj/vqF4Bi4lFfRdX04H0wsW +B6orZ6C8JmO1jFYpqFiPm9D7iPw+n1G94EYDhTOSURojRPwdrQFHJothw2lo +zOfMwKH64i8LXsUgYnH/RBb5H9wskRgddisCrvHWs4my/8ApdvbcEioAmvY5 +t9tW/6BG6e1/2yrfQs7e0Ly58//AQ6/cXMM3GzL3vONed/4HZXb+TYcUsyBe +bcHbzfcfoLVaLjtvZ8JNpaf+5+L+gZLOZNt2nlRA6xqi9Zr/wZ3f18iv1j+E +qjlUyG88C/r5B+v3xybijumoA5uPz4Ih13Hr/IlkPMHpbtG3moVL+nLzOt0v +8LqRO1P+LrOQprNyhGc4FV9tL9OYj5iF+TOp1yubXuOQVuEqqcezwB1u3rRJ +Pws/a7Y9pZk4C1aJ/pepOdm4sobk45U9CyJ+R7YVaudgKSYqZdfOAvlPwjaj +/jy8oyTKcOW3Wfj935fhq2H5WL+wu2175yzY3F6+129rAXbNvjN3aXQWdsED +y96zhfhDYpn2b6E5UJA3pe18WYxbnwrX8q6eA8a9DXltijQ8+tjWWm79HJjy +7B7PekvDkpEkv7M75kAyyELa93UJdvFD+MeROZg4d70xxo2O/X2jjsycnIMH +7PyL577TcaxXd5eE7RwEhSr2vNdk4DLXO6TjbnPg+qLkFWmc4KNL9VHu3nOg +sePq9/cHmHjYQXbDwztzkOqFitsfM4n9tWz/16g54Jp1Wv7dwsKKZ4QbR+Lm +oIa17c+XiyyMTtraLX9BxF+hU9mSxsIW5jkTWzPn4Ifeir08XSx86Qgp8FDu +HAx6hVoeEMH4tpGZqGPJHIw/FOSNRxjHHEx+Gfx+Du76JnyfvkjwjB5bNfXz +HHiYyRqcisSYBaiivGEOhhMv3C3MxrhJK+p4z485+GUsmCxI8MWgRnffUg9h +r214zpzgn0VVFU+Z4TlosMi4GPEXY1GVO5R9E3PAR/XelD+DsYJS/eMzs3Pw +hGpQ93Hxf+dVyW72Jc+Dk72s2weCf8zl3YriBOfBoITZ9WYOYyfZMoNikXnY +Fh1YcXsC41vrhL+3SM3DFMnlEerDOFrS1pErNw+/rasfsOsxThfLmRbZNg+a +umPV0TSMGcKk0J2q8/Cs+s3GbQkYN6wwkzTTmgdp9YIDLG+M+5clZ7jqzcN7 +Tk/G0aMYz/Ox99w3mofqoxZRf+QxXsWDPr8xn4e9dV4CjzgsnKN8qwTOzIPd +ddcz4u9Z2MyqNLPJbh7O8fefPBHOwmNh008dL83D4zmeaOsjLBxZrBY+d3Ue +Tl54tEtVmIWVf1/1feAzDzMDU1NdNUxcK/Lu0kb/eZje0rXjcjATr3DdamQU +NQ/ikf1SR4cZ+E2Cg1bXk3kYipfSY8YysOHnl9uuPZ8HFpXyWQ0YOExeZkXC +23lYwzo+7BVEx9SfIrXDNfNgtc7PhNFTgl8tM2P6Nc9Dp5azIfdKCdbffT9b +pH0eoi71HkifpeHAh/yRe/8Q9vzHkzCFhkmH5k3DBRaAnMnoTeQW4ueemiCz +agGuep9xiHQqxDovvXbkSS6Ag4FBYuiPAnxrkb2ybcsCFJ2bzRvKy8ezBb/r +txoswLGambUvDuTip71y75kmC5AksbdPJjUH7xG2zT1qsQA++tbaR0g5+Lpz +20Mf+wWgrXi/5YB9NuZuqDv2OWABvqa/36U7n45HI2nNTngBcoIMCkZ3PcW9 +Tvda0/cswjJ/z1TyxlhIihmX6ESLIPljzlDb9ClYlp20EDu8CIP75S1Pez6D +xtXyjXdOL4LC9UPjcZYvoLyS8eW07yIcf6R/5JlXOvhNyAlGBSxCVaB/cR43 +A/bKhB2qDF8E9DhfjO76GvI8LT7uSiD863TfZVlkwwv5UdZyxiIMH3nepO+R +C1Zmxxf2VyzCpQz8tX59HkjeLNXyrlmE5vNDA5eq8iCqKYTW174IcuHbz1oJ +F8CdgPV5zIVFWFzvG2ThXQTab4PZHMoSlJlIWbgJFMPMjz/KikJLMB9UMFIT +WwxuO2lvYmWWwGbBUYX9iga23WavrsASDD6eGQ18VArrVhT/enVwCRxM7uSY +8NGhVUNarv3IEhRobs7Od6OD2YOhpEO2SxA+9SNRSJsBK+hHOvyclkCqxfRu +bzwDqvoL1xa6LYHtOaFnwpMMQDoBcRv8l+BEwB/X/QlMmL84+O1k2BLMhJgo +bR1gAu2xqXjkQ2K9w/2r1ZVZ4PG+wLzi6RJ4zwemnXZjgcpfqejZF0vQ3/1X +MiKbBSOS/vUqr5dA2fjlrfLfLMjQHxByzFuCWOSTx5HEYO9mYpJYugStFhIO +qw9iWP8s/15TOZF/vvGazW4E33xaUy3wZQni+o/KronBEMu5vQw1LUHkmeaX +w3kYjq3vN/D6SdRzYvTF4xqCX4yMg7N+LcFmzalR8R4M1V55H3r/LEEUSWm3 +ExtDSIokeQ13CS7V6c2GzWLQ/eqHjswvQcTN2sf/+z5v6aY71iWTkM4KH63d +hNwR/arTmkpCBiv2TGGCj+gZrQvegiRUVaOVuZrgp6es5dIxQiTE51W/Erow +XG/W0X4nQkIuPOLMPdX/Oz/r6plqCRIy3hC1dlkOBlXSK9/fUiT0TSHFJTcK +wyqJ1qek9SSksLz5k6YLhrFty0vWbiShtEheqXRdDK9vDr3buIWELI9yHH4T +fONQ+ylt2zYScrfecv9ALws2yKQlqu4gITdVE9+61yxodw2K0VIlIZrmYsc9 +VxbEYbt7ehokNHXrvELQdhaYC+8PMNIioUZTemg5cT2rcxeunNEjIYcrU//2 +mTIhhNzucP4gCU08aBB/NMuA/eal1s5GJBQ+Un3aJoUBNK6X0Q1zEspRSDzy +oI8OHgcsdANPklDvzyt0kdt02BGrqnnvDAmFJGexDorTIU2DvTnhPAntTX12 +Q0C9FOxCv0q/dCTy39VhXsIqAekfWWJvnEnIzlFuzla/BGJ8L5Lp10go1WL5 +bJ8eDQKYvR1tgSRUsJv8eFG8CHSE3jf33iUhL6q/drp/Ifyzef5l+B4JSVET +UsaHCsCNZFUy+4iEFu/WaHzJyQcbvZYYqVQSYm/efsBQKhekYvLvyWWQEHVu +sqHwcg609D0MUMwiIRXlR47St96BcYip294CErKv7dz0NzcL9n7+ZGRZQULc +gVJbl4E0ED9SSo7vIyHZb2qV7ZceQ43lc7c1m3iQcc5dSb5fz7CxvsfqdgUe +5D1Y8zn8/XNcu/0wK0mJB9le767qNHmBv5I4y+XVeFDGd5/FGtlUXJ9mkK6s +x4OU4scztFIzsVnUWtNxA0LuWeBpnH+NG3zY3HxDHrTnd/jX0qNZuNE4Xlfz +GA8y6x64Wj32FjdP/O3QO8eDPIQtyqbncvHx9vIg6gUetMu7uWPVkzzc8vHJ +ts9OPMhPvcHx5Y58/C1uv4+pGw+SCpIa/3GqALfqPBY7fZsHcX+3F10IK8Kn +FC7R1wbyIC87DaaAUDH+sQrsOkN4EHvviHPYg2Lc1jf47nwkDzLhuxXfEkrD +7eHaRq6JPEjmUvWWumOl2Mpj1YTKCx500dbX+QajFHdY98dxUnkQI89sIECO +jjtVovq9s3jQx2ezF11+0bGN1IX7Wjk8SNjg6mY1HQbu4t2rtpjPg8Qyh8Lk +HjNw97df/oF0HlSlf+CSvgYT25bRFAwwDzKgpn09F8DEPZn365Z94EFBHtQs +n89MbPfIzutLJQ9aChU/FrCChXtvakhHVvOg66/kktyNWNjOYUWF2Vce1GNs +Nb8/hIV/Hem5JNrIg1zOzzkNMljYXrNo1bcWHqRXa3nVZoyF++Tu0eJ+EP03 +mFNLlMbYfoXt2TMdPOis6TWHpIMY/55Uo8r08KAdy42MrS5j7NAlkN3dx4N6 +Fz+8byD4qb+q0/zlIA+6dSNCY/YNoc/Ln70wwoNiaDYFDRUYDySEvlBgE/33 +vNdy/AfBO8HWh/5weNBXSbe6O0MEX7nuGsue5kGcXa2XzScJ/Sn+WLc5HrTg +YCj2ZR7jof3t2qpLPKg4CbH6CX66tC331ySZjKwijJZeEXw1LBYSTqOSUd7V +DbwC/zB2XrTceUOQjBYV4+4Lj2E8MrCjdZ8QofcLn2V2Y+zSwHebJEJG5woz +9ol+xfhv6Y9NH8TJyPWOWq9IMcY3N37gfFtDRrzj1kPwFGPBiKz3w9Jk9GWM +p8nKC+On3McPFjeQUd0j2d1XTAnes75tLbKZjCZb7njf2oBx8UenbZsVyShi +8+vaSKK/BsrH/mkqk5HYcqb6GxrR/yX5x+d2k1HbbZPdW7VZmOModN5zLxlJ +n+t4nzTFxAH10yphOmRkonxY72AWEz9/UV2TY0BGhpGbo84JMLGyYEF8hSEZ +/Zsw9/ybw8AM90SnVlMyKjqSdrvbnIHb9Nz4SCfJ6OGeMds9EXR8Met0o+gZ +It6iqzpzAx3PiOklbzlLRs5k6qahvFIs0S+ufcSRjLTn6lf4VZXgo6H0a0nX +yYj9XJxRXF6Mu9mp+/NukFHvub7tERrF2PV05MrK22QksafCNCOjCEconnvz +9y4ZrVXmVIreKcRVNdRf2nFklMGduGJFzccn1dk5Zs/I6I760zEh2zzcn/jD +zz6ZjByKPxfXFeVivitZUhEZZDQuwBEaOkNsIKuOHftJI6Nn3v6v1q58g4ss +Et/7/CCj5Aq50rZ/ifhlp2pykRQvStaMfU79FQNTXaIywTK8yG2NYU588xMw +7OEkmMvxIjOjHZVt5fEw8Sv/CXsrLzo+qrS783Ay6A6pPlDU5EU5hS9mfyy8 +gthh0f/+afOiKKFTjZnn02H4Dyf8E+JFy8RFPdUrMyB6ND/E/hAvMh4fCi29 +8wZ6Oap+SSd5UeTdzhLJ8zmwe1J03uUML6qwjBE7TM0lOITjo3WWFxnIGX2S +TM+FXf/yPVsdiPXSK4u1e/LAf1H1sogXL2pcds9kj3ohNC+J/un24UUeUYW5 +5A+FoMDDdXp3ixdFk0eFP5gUQT1vgb1xMC9SWh6Q3Xq6GGQF1KxCYnhRXld8 +1XHDEvAQFGs7HseLtFVPhnxmlkDVcu7Jjc940bdJhZlX20vBTajAvOwlL3La +17lwkkyHipUxDZHpvEjfNrxjpSMdJFd5HLF+w4siNvH+x/1EByyqZjSbx4tq +rDgfl/sxQERc7HNVES9SKzPu2dTEAAcJrsGTUiK/5g/XNOWZULq6ueICixcJ +bi9V1LrKBKE1Bbpq5US8gFUHZEuZYCcVU0auJOrbkRXTuciEorUeOg2feVH3 +ph+3XYAFNjJqe10beBFbWiunKZ8FeevFaNothL1+S/6zARZQN3DVl//gRSHK +qxrFVmOwlGvO/9HOi3Ydab6oTvDD240FOzO6iXzndTxnnDCQN8W88+rjRbSP +geGn7mE4sdlj+4FBXkT+l9Fulknwxpbjb0RHiHk4pKbdUY5hUUFta+8YL1rh +XLZ69jvBW4pi6TkcXlSaffNm6iCGtG1c+dvThN4qVqKNi2FWqTnFZI4X2Uzd +2/l0HoOpcoHsuiViHrdconUTPJWyIyZpmMyHqt0n1HMWMUypeKwrofIh3+g3 +zfwEXxnuOh5/V5APxYb+tBkcxZCoqiZ5QogPldo465h3Y/h6BV9eJcKHKqxk +obAWAynL8EONOB+S+PftRmMRhp2DLZKha/hQnv8Q9W0CBjv5c6560nxoHQ83 +yOgmhhjbkQ+LsnxoftVJpXenMHx8dn1NqTwfspFLr+hQIfJpJV/xVOBDQZrL +0tr5MCiIR1aoKPGhrBNetNxmFlgeXSM1soMPDfrPup9PZsG9+6lX0lX5UFtG +TduMIwtGKXQpGS0+JPP9UujfYSbI6hq4/dDhQ69ji2Ot05hw1K/hY4wuH9qz +WrSn0ZoJBVMDbssN+ZBf7Z2X3DIG9O+6VllpwodGP4RvLXJhwOori2sDjvIh +3UjMly7GAN8BsU8zp/hQ9L7pAIPTdIDW/dL9jkS+cSA0UFQCbmK17i+c+dCp +GrpA+IESSDE7VWV1hQ/NmNFyquppwPfZ9VqTFx9y83KWO9VRDNUlCZ/LgvmQ +vc+h5dH1hTA/uXn9zTA+hHzM43oOFML2XXkeGvcJ+4Uk9RO0Aoh6XbX+bQxR +X/LRxdmYfLBImPRMeEnYl7MyrXfkQvfNI3Je7/lQ9/pv0b8n02EKeG9sW+BD +ZY8iCldWnYPdcynTGjwURJL66hScbIq9inQ99CkUpNK5xybynhueVAq4bP0f +BQ0+2KZ4aiYIc9fw2D6QpqBQG3mDTokneIKzqM/ZR0Ejtafq+HA63vUu6f3S +fgpSDPjeJaqRid0v6eisMKCgqMy4dVvevMbj3bc0NplSUIziRMqVkGzMrp3f +etKGgv4WZbq99M/FKmHP0s7bUVBs5qlHcYp5+Iq+9kY3BwrqC38887Y+D4+W +3lgX5kpBhs9N/vsuWoD/ps8K0f0oSLxbV/b4tSKsdD7+3qcACnqavYkSRS7G +LjJ7lzWHUFD7dWmDrZHFeCTGh+dvJAWdkgjduy6ehpXM1vj9i6agiJeVcUZS +Jdh5ecks5QkFrf547l1gbAke9p/hyDynoKEKnq1lAaVYcV+c27aXFCR52V3z ++UQpvjSj8VcjnYKqyubttG3oeMj1er/ZOwrKvef59rICAysorj5vnU9Bj64U +dvaEMLDT76Kui8UUZNfEPNzczcCDZ6ZaAzAFbXVcmTsXwsQKq2MtHnygID9r +uCzRxMROjeqNCZ8oiCWybdBXioUz7reYZnyhoIejp9ukrVl44JDnl4I6CrIK +e8vgxrPwZj7xQ++bKIjqI1w92cTCDrigovY7IXtOkySXYZzme3x/208Kko/9 +Lm+uQfCQOpfZ30VBNl6u+Pk5jDePP9rL+UVBzAX2hukQgo+yVIuXBiho15s1 +DubphL9jk+qKEQry3LH6yrtygrfkruVIsinootqZYSrBS/KdIts3cSkoYcdh +sxPDBJ89zcvcOUNBs/If++KnME49fmyzzjwFxemmFDcuYNy3ciLFkERF6frj +qf97v3zofGjdKj4q8iwV03An9KPFMvOt/FSkeEFT1Z/wn1heqJC8nIqcljXf +V/yD8fRZIwvHlVTUE7jr25WfGM/n9/gri1KR9G/93eafMCYt8347KUFFj1WP +un9/izHFSugnQ4qKYniiB5ceEryUk8ofJENFBnU4qt4N45V8WmpGclSkaxY8 +Z2KEsdipBluRzVQklN559H+8JJnleP/HViqiZp0/bs9hYWnSYknydiqC07cs +Bd6zsNzxmH7HnVTUeD3k6LVw4npkKIruUKcirzff6ZlHWFjF7KQLU5uKjkid +//aslonVU//GBSEq0tOKvuRMXP+9M4EfjfSJelRuaShqMbFeco5MmxEVDdz9 +zz0ljoEPcQ2MXhyhol2k21ru+xnY+FDHdSdzKpKX2Dlh00/HJ9gCDVOWVBSq +wV/zXp6Oz+gnLzBtqOj7q+SHx1il2DZut2KwHRXF+tKD1Y8T84vOB4peoqKT +fUPtSp4l+FYUQ13Fh4rih5TZcfeLcUDfMbvpm1S09eoyjSvLi3HInqFI1h0q +MhXHo2tCinBUt/igcSgVCafI39ztXohTVa7EX3xCRc0+/4bTt+Tj6voNSymF +VMQ9xPt8tWoWrpOnbbtUQkVu1S27tNpf42Zv01M7mVQUV9X1Pcs/E3fI3sjF +FYR8IjxQszwNs92az7c3UZHY9JS68foXWGLV3SrxCSqSbPOJpDUH4wcaG6+a +TBHrHXJ/89jdDy+zwWuCZ6lIpSRaKGD3VTz3evoSl8yPSGGui9ei7KBb3+m/ +JlF+dOcgK2qv8API9D58LEqdH627kTtgn5EKcs9/z37S5EfGDy/kd2ikwbOP +/i+X9vEjhRSv63c/pEOkSCnX1YAfDQ5Pmpz9+hrcsxSfmJzkR7ONsdVXLXLg +T2MlBJ/hR05xBs+PCuaC/T+7QcZZftRrM5F2gJELJw0SNJWciHyeGNWxJfJB +u3t5u6APP0pWWH10fWohFFIzgnRv8aMsVXHFizpFoLxdf7uvPz/a81mzvbe5 +CDb43vQbCuNHDC798NJkMcQnS27ZEMmPJP++9XS7QwOxTwV1p6L5kfx6d/u3 +1BKgiv2VrYrnR6founvVqaVwe2/Y56Ukop7DNPNjt0thxnaTu8ZLfjScYPas +j1MKf7KtP6S94Ucn+sWerKmjg33zP+fOd/yoXz+kMFadAZ2zj8UkCvhRBZLo +3feEAfUHv14IZvAjvpdsgyojJhx2vSTELONH9ganIiKSmFAeQy3mVhD9VHRc +0h5hgjY95azSZ340M/nJtEaNBYU9Osvsa/nR6GUQVPZmgfKynzkJDfzIzuRr +6okiFmQoXz/d1EL0d1uWl9YYCzZYiJKXt/EjGcm1uFEOQ/yNd691O/nRSKxo +muhRDKIpRua+vYQ/rto35YMhompgLrefH5kq8wVdS8RAGQtMHRrmR7vjTp8P +pmPwE5c12TDGj6I+7CzY3IxhWosxeYpD1MPK2mc+gMHN7lRS1DQ/Kth0poh/ +EsNwKNegao6I7/i1Yv8Chv/3/0D0//8f+H/Wnc6h + "]]}, + {RGBColor[1, 0.5, 0], Thickness[0.005], Opacity[1.], + LineBox[CompressedData[" +1:eJwU23c8ld8fAHCbFBp8lZRRUloqSVEfyaiUSlEqo6GFUDSoEKWMjEpE2avM +kN3nyR733kdG2Tt7XPNeMn7Pzz9en9c5z/mc8znnPq/zfl1krlrrm3NxcHCs +4+Xg+P/va8m+o4uL/ETA1CL1QwLhs26T6hw/EdNWQ79PxZI2Xy4/YPMTroLx +WuQ8CY9P73ubOslP/Crpsl/5j4TfikXlQ0x+YnLc6cFBFgm7V5zh2DzMT4xv +Xn779DgJPmMtytf6+YnzgXmPdIdIGPp1x+rzX35C2Otw446/JBz9xops6OAn +boUMV842kxDt79Yo2spPHPQOfZ9cQwLX/RUrTjfyE7vrC1+dLCfB5OxnHc/f +/MSdrjMcdfkk5O7Z+qykmp8I7C4z004lYbVoVjonyU9Y2WxbHRFJgt2k5qBa +JT/R8p3jc987EnZkmFxIK+QnaMYPZFXsSPB4P/hmBPmJme9PQOMqCb32j4q3 +5PETYqNpN/efIiFM2X93WDo/cSxL7tmYHAnz/0ndbkrhJzZGC/5OEyHhIutr +6H+J/ERb6a1lN9gMWJVVvMw7mp840uum96mEATaB+kfKwvmJiXBL4Y0JDKA9 +anvM/ZmfkJdZKfbZlwEv98/0PA7gJ3aMHSuyNmQAO2fbzxvu/ETpkbBjMXV0 +OBeczQp35SekXbg+d32jQ6qj9o4Wp//Xp4GQ9KHDHTWz4LOP+Il+xddm7pp0 +aMl/a69+m5949+/wk6uRNDjwWTrB0ZyfEFcZexzxiAYBzxI7v1/hJ4rbjvP3 +n6DBaSg9tf0iP7EysKjOZ7wSCojZLRK6/ITkqIOqze5KWB/ubmagw09stZq/ +v5yjEhxdRD/4HqH20+GcVBGtApQ0dvDwq1Hz+Q+aLa9VQGzhldaJbfzEcudi +IdaLcvAqKfOnC/MTO0/6FoaFl0Kj/OGITEF+Qk18Mn7gUilsfp2dGs7HTygO +fF6iKVYKxbpfquwX+Iij6rohii9KYKHKU3j9CB+hbX11UuNiMdg26XncpfMR +72uiDWaaCsCQWesi4sVHbB0Wr/KKz4GoMyf9Ztz5iGQ0+HpmJBvGvxWHdbny +Eca3Dd2W7s4GH/vvmOnIR7ikhbs9+Z4JZbMf5k0t+IgJn4CjCunpoMp76XHK +cT7i5AZnfeFViSAt0WFzZgkf4XHEWXq51lOI77xa5czLR4jzzYdmHLOF3V+7 +d6Zw8hGhZ2qTF5UNQEutb0R4lpdI/HIxV+/LPbxjMmpJG+AlPu67CfRIX0yP +mL+lQ+Mllr45b1OyPwqPbpW4ctCHlzh1bq+dX1oG/poIJiw9eYm4xYPa729+ +x4t566RD3HmJmur7U6REJlqdlGmbdeIlkskgRtWzLPS33mycZcNLsLwrtfTV +crE5Tdlojz4v4X75z8zCEQJt1M6e2SLGSyQ9r+wPlixGyYotDRYreIl3ql1K +3VeLsew8x5UkIapd+s/0/bhilLqfaLOHj5eQd852M9tVgox4ft+DLB7iWZNu +2vYDpeiwr1XceYKHoKfL2ts6lOKm4vTQglEe4oJPdthAdik+bb+SrNPHQ1QH +HUu0Uy7DbeJ5jDMNPET/K22LRLlyrI/yN3xXx0P4Nq9de9W0HN123279/YuH +iHHXbVYNLMemk/+NXKrgId7unBs15K9ADzcboRu5PMQr3j/erMYK7BvbeMLh +Ew+xRJa4Z2xIw3dO/2rygniIqqaIBW8XGqoLVV9afM9DkHE7/cu+0vDDZicL +tzc8xHj2GnnDeRpqmzZ4vHHiIbbFPj2Y+I6O40PJK3858hAr9qpzCWTR8bPD +y4+rHvEQdYpfz19tpOPU+z1fAm14CKEah7UrJBkYRfMuj7jCQ1jXnyZU3jLw +9MXrZ/4a8xDRoabutkkMnOs90CB/kYdQmG7zDS9j4Fnuvr4EfR6ieMXJoa4Z +Bi74/rAZ1eMhvszueD+5nMQv69+zd+nyEFNCjjtmNpHIdUBDIPMID8HStD7S +dIrEpNLVvjPAQ/yo0zfJvEriRYNRcTU1HkLk1IY4NzsS+bqKQ5+p8BAOR7Tc +NV6QmGoTIv9TiYf479ARC+Y7Ei8v3Evm3kWNH1ZN844kUcDr2D7t7TzES6X6 +7RKpJKavkcZXW3iIspuWa97nk2gWO61dKcdDTKu3bVgoI3EhIys2T4aH6PCI +C99cS2JwkYNA0joegu1iNCnSSqJKjdrt0DU8RIDM9cy0HhJ/dyyU+4rxEJmh +Im9XjZBoxyQUnq/gIYJ7HdV2TpK4YvG5530hHoLfP8qeb4Zan5DW0PUlPATz +4jWhoDkST0jynzTk5SFcRe+19SyQOKBQnqjDSa1P3LJ2dJFE9/2ewvvnuYkA +RbIjjYo3Hj1prTDDTRgtnVuyh+pfYChStXaKm+hco3zZ6h+Jpua/FIXGuInR +mYjJqywS5+6/9VsY4ibEzh+bWzVO4sfnBuOjfdzE/uMi8c6DJO7zEz/b0c1N +aCpnHYzvIrE2tCGtup2b0JPtXPKmkcR7ScGiRc1Ufz+uOzurSBTJN7bPqOcm ++n5fLfUuIjGhUup3TC03cXhwbWB8JonHGzuUA6u4CcncFaau8ST29kV+eE2j +nmcNf137kURZvs1GlkXcRHpQjoHHQxIJ0YFsY4KbuHIjesXV6yQab0iQOJXH +Teg7G6/4R52HQHXF5l3p3MQbSys5uw0kKp8aV9uQwk3IPGqdN1hKYo1x+ifR +BG5C2eBgxNwYA4UdVUxZkdzEOvd8s5BcBia8nsW+UG7CdAU74sNnBh4LzJNu +DOYmbo6rcV52ZqBbhnpn3ltuYs8fwQFNdQbKFnEdSfLhJj4U6i1arGcgVhdF +hnpS9RWY0bryj46zo0fNn7tyE/08yJWXSsfABcGS+07cxGOHj9c3etJxrxB9 +k7kjN2G9/hBpdo2ONgpn+nTucxM7eWPXXF5Ox7/XjSyErnETf0l/P8/LNHx+ +fy1twYSbEJl6OFmwjYbSz1u2MS9yE17hSVrN/yrxYuiVkWp9bmJtmKlzXkAl +VjXctg3U4CYGp97fsMQKzNNzeLhBlppf06Dug9YyfFektfniem7i16MHjXIR +ZWh1YEWDrwQ3sUVmk9+/62W4flPcgYWV3MTAguC4TF8pOs3XzddzcxMph1Oe +fOguQY2EXW5v/nIRAmd5JzZmFWHZkn7fmTguQmx2ud2h74hhTumHFaO5iJkn +p6SuLkd8POU0fiOcizBbZix6//YPVOj471xtEBdRW3dw+v7qfPTM0hRP9uAi +Nkq90Ht/Jwf1boZ9um7JRfgNPE/w6U7HmqLzX8id1HhqlanHMiLwc66wUsZW +LmJP8tiVOslwvPWtOP+jPBexSWdTggl/KM6F7vllLsVFJHM4DkuHBuJGRxH2 +P2Eu4uCS7us33d3Rblep1uYRTiK+pePfVW4vEP2s3OGcwEncUHZ3PbQvBVrf +Dd+5EcdJrJXjmrReSIE4z6hJ3ShOQvbA1m5mUSqoPV4pIB7CSWhIaoj+PJUG +18+N7Ej05CTMDSXW5176DumCMU8a7nASkaf1dilr54HBQ7HVu7dwEm2SvT/V +AwtBY49MhYIcJxH44eqKgd5C2DG67ckGGU4CvhdK0JSLQOCmZrvoGk4iZ/Hm +sh3VRZBjeD+OJcBJbCi9yCu2WAwxK50uMnk4iY7111/tPFoCbxkey/o5OIkw +AaG5O74lYKkdYdPI5iDkRL7a7l9fCuuVf6nk93EQag5Vqb07ykBwvHkgo5uD +qN+wLyjPpgxYiX0hSe0cBGworgtJLYMqOQ7OsHoOwrp36257xXJ4Lraz/HkZ +B/F+OLdOXbYCeia9jI7GcRAxe0VzoLYSqlMClx6O4iD2C70ySOalAVpG5e8P +4yCklIru8CnTILA7V2ZrIAcxem/06bW3NDheO9Av9IqDiGubEY1Vp4Oy73Qw +nxsHEZikziF9mw4bTnDpLTpR+YtXOd3zpcNc4ZpvzIccRNnzS5Kfm+iQnHbU +oeYmB8E+mhzZe40BIdbnttGucRCxcufjeVwZ8GqrWWuRKQeRf9VfjRnGgKuR +DzW+n+cgTvHH3t7RwAA9U9fJpLMcxKprD6ueTTBAda1PTOwpDkJoWZtJ0DIS +RN/GCAbpcBAVN8xWbFElgePUtzy/IxzEC7/L10JOkzAs+OOuB/x//aUqv6+T +0FhSLu2qykEoyG0qrXtIQsnzumrHfRzEgcvHTn98TcK3Qx1udns4CBFbfdkN +H0kInR1SttrJQQS9yv1gHU+C13d2n/lWDsKNNBZ3yiTh0T2eYBN5DuLyw4ei +Z4qo+/b7NZ9CNnAQm+We1sqTJJRm7QhtlOIgtnPeed5fT8JI05Hw1ZIcxEct +jfL3HST8t3gh0nA1BzFn72C8rZ+EQ7J3o9+JchBHx2bmEkZJMNdyja1ezkF4 +7lpnLT5F5b8VGL9ciGrPznSzmCEh3TPxq94SDuJSktjq+DkSmpMKEr14OYhb +svPLqhZI4K7+k1zByUGkCCSfbqc8ZDDQcG3F3CIaN/Q2NFBxlCLPLe/JRVTq +bIvLo/pPPNhhuWR4Eb9o6pa+osbTyL9g8+LvIpqEGx09ROXz43a142xdxHmb +jKMtkyS0H0t89PT3Ir4WdB0xp+a70/fPkxnGIm4/b3q7vo+EZ785XexLF/He +HpNxJWq9dMltL8ZwESWfCdAcqXpIXjN8bZW1iNG1RhqJDBIs4p29+1MW8cJ8 +/pfyQhJyRr/4mccv4olFoeu/qHpfeLIYZPxxEc3Vu+9HhZAQW7Dlc4P/Il7e +Jp1p403CtMC5CAPPRbxx8OtGhackvHsf9+Xkk0WUbhDDG0YkdDVVJ5XbLWKV +y6MNg1qU92Tnv2lZLeLBcTkZ010kkElncg+aLGIP+Tx/NS8J66ccMdtwEdUP +NrSYDjPAUjWmcO+pRbx2NvdjUC0DBMtmK7erL2KdgJ1+XygDjITlquJVFlE/ +7MjqRep8x507VSu3axF37XFZvuwmA7Q7IpvXyS7iuYkhv2UKDHgvz2gPkljE +A4csd3AJMqDbit0ttmoR87/2bxjvo8Pz2RPDQjyLmFqcElEcSYcfq6bn5/8u +oIPV+eDLQnQQuijN5dC6gD9vLbPS/kuDy2HH+aZ/L6DmRX9vpTwazG4LFR4p +XUAz5RcXN9ykgbL2UanW+AWsZly8aJdaCUmPPqr/sFrAukstHUfXVEA7ETz9 +wXwBd6rpObu0lMPKJZ8SbI0XUKrm9d7UsHJ4GBS6Wu7kAkLN0S+LG8pBPSeK +6bltAf0fZliGri+Dmn9JYUaD8/iLdqlNvacY+DRTDPd0zePzpRLr5YKLQcUr +dZlQ0zzqy6xcte1UMYRIpj8iKuaR6dZ8Oim9CG4czD4t/2Ue50WlDJvsC4H9 +rJBj6tY8gsphzYQaAhRKi74zzObxeP9/9QeeEHBZpMQy7sI8Rq189k56IwE/ +Q8vqLx2dx8gd/04udv0AD4KeUiA/jw+1ZGbbl+XBOq56M9+eOexka4xEK3wH +jRdDxNbrc/hJduN6ow+RMBDMIe57eQ5v6byTWbMuAvy/iVpNnpvDqJ0Z9vsi +wqCrTW1NvtYcJjWwG9wNgsHtgLetnvwcLnc8F6/W+AaKR7fL2g78w47hdRmZ +w8549KK163ebf2jjOi3h0fcVmTauDRK3/+GoYqCWpnEiBrp/2Ol05R9utN1+ +jl2VhP3p2KSj/w9/h8TKezemoIfIcqWGPf/w6/3DsXcz07CyKKX73/Qsxovt +ZITpZaPeznGtw09nMY3rw8W2rp+oWpU8VGk/i4UfVat0dhXgZlurt4Z3Z1G+ +Y2iv6LMC5E7ra7cwnUWGuZcnQ6wQs5TbHAMOz+JhVk3U84NFKHOIljrIO4sV +ct/PFFuUoHDb6wsPFmawwThNUTOpBOecdBY5WDN42EvXiYNZgr9/Fpz4r28G +93ZoRWy2LUUPrexe9YoZHFZ/NjV7uwwnT8SsC3gzg7UaIlKteyqoulwrknaf +Qavzpr4Hblcg442MxVenGdwoc9g2/VMFxleFZBE2M/jHMc95hrsSTc69PTuo +T7X/OeUUVFyJulOnZ+11ZzBmemNH6kQlqgQIh3NozmDUULxDozQNV9W/HhHb +S81nw4lTho9oWHbJ+bW6+AyKgap01Vo6ZswdVKwUmcEPpv1xhzXoGPHp328D +gRnUCdHZk3WTjk/bHmy0mGGjYYvg6eRkOt5xVqqcGmPj21Pij7dX0/GCzLit +8wAbX97e9+vrBB13X7PC901s1H/D9zFqDwOleLbekK5l48y+0b+S+gxcFt23 +7CuNjR4KtuJ+1gzs6bl2kchn49Iug8O3YxlY4y7DqfudjStjvlys/MlAYnNb +bF0SGxOyvYLlmhgYfOfi1EAoG5d09CqjIImWQqMnaz6w8eDLx19rZUlUS3GN +yfVhY9D7OynJ+0kUOrt6MdKdjeojAyanqPt261TCeS8nNnpPfWz+do3ySuDh +FLuHbDyj9O5SwwMSnVR/Cxhbs3HTA1uJglckSrssZm83ZaNR6bTvnzgSmRve +rfzvPNV/KISHm/LAz5LNFgt6bIzgV1QcKSTR/3Z+YY82G/ly9/sFkiReXaYv +SR5i44HDg6mclDd2J/fYZSqzMW+V7JYtlEe49R3poTvY6LLc8qMw5ZXaSZFN +rzax8b3U0u+pYyRGfYh6ZrOejWYX2CorKe/YHdj/58J/bPSM6RnaSXlIq4W+ +87AwG81HNOMEKS/953z11RY+NkangF4E5akeWVb7igUWvthewJim4u/Fnvtn +p1i4jf/hJoH/++uWtH/nMAvPXSsz+U157cLSjIGKvyxU9WrzvkJ5bnPSsSNp +LSxkLI/6HU95j326NTi4joXK13NuJVMeLJ+4N+lKZ2HinIvzvV7KXwH8Jy2L +WVg1tvLmBOXJO/tDos/ls/ChhOq93XUkqjYrLqhlsHD3FwcexQoSlzkVG8ol +svCVHof3EOXVZpmLyULRLNxCi3K/lUJiYtEI/3QICzUle55EhZP47KarWes7 +Fq4Q7OQM9yNRT3B1dokXC6dPn84ycSZRKjFhRbIbC81Vn+i1WlH7derwnQ9P +WBhTcNBJ+iLlsfG6Aic7FrJ3jq/YpEWi3/s7a29ZsvAY2DWO7qD2p+ktTeUy +CxfpXh9rFhjI9WyznMw5Fj4yXHg42k2dT+n8p0tOsNDzVrthTTkD7W707GhU +ZWHEBQNLlg8Dv4+p+DmuZaGJ7FT/LyEGvnxH77+2ioW67oY2egN0PL/vqsaJ +pSxcqq3UFFJMR/YTzwnJf9OoWeOklPGIjgcEWg1+NE5j2IrB64tVNBT8ei8p +pnoaT3U3KyhH0bDpJD+/T8U0sr3vf9N9QMMnbxWzTHOmsUMq8bSEOA1xvasE +58dpvOQ4oe2oW4l8vgqr7Pyn0bZw+syTNZV4grN6aa/HNE5WHhL36anA+i7p +eZrjNDZr1vxhPq3A8bgfbYHG06hkubipPrwcN+2ZjVKUmUZRoWq7Xiylrsfh +nyLXTGNd3KxRr1MppokdC/hv5TT2v7oRthpKUZ39wX2OaxobJs7C6twSNMrf +e6esewp7/1xiVMYXo5eO7U6zuCkUCUq+JXG9EKuzVm+uCZvCDb652sdXF+Ia +BUJaO2gKe3j91KsrCzBmmcjKbR5TaCiQKDylWIDEr4RJlsUUZhyfWaiaIHDi +Ul+2z84pdInMznyfl4cXbUw18fskDvrHbOHJSEW3rpYRn6RJfMo+rzo3koJJ +hpeDzGImcVeiw2WtzSnIedBohDNgEh039zHqdiVi3JKzgZr2k+h3J8OpoicG +pyO0h8r3TKL0g1daPaffoX/d9ne1KRP4vOxk1D3uUMg7mnAoOm4CZ7f5ZZSv +CYeeXIV++7AJdHFVvbslNQL2R8gfEvedwBOWjRvft0RD+12ZPiPrCeybfnzz +7NYE2CEgpta2fQJX1jhNrdNOh8oDc139X8aRULP+ETqLcEBlY1t7xDjarPLM +fHCOgLi9Jxr/fBzH9NeJ7NkvBLxUDKkq9hhHh44d2sKGP0Fjk1p++J1x3PPV +xY47qgCyVjwJMFIYR1Pbt4cvShaDvEiU32nZcdzp09tVfbMYApbRvHQkxpFt +/9v8wbdiuM8v6bpXcBwveJ+z261VAjvmc61XDIzh+SpVz51mpRDV9+9oefwY +xnp5bO+4XQ6rejZoEuFUe8vlgB8xlLe6dCEzaAwvCRYEhnSWg2lr8N7o11S7 +0+KGM+crQKJWVdbl9hg+vR372VipEl7/urbu0ZUxvPbSoYHjdiWwGZ6rrY3G +MKSqVuFtSCX8Lm8SNj42hllvesWectDADx3/qWwZw1XbuD0Uc2nAkR85vVNm +DGtsc77+10uDuzmVY5vWjOEW6XT+lhV0OJGxtk90yRi+0JSq5r5Oh9xvR7qW +co5hTtgn4SuedFBIsWjlmmFiPWegTGAqHQS+5tYy+5ho/c+923uWDg/jusje +dibSIoV/HFvHgJ7opZWt9UyMST31s+EQAwrDLv2klTFx5oXgattnDNj92TWv +kGDi8BPjcfsQBoQFf83MyWLijca9PMezGfAs4F9iXBwTzwuqmlwapXx3VfmY +QjgTJ95JTg7xkaCzw7b7axATd+yyarBdR8Lykh6JZA8mvrO29NHXIWHKT+a7 +oisT3xy/P5VwkfKb8eUz3xyZeHE4uo5lSULk1C/3DEsmSilKvbv8hoRXP5dt +2GfORBxXPmP/iQRLb50fWcZMpHts0n7ylYQzRs+NDhgycU2V3YxNFgnKcvmT +uXpMdAsdndWn/CYxxvI5qMPEDzHJXTKU3xbzdm9FYGJk61rDFsor3a+sStRV +mHgmc2jejfJM2bm4KwWKTLRn7vBdTfktUbpr7sgWJsps0K78QHnIf2hdYLEM +E2tnRh5wUX57kHVhj44EE1PFD1+/QHnqkttbRtlKJmYlpVgFUd5SP824fXwp +EweKRB4WUx7bKLmEl8bNxHObfayaKa+trHJXD2aP4uAK1Gml4qab8w8+94/i +iYc+vJVU/6jFe4nhjaOosfR0SgQ13t0PfV1RlaO4aTj5ojmVb99OE4m4vFFc +zp8vvYqaD0dpzemviaPYI9El/39vVpgcc0/6PIq6zwY+K1LreTv9Iz/VZxSf +v5jOD6PWe/mN0mS6MzX+J9eSOaoemzZ9UciyHcWIVebcWlS9mPlSV3KvjuJ6 +34Kyx1Q9sw3ef/hxdhQrD4jZBVP1fj4syPipOYrD/hstv1D7ceKFM0/x3lFs +m+SSiaX2S2zd9IGyTaPoRy5Z5k/tZ2u6hW2l+CjGvq5LtnhGgm23YeuvmRGM +PXDl4jB1Hg48oYnWDYxgtIvTuwDqvPCIaujWN42gXafoiOIeEgKObM9qzR9B +reCzlar8JJg1RYx0JI0g615sZSJ1HrfcXy33N3QET7rmdK/6w4C8CG7/QZcR +nMvU/4ERDHhx4HHZyL0RlPTi0OR3Z4Be9cjC2LUR3BqVbKl9hwEdnI0WbK0R +jMGZt8nbGcB3JUWLV3AE2dpB0cfj6FDFlnsi8G8Y77ZVWlu60SHIN/jb0qFh +HHV0CHljSodtxEuplYxhTNEYlW1YSYczUsYz6/2HsS/lv8GvVjTozHF+2+Iy +jEHuNX77DtHgnmHU9hBb6vnUwy6RQjTw9x68subMMH59s4JzY3wlVP97XLFq ++TCelOW04qipAP36gGCBN0P4aLnUrZWTZdB5P2dv6dMhdM5Iao5IK4N7Iq3k +C6shVLC/nbjvXhn4a8vxcJ8cwufvOf88GiqF6vQ0y/mlQ7hp5Y6gqLoS0Per +Ojj+ehBlF3eeXfu0CDq3Tf5JeTyIFUeq6g7tKIJ7ZeL3rG8PoiCvVOG71kLw +XzSJGTo6iJFjS991qxVCtdWwcC//IE6GdpfcZf4E/eOC7U0vBlBbfiZyn+UP +OMut+bzYpR//KuqH6sd/A4aq9+Wge/2Yvy1XPWw8FY7b/Va2utaPniF8QXqq +qaDx99agqFY/Gsjn/KC/T4bdpd7nrgv0o13c9RHb0nhY7vlnE7dPHybf1t60 +nS8EaCstKtVDevH9D9XUUd+3eFQ3PVrUuxftr4oOL74KwCLXeae+p704Xn18 +y1HnIMyd9FHyNe3FVa+0zMQtQ/HL7/RPbbK96HbxObPvYzS++rhg/Sy+B5sL +fL2zP6egpqy/aN73v9gYfm7fhpJcfGnyWl835i+aUyfxm1Meln909m18/xd9 +tBQvrFbJR71V1stm7P6i6ubaMN3oH3iB5wSP8h7qebNfvyCLQIse3snk5G40 +3OY32HelEJNk53dBaDe69Vxip6cVItNk0prxphvLzi1mpvEUod2fzsEhq26M +OHhms1pUET4rw64t27qxONkzeH1DMfp/eVwTGdeFTbPLe+zFy7C2x2bFnsAu +3LpHb3HyYhmKb7h1qsC9C012bdZ78KkMQ4INK9tvdOGg9LpCO6lyjPHaU7hO +rgs/3IuvExevwL4yBc5E0S70ZDCkTPUrcCuvLKjxdGGseZXMO68KTHm6PPdi +Vyeqxri15s9XYM7d4W8fwjuxtfBcUlV1Jc596WZu8uvE4n7bFi1eGkJv047v +zp14Z0vQ8g/KNCwyrfhSa9qJt2uvuBe/pyFfyM++a6c68ZiR4uDnQhoeq8/a +NHGoE1d7eL49waQh43RsxIr1nWgzNfRwnTYdl3t/bg8T6sRkRubeg9Z0PFv+ +fr3ifAc+ZOWpKnygY/1ht496zR0YulCfYN5Fx47dV/w9P3bgrp67efusGJjk ++tX2pkcHCqsdCeb3YqBD7dTpIw4dKHh5LiYqnoGrHniI/DPqwFW1N78e7mBg +e0ntyO9jHVj50dke/jEwQVyK8W1/B/6YMBPhE6X8kp3mdWdNB+p8Pt7Uf5jE +lYILFtpLqPmwr6vznqe8dvGoruxMO3YtdWz6e4fEL1/9FRb62nHPur/dHk9J +fDjXvKSxvh09pI3DJ96QqHlSvj+jrB3frOS7KhVK4vLPtmV+We1Ir73nJpRE ++WIkN9Yqrh13eCfcy88lMR743I8FtqPmK5XIHWUkPvA9fUPuVTtu/bwuyKyG +RI2Oj1qcj9rxz5r+Lv0WEoV3/93YcrMdn8umSfH2kNj0fCdP9nlqvFjZqQfD +JMbVPO56p9OOi5U2a+ImKK9tLCqw2deOZxos9ALZJKrbC0eckG/HOwmPr+pQ +3hIqueCyWbwdU+ODFDMovzX+F2nGw9+OJoo3wjoon50gG52I4TZ85iMWQ6Pi +vzbWhx7R29D8iYPGA6r/s5U88zsT29BUkMe1lfKgeHpgbq9XG5ZtyHfhpfKl +GGx3CLVsw/tuuuaD4yQeY/1UOX+iDZ/sHTHzHSKxM9CQJbytDb08HNMnu0l0 +PDCYUbK0DaPCTBJWN5Mo2uxk92ywFT1M3oXP/aI89lR0j3JlK05Px86ElZCo +LRU/NvylFSOGkjbx5ZDYRhxMifZoxWuBmrHbEkh8dLX6rvGdVny86wWf2Cdq +/6L/DdK2tGLphqbK7Y4kHtHx/eK2pBVfpT5+aXqL2p++jbfV+ltQbX9ZmcE5 +qt7b9Hq+xrWgXmSH2NvNJMbSO6OuvWrBY4Yq9U3LqXpaP7y29lYLOppr+Q2x +GHjvW1i7h3wL3rZ42XK7gIFLz+0N1eBvQbFhJY/6aAZGTZUbz/Y04/6Kx2ar +XjHwt8pE4+2YZlQ0/nt4/CgDrRvdg2ReNmP9wobSQHkGCjyRvNBg3oyB4yJ3 +lvMy8ABq1R2Va8ZsjT3Oj/LoWGPW+JaDtxkfjvjRLALoaMllrZ/V3YTbRsm+ +vdTn67NWICkf1YQj9K7Cc+voyE0bKOfb0IQdAfqjAxY0tIutEOjnacInv0+o +TwENu59/0ansacR4m8hPAqtoWLz/TrHPl0bk/xYZd/p7JbrH9hOrdzei8NI+ +jrdjFbjUtS9T4XADMo5EPLmmVo5PTMqml21owNRzKwLLOMtxaH/c3lEeKnbk +WHO2pAzpzJtpaWX1aObdZNt+ogx9THqT1E7Xo+KDNfLip0tx1YGeaD3TP7ir +7D+ZDsVidBMr6VY8/Af7uVw6Q/uLcJIZvWHVhj9oGbCuNja8COtizcP/9PzG +o4shsp9EivCD2N8Qs7u/seN5SO61rgJcO9b19t7TOmy4vNYoxpLADXEdLgHB +NZi29ECc0+7vKO257tWoQw1+S1Tij7DNwPV3jd4cvViDGLp3aV9yOkoo/fo4 +u7oGpw+kyC1sScOVBJFmElCNwfb+t3aIUX6rD/27ye8Xco5V1m35FIkokud/ +V4jEtISbvXsY7pBTtydUmsbAHq+lCop738D34K9fqz0YqBLpx+l40h+S5IOL +lAUYmLgusWwwJRA+g8P0Ahcd11UP3bHNiIAn1ioXfdgVqPjhDPdpnWRQIdNl +UrpKMCjhrrJxYi50CRTuyIwpwSx9VmyAUR680fil+uN2CZ56eF6umicfujKG +DWijxZh17aDBvgs/4E3IJo++f0V47en8S8HHBHTdDhyXFi3EPWfZRq+nC+BN +ZMyi/J8C5LdgfzY6UggqLenLdn4sQM9zdQZPfQrhzelfmw5KF+C3IxIP0+WK +YP8+wUtG234izy6OB4HHimHdEvbLDa9/oG2XphKPVSnceyIavkvkB175EzTa +kFgKZaOKufA+H+W92N5Nw1T779ujl8Lz8GHZ3xdGFmVQFtl0/l12Dp49Z/ia ++3I5rBdn20ZADlp3XD7973053PcQ9UopzsaYjj9/hUiq3fYkQfuVhV1m2u6O +hyrA7hBu5h34jrmHg3M0VlZCRWqTxiqb71jAtaW2UbMSpOTYl2WmM/DA1Sdx +zx5Q7Ut3+R3kykC/GfMPnb+p9oaIGXuJNHTgB6FhTxrYncBVbmHfUMfRST39 +Ow0qsGm7/6ZvKPXO4aBDO9UeI3o1aXcqRsV0Fs0p0uFd77L39PdJ2M49eCGj +mA7t/z1sTYtJxDTrQyFhvXTYqt0h/zEzAR3lim55CDCgICoj50bDF9xrGKFi +oMMA4VopnpMD8WhmbiqlZM6Ai9weJ/f8i0NtMQVDoecMGLti0r4oGYs6AxpN +X7IYoOZXtqVnewx24aWzVtUMeEXsvk87FI1Pb8pbbxpkgLQUP1+QWSRabrmq +83gN5S8921NOthGYs2TRbsVOEjKfNgWaPw/H4NTMzZ+OkPApy/T89aOhKD0/ +d9PrNglK4koDinc+oaHQWMKIAwk0e4Gn857BuDynceCwJwnXaptFKhKD8Czn +9vcvPpIwuzs1IoD8gO84n27OjqO85fdi77Wx96hg/lKhOYOELUyjsp2r3uHM +s50KIz9JIPR2XJpT8sdNq71xhEbChUSukTJDX6wc+evZ8pvyhngS59YxL3T8 +m7E/p40EoTpD+SKl1/i8K+WJWy8Jav6LJ4wfvcAC8+IVaiMk3DkVd2861wXl +ifXYPkHCrjURilKLjugiIn/uHpuEN28nHM+8tMP6plfxzP//veFajzf8a++g +kIVi+CXKa9IyF4/X6xsirfDEpjTKcwl1TjIOhw9Bsdnp7Swq/sfrnViRfRU2 +vBtLk6fiMAH7pWl1NnAwWOGn5jwJR95sIJz1HsHzq/vN9WZJ6FlVbadX6gRx +M5+zNadJKDpBiAqHuYJY1voO+THKQz7io3aX3SFgRT4/e4CEm9V3y5tWe8KN +tT+uZnSRoCJWEqlR9wYCf0YqmjWRwJsgjLVH/WA0YWs2+xflyZMHtgnIv4V9 +DSdOOpVS6xkxD1LlfQ/7mpV0JnNJAF8/PuuuANBt0RS8kExC3K78+xE/A4Fx +UJj7azgJj+1E9ZY8C4Fd3sP20q4kdIqp56pd/gxuM5PTR+6REN20V1RlXRgY +9/nkXjAjQfjpFReLf+FwxSDB5cJ+EgpOsva9GIgA+4+T1ZobKU+v9x753BAJ +/NH6/HLCJLRh1qXqzGjYW6YsWdTKgHe+eiuHYmJAVjfqnVsxA45e6S7jDYiF +Cyl9UmpfGZDCtVx5v108FNexOd7dZ8BzrZvLwxQTYcU/WiMnmw60BkkvbqUk +mJSuz0+roYPY3Wr+m/uSYVH70K19SXQ4V/l58b/QFHieclI4h/Jcz8QSVkv0 +N3iQMivakE4DwR/d6T7yaWDXuemcljsNdr7Ce4fj0yBcbImr7wUaPJK0H4lK +SId/VXrSlaxKENRq/2uR9h1Ipz9d/FsqYYdIbuS6vZnQtW+xMXy8As42vL9C +fs+EWJ+mYoXcCgix0m3ZnZMFvl53jq08VgE7A77XzhA5cCxYY/2jC+Vwrter +0J3xAzyntT7+1CmFR6k3XfafRih8/Zf/NmcpfHLUgMFfCJEK8pfkc0pggv+J +cewdAq7PpHFPbi4BtZBdDYJ3f8JsO8tr/VwRkEUhVb/sCqE86dopE8cCmBS7 +j6bPS+H9m1MfYvuy4QJ/xaeuH6Xw5/4WF9MD2ZDLln5y818p7M7MYKh4ZsHz +JoaKtV0ZeNvZFdxUyASRcIVvz26Uw5lvPzuumKaDwrbOqE/HK6Hk9p5nN/QT +wUzjjEfTSupzG+GmOaflDkV74m6ZniLh6rH30TqGLiAvt6jdRb0XiHvC4pOV +D4Dl+tvFnqsK2iVSvD/37MAfN9wOPXWsgj3Htq0YVnuFutvaM72sfsHLAGO+ +j53heCPzw5evZ2rAo/FhxJcn6eix+Wb1g3s1MK3+teM+ZGBSkPLs4bc18NEw +qtuM8zuyHOuO1dfWQP3Lkd8vn2fiK/VV/TwXaqF6sG9g8+Mc/Fr+Rt7EpA7q +eXfsfLOawKoDJqe2ONXBFm0xAS1bAie/bn84GVoHM3cT7p8pJ1DtDa3Eo6MO +gtfcL7388Ccy9AVvZF7/DXfTgs82VRQgs+lF1HKLP3Bfce1n5xPFKHrSgNbk ++Qd0s/bBVGAxqvzYOBmT8AdsIkx5PLqL0SWs8MjBkT/Af8m8hP9xCa405+y6 +bVsPrpuiCzk+lKLy7yrBvf71wPmirl22uRQv6oTt5kirh/3nG5NOSpdh5BZ4 +HjBZDy3iOsbfostQaeSJTOHDBvibvkrdKqocL5ieOPYmsAF4fIcbX3dQ96+q +tbZG2Q1QkZ6+5+O6Ciz+lkOMzjbAtrp8ay//CjR8yDaVfNYIbP8fqfbWlejQ +V+re+7kRigeCfUciKzHU6EPyN2wEntPLxo7+qcQ+VeXFo5xNsDRm/1jQARo+ +5rD7bO/WBHb28cH2EzT0OPrJNTaqCQp3PNv3j7pffvQtudVQ1ARrtrwaM9ah +Y470mj0HeZtBJbPFIJ26n1bc0lhtLdcMLsvf9kZR99fGFIv5MK1moG2wuWHZ +QcdZ9R+lPC+bwbfY77EDdf8VfN2boBzTDG4J/878oO7HEr+W+98qaQZuvYnQ +mlsMVL1y7TKNrwUMci7EWFH36xPxXocXNrVAwbnLnMyfDLw8lrFJUacFxPoV +xaGFgU9cBMbeurfA/DsRNaDu717lu34Xx7bAsq6gkyPyJIasuJTLKm2BzsdL +pG4cIjHByC1sS18LGB3rJ6PPkpgXnvjikkAr3LIa90y4SSKt//cd782tUPtA +1POxA+WHXRyn8SgV73+6YpkXifM/9SU2vG6FdcIHuZy+Up4QfLJ4Lr4V+r/c +2G2STeJ6/ejul+WtMHnxlT0H5ZkdHxnlWf2tsPSTxUlzyjuHOllJA0vawG5G +7ahXE4l6CjLvJBXaQPK+L4c95SWTe8cf6x1vg6In5uukKE/dzblv4nynDRTu +Keh7UN56xvXpyDePNhh/hybfWSS+OV6yuftLG2h6PxaJpLwW6j8q9F9lG8xa +bTh4mvJcSuPqCZ3BNjiuxkHPp7xntkJmKI+3HfpmK1MGqfhWRkZrnVg7vFbJ +62mg+tsYHf81ItcOhTLOj19Rnnw031rIr9wOBv+pO7Mo/zmH3/8urd0OtJ8h +6+UnSXylJRC/37AdAjMT3cRHSPTtDwnWv9EOQf6LI2WUZwO9d72xeNAOqoF+ +MaqtJIbtKnF2e9kO+9uqOWxqKd/WXbz/KaAd1s1+Nr1RTs338aj595h2iJI7 +sEsqn8SsdW4XyO/tsOvfCebHZBKJn6t1+0rawSK2bUNjGIll5okHOf+0w+Ho +c6YtviRWLdFQlOhtB6/5qxrRTiS2n7EQO8HfAatL4nJfGJHYN7XIby7eASt9 +chihmiQyg97NPpXvACX3pa4uO0jk7MxvS9bpgPJeq1OhC9R5falfXXa+A/KD +mrRauhm4UqG3qONmB3Bd2/Gxp5yBsveWf1n1qgNsw+Y+mfoyUIPrmt3Dsg54 +0H/EYakIA02WVG9y/NMB46rt1ttH6Oi4/HDDs54OMPGe0NSl0TF9vdShlzyd +YKyyX9HpBR3lVJv436t3wuCaO7cGBmmooXE8J/BUJ7xoK3wkVEhDk2PZliEm +nfC1SddXOYiGAec//Ip80glkbpNnmAYNBezOBn/L6oSPiXc9519X4kbHgpPf +SzshNaXL2sGoEg8/38WR87sTsGchfMlm6n3hK2L+c7ITjk2OJpoXVOBgQuWO +KsUueL090khrqBwZf48UDMd1QaOiwzrN/8pwYOib3VhmFzhd0zMj/pQi/6SM +/FRJF1xZsXDHKrAU1bk4vOa6u8DvzelHV8VLMXV9nsFSmW4YlZA8P720BN+d +V+rfHNQN/m8jRCt+FaJR+cbl11//Ba6cHG7xwnxMov01SQj6C00qowuXhPKR +pyomcTL+L2zWqxV4ZJiHKb83676o+AuHHnm/1v+bg3zd217GLO2Byrm/jmbT +mZi+oDTX590DIr+jex2HUlFYSavPyr8XFIx5Lm98+h6v7+Pb9z2iFyLqee9u +P+mPOQdKXyx864XV9953TKu8QfPDxzb41PTCFimFx7/uuWCe3kmTFNE+eJo1 +fvE92MDt2wa14wF9ED+1nsfX/xMUfTYnHgb3Q3rPyrvqLWmwg5eT/PKlH8rr +t7185J8OgRYhLS3Z/bCyXOr6jHYGWKrUzB6p74fPVU5GeYnfQbRafe9ysQGo +u7RqMdA2G67xSn6JezMACk/tH56j/wCaRWZW06cBSA7TObbPDkG5Wr9UOHEA +ll4vmuUQIkAw9HW3XeUAiCSYDaxNJeCbCmv9YYFB4D21zODI+E/gsqx+2+Ay +CKbnXSaHDYrAstoqYpnfIMjsME46FVoEv1WWpELYIAj9SM+d6S2CL7zqjOgf +g7BGzDdH8mEx6IcmCtz7Nwin9eMkjbxKII/3mHi04BBMnB1ck0WWwCbLbrn6 +NUNwUunSoO7KUphVWXvkkMoQPLjDwRB4Xwrh1a+eCtoPQfjtjqeBvmUguH+j +10G3IUgXEv9jQi8Du1D8aPN2CAxR9djRJeVw1HI683fqECyLidry5Fk5MHmv +j0eMDIHP67A7O00qQH0/3FS9NQy/c3VrJMYqQdrTvVbm4TBcOvNWQ3M9DTha +yMMCL4che8GU7+lxGhDOZpJ1kcPgOvcp/r8wGkCZy6+7bcNwz/bMTAHQYb1E +xSGDkWE4o2pmDeZ0WLBYmaA6PwzKJeq6xGs6/BCJfCmwdgRehW6+VEHS4dD5 +ItUIwxH4wTtf3HaKAevjl8W/Mh+BSRETCVMrBizMnvvP2m4EjNe1Lza8ZsCP +z3+Zqv4j0Ks6kfkDGfCZud1ENnwEhrVV8zc1MOCZxoNKgZQR2JUhk/1yjAEH +e/hi6ugjwKsndWmrFAmSKqdW5TWPAPdBT4e7SiTMvf7gHDE4AhPyJ1xjjpLQ +3NQ2/Gp2BDyPny2rvkRC3vbNl6yXjMJYzovocSsSQpxsygxWj4Jez08nXicS +nvzK2qsmPwpRRHeRoA/lLftjy5dojYIc+6bdwFcqX6nf09GzozBqGN1bmEXl +W904UHd1FA589fzjXUTluyN7Ic92FNRpe9p0SCpf3p3iCOdRqG+nR4zVU/mE +03a/9hkFXdso0qODymf2L9T68yjAVinJVf0kXP52RMgwcRSizxfreIySoMrj +5aCWNwpeXOprmZMkSBjW9spWjkJZ7aVbmjOUP2MlDZY0jsL1UEFB9zkSGmeu +F4z2jQIt8Hp3JuW7HN3Enb9ZoxCjG9/9m/IbneGgZ8LNBMN96pzdVJzPWv/i +lyATJGSz97ct/P/7w8JczZVMoEnSAsqo8T4duzmeuYYJmipGCmFUPq97S7ds +lWHC+aGbIjemqPkHJ5t+3syEJ4qb7kgwKW8XnQ1YocgEOe3em/n/X88wi+a2 +jwnFSrJwqpOEE/+FcLMPMSGJZb2zqoGqL6gfsNBmQqLxaxf1KhK23eq2aT3J +hPCPmu5hxVS9/V7FnjFgwqKHfzAzm4RlOdtaiy4z4UG8o+yuRKr+nVWiKteZ +kPdd8vXVUBKGltrrfrVgwsdVkVovfKn9UFrzfP19qj/96J8gZ8rzxvlZfg5M +OGt8uiTMmtqfl1dGeZ4zIWgNR9RHY2p/6uMvD/oyYYn+zU+3lSk/Lj7o4Ahi +wiShkXSDOm8ZmzRv/BfOBNXFv+IK/CQw7FqtD6cygVXXUM1fw4Cm4K+ThtlM +cM/y27UxkwF9BY8eW/5kQvKpSu6lHxnAuWKV64dfTAgTGohUu8wAYZV2/sQG +JvQFpbS/VmWAhGmiV0EHE+5LR96NWcMApUSdgOExaj45q9v1q+lw49iT+CMr +x2DzpNaV8L10uGdzbIeRxBjkneRZ67eUDk4f/ku7KzsGQeFG6y630yDwb0pe +0O4x2G60WOvxkgYVLn/JUf0xkHK/9OxpcSXszNGbDn47BkvdjhRYi1SAWsda +x9TgMTi/KJzIrqHeNwL9iyWRVHt2yImnH8rhqqHrkvG0MQgVP37AdW05vBvP +lDxaOwZyMzumSsTLgK0gc2RSdBzWzOwSeNhVDDz6I6VL1o1Dt8vaxyOBxbDi +ce4JKblxUKV9Pux1shgUSg0Mj+8dB7cPPwnt9CIwvuZxO8xgHPQGtT4te1QI +BcETPicCxsF5e69waBMBRpOJdn8+jcNN00jdYg8CmCduGV2NHoer5ndvXdxP +wLqFZtlH6eNQd+R6e9YWhEdmJRmR1ePA2Wa9bL1nHuyQC2qaFZ4Aq+m+krvS +mRCUdEg+3n0CPGP7Tnx6FguK/DNLlXwmoPqL4spXS2KgxDSN+SNgAhZoAy6p +b6NgcvnmnNroCeh7nRM9ER0OevdXnOQomoBCZwudA+4fgEel+955jkkIrLJv +iN0qgzY/X//gfTwJxP3yGyZhsbhxtdXYbpdJiK1oiPq1Jx7/3D290ez1JHy/ +slfocMkXPCQp7pETNAl5PeFva3oTcenDKAPrnEl4osmvxSX8DWO24VD9v0n4 +3Gy/1HBdFl50jZDi45mCjuTdnHuaslCo8YX+nmVT8F68+5tIYDbauZ/I8pac +Ap7rW/rihXPxcGeDq8bBKTBcfHraZyQfmz9MSiQ8m4K2uFU3jbJ/ou/In5MN +L6fA4epxMQ/hAjyilevM5zMF+l2uQRzXCvDLuEuPWegUKF+75Zu6pBAfnhT5 +JkZMwbblzI7ik0W4klvhmBPnNFg+2qPdl1iCJUZCTxKWTFPvjZKy0akSfJzC +TGpYMQ0S6/T9BQ+WYrtxpqiS7DRUNEb53C0rxcQszfY+jWkIPyNpEVFThkfv +mj7Ud5sGlVnFt5bZFfhyeqfglOc0PFpjcTJnuAILn3F8+vB2GsofcUyKyVTi +IZ/wguaIabjwWLh+1K0SlVK6hG7+nIYlJY+D59VpeE8lPWxJ+TQY/tyzzsOK +hsmE256EqmmQffNvuTh1X1T4JWc01jYN6Juzf9swDaXHb0Y5LkzDMrm3MxKv +6WjioLJvPR8Ltsg3Kj9PpGMw15IKQogFUY9p8a1VdPxv1ZdR3nUs2CYWoHFP +lIHngh2ex21kwSXbMYFYJQb6bdAV093GgkNBYtq0swxcpjR0wFeVBesULzG6 +3jDweF4effcRFgx81uar/cJAd01vs7rjLHjkHP4mpZiBXAY7XkpcZMH0uke1 +CmwGqrcsrM6/woKVO3fQSkRIfGpOfjW9zQKLE/WvdDeRyLa3+RX1iAV5Ixt2 +LTtNovKC+nUdZxbc5rOO1r5G4v2XK1j97izoeyrMvGFP+UK487WXDwvMJJff +tXxJ4kjAN8mdH1hwvtf6pWEAidukXJN/fWbB0efrvmyMJvF27FkNuxgWZCpx +nvv9jcSYnRvr/ktiQWgAxxILJLE7c/JmdgYLZLu4LnRWkCirXjx7KZ8FW8cm +G1TrSDQte++9UMSCZdW0XQ8p/4ScviEdTqPWL+a97B3lo8Z65bQjtSzIztCR +8R8mcfUVfu2eJha0R0jvsp0g0aD/T/2rLhbozp3i30X5y982zmLrILWevg2P +f1Heq5p5tEAfZ4G1ONcNfcpvws+P+dnMssC561bm////TVdQYuMqLjaMSjHN +pqj4lf/A94wlbNB/ecxMnIpLJHKPXVjBhsxK9fw18yTyRHo2z65mg8/F3Ndz +MyQe3nrZ+pM0G2pSMztwivJn2jYu9c1sMLx9YvAak/Kz6vy7zp1suNoU87uv +n8TZQrr8i31sCL+/pFWvk8R9Jz7nyAMbTCPLtQIaSLSrvXuyQpsNxxxPXkaS +xG+Xod1Sjw2BAwIOFUWUx7pF7osYsmE20oEzK4vys1U77zdjNkjEbTZ9RXk7 +/qnLVpYlG2o7TFxqvEmMcIyzum/HhuZZxaGopyR+fEwmjzqyYXdR4sEbliR6 +2K9T6vNgg93+P2M52iQ+v6/54Lo/G46GLwad2k2io61FVnsQG7qVMO23JImW +VtlqDXFsqHykshVHGHjdov2ZQQob1i7bKy77m4HGt/l//spkw5DUYT+HPAbq +mRtoVZSwIcl7a7LISwYqGo+dzO1mw6qVXDx/lzFw86XVvvuG2ODqsuAvPERH +GSOoTptgg3phYMDeCjquNPA2TOCageNiuwKcXek4eWKL6SfpGXD/Nf9u2wAN +h46fDl+zeQaSXN/EX/tJw79HH3a93zkDki03dCI+0PC3ZvHNN4dm4MIV6wrV +wzTMUrti43R5BlaLBd9dQvkv5cCrb/+uzcDAKZFVMRcqMV4lefKhxQxsKKdb +GcpX4kel+Uc2DjMg7HVtmv2zAp9sC3K5EjgDtM3FLfaU/9Qlf/kfqZ2B3MwL +z4bEy1BFgl2LTTMw6flz06eGUty1WkpcrWsGHFtFc50+lqKsqFWw0vgMyL0r +3NO1phR5li2Jkls+C6HSYVlmIiVY9k89g//ELHRmLjug/KcQW1i+WpvOzYKB +yb7XRS8LcXyivU7z8iwY6kUbeO0tRMkh52kXy1k44vjnXJ1vAdo2E/vmvGZB +7T+bdfGHfqJEvnoOkz4LNp+eLoZP5qHlM3VsOPUPHr+7NmIjloorONXLv56d +g8XmJzsPXA2DlB1Ps+HSHGx7GH4moykcTl/Oia+5Ogf1F1RO+Z+LhDeZSh7/ +bOfgyTOH/IOaMbDs7hZdXd85uNGizRxZkwB8TSvpA7Q5UJMpOZFXngaz6X+r +tmjPQ+O8T2lY2g8I6pT9mX9yHjJb1T7suYigstws9YzBPBiEqxemLCI8tGj0 +e3x9HkJNxL/ERxIwKUPqlz+fB5HzlwpOdv+EkTdZtbdwHsytlsor6xSBd95U +0VwJ1d6ud+WlbxFsG9id4cuYh611pJN0QxFYaCW+z2qZh83Cqtc33yr+Xw1n +Hk3VGv7x4+zt7MpNNwehDCG5UabKDXmfkJSEKBUaFBUVN0IlIaTJ0E+pxC1j +IQrJ2Jv54JyzVZQKFQ2mRvN4fvuu9fv9+axnr3c9z/fZw/ez1n5f1DN5d/us +qWmk/mtsntmZOtR16FJb5t8z6ORzO6MroTyUHP9LthNmkHCRZdDhah7a9cxp +m/TGGVSnu2eNBdmAXixQfxGycwbtEjSn94U1oKq68qadp2bQPm8NtULfRhT8 +W3VObNgMOrJc9bnJg0ZkpHTBqu7iDIrOPCH98HMjyj+xrVY/cQY5vd1pZOPQ +hO6qf38qUT6D9l4ZSFZfzEcudo7T62pmUEqg9voaez6SCyo1DuTPIGt8w2tt +KB/Fvows/tQ+gwJOWkQXtvPRZtHAiMLnGTTI3fkyd5YAzdJyWGX/bQapTHou +O20gQCFhyvkV00z+WoLGuQgBMsmN+DkoLkItsqn+ZTkCNPamf8UySRGarfFw +BWb8pY9ecfZ1JRGiA5WLVBcK0d4PduneSIR0T+9j6ycJ0aI/nnSnbxChXR2q +C5NKhajNUFG13VaEzm/ckc57JUR2Mb3JVntFSF7O9byLBOPXy2w7gg+JUJbr +ofIqNRrxvjxe+NhHhELvn1D8bEQjMA27sThUhB75B+Tucmf8/OGeV04XREhG +7qN6TiCNiq9tkYmOE6GoH1aORRdp5FdZ6FBzU4TGImRCAxNppPtN4erEXRHi ++rCmf2Ux/l8utFk3S4QS3BSXqjK8cM/iq+TBfBHil33wmlVHowM+NjZJpSLU +FbpkfdpzGinfLrj0skqE+lr1jYbfMfxUL984u0mE1r979n7iE42uD56dBS9F +aAN3+nXhAI22Kn+x9H8nQh3a0S9UB2kkab05IqdbhJZYJVy2GKNRo39+dVe/ +COEHpc3yDD9Fpsix5YeYeHxhQArDV2bCYLCdEiGj0n3u//0/KQo6js3YLLAI +LYoWMHHH1fROVw4L3D0bBr2Z68vutU0HzmFBGFeYUjtJo5tPJRTjJVmwdHbQ +E+EojQJaTE3ypFhgmzHX+dLv//bX/ePcKMuCtIOmNZP9NDJgpZ/6rMCCnflW +hipMP/Nl226ylFlwW7JbfPwtjX5oSZQsVGPBu1aTmEiGv7KCevPUlrLA+Kvx +JJvhLw9BfYaWFgv2xusMA8O7i5Uykgx0WJClPT4FjN7tx8LjjQ1Y8Hl4IJlg +5nEDu10yN2TBvQd83wvMvBz+XBdmbcz0F12p8pKZZ+OjaW9ncyZ+c7S10J7R +h93usX8DC+jz4L7FhEbrHEpdvaxZYHDFtiN3CTP/IX/r0w4siJ7wUuQNCZHf ++m1m55xY4LwljQ57K0Q61w3WXHJm9PrX2XQWFqIMw58aiftZ4Ci/IDsgXIjc +ooSKqQdZ0NasOrTfXYgU3+RIZ3ux4H5GeozyeiGKP3WYXebLAj2vB69niwlR +WEVXx9tzLNA86jXc7ClAppKVLV3nWeC5pafe1UyAxnf/29R3iQXlK8bsa+WY +54XlUjLxPyxo/z65UKuKj3abt8YrpLEAUqO+hVJ8pBBfcEn1Hgtmh2fHSb9q +Qq2f4sKW5TD6wyvd2NQmtDlyi49RIQuUF8c6bjJuQkYN9da7alhQUJNlRO5u +RDK2pexbn1hw5VS8aehxHmr+98b43R4WCAptpO7p8tDln/4/7w+wYKh569H2 +b/WIfdWgs2SImRe/5u9A93r0syWn5A0pBpF/j9yv31iH+Lv+9ZFfIgYxl/qP +o95qtNnCb0G7phiYhNv/GEiuRoLlG58ma4uBrDlp9cOhGglZgxLqK8WA3+/D +nyqrQs0ZlpkrzMXAs1J8fnh4JWr5/a3DfJ8YNMfqbFgzWIHaL5pYH0sSA+rH +MQ+/eQXoW+mbJdUybNjdMfuJvXQcDlKrHnwlzwbZRpeD39fH4zmXcyr7FNmw +3X2HXpl/AtZ0PesqpcGGrt8Sxm6tSfiASP3avtVs8JnqdMhal47fmvuQLCc2 +/Imtl7h8fIgP5+x8wXVmg2OyafHjjEd4TNr8ztI9bHg8pm21yysfy36RMbE9 +yAb9ia2fDvwuwPZRZb7JAWzgr/M5kj5ShHl8TrfJDSbve6B54fNy7LTq50O7 +22z4ffljQeT5Cvwl6U3wgTts0PYka6tMnmLSO0fh8j02ZEsHHI9LxRjN37r1 +XTEb5oUWHvqgW4mLtiVVnnzDhq9lH8/9JajG659GxlzpYIOSlp2buWINbtHw +cb37kQ15p30no4/U4F+jZuO8XjY0eMU9yp1Vi7Vv9ejKTbBBZMt1LFldh1M7 +De4UKRDgaifbve8gD4+85ypFKBFQq8OlX6Xx8KaPg4kOqgSMRsMJ7488/Lu7 +IOHnXwRonTkeSuxowGa9BjHL1hBwI2Dc6oxRI77ex507bkLA3PTukFc+jbiv +f/BiPRDQ3+u13zyjEV/9XhB5wIoAjaRLpXaSTbhr0CA42YmAI2bVEdTLJrx6 +mDt1xJmADBfRgyYxPr44MnjSeA8BfjKs0Gs6fKw/XnCizYOA4gVzmgyi+Dh0 +xuColD8Bt9NHd/gsF+AWEbf/w0kC1mz+mzR0FGBNsaFDeWcIML+958LoSQFu +JgoPbI4g4MKtV5/2VgmwyuyVLpHxTN5JzzTfUoj95ki/dbxBQNqJ9Ffq7kLM +kxhyUrtNgKpeSOX5MCH2kSx0eJZKQOoPqzMKpUJcMy/+eXQmAUbGZ1ytWoRY +br6frWs2AWN/FOW6fRNizF1pPZFPwFS2i/ZOxt9KyUg38IoIUK7lPDZg/K+H +7JBlQikBi9JMDo4y/rh0QUuN+1MCNh9yv5C6i+EJ+UKzlVUEbJnK8jI8SmM3 +hfhn7DoCktawDuUH07hooZ/p8wYCnhVqdHFjaLxbaaXRsecEeFcu+DMqh/H3 +ytLFJq0EvAhPLr9ZQmPO4qFVEm8I6FQIbIuppfEu1ZaCN+0E/CgoHTvcTONc +tUK9ex8IOCvwKF/6lsbsJfF5/p8IMLjmyecxPLFdw2/5+h4CJAfT3m3uo3HW +Usds7gAB7UY9GQUMj8xorvyr6wcBKeFTQ1MMr2xdJp35cJAAqZy71zUnGH7T +GlI/O0rAx5FYj9UM70xot6TYTBLwc1/wRg2Gh7asKFRZJCLA5pr8ijEmTtGJ +T+5jkzASLDk3h4lHdP0WlXBIcIwX713H8NYmfcdb5+eQcKY0VVjC8FiSwUq5 +7ZIk6LZeaOEyvCb0xkfnS5Fw50PQK0+G51g5m6r5MiSkdK7el8fwnl5Pq1yU +PAlHUofTPzI86Ka+75i5IgkFslrvxd7TOH7vQPWMCglJa0/b/fmKxrW3A+RL +1UmoGC6xnMtn6mlje5/QJEFqX8+C8Wc01pSJrtHVJmEloa/WUsjoay+vMKBD +wteY3ubkTBpfupLmnWlAQotnxNWdNxl+a9CpdTMkobctsYu8yPCweJmCkjEJ +1t2dFndP0ljFzNLnjSkJfwwssNQ5RGP74Oe18WYkNA6pBuVto3HhyFcfiU0k +BD50lbiwnMZf9H3r6mxIuFXhW9G9gMYLvGcWhtmTsGtg0XYDMRqf+ipdP7aD +BK7CE9vCZiHOVruzqNDlv/7A/muRELfv0TruvZeENc+DT0ndFmLUtk7xy0ES +YjS7vzjuZ+5/acHxu14kWBj5zj+2XohT7HbwXLxJqJ8K0j+nIcRkwzHfl/4k +bLGYfT79swA3liQ2PIsgYfbUZGavkwBPDWsoB10gIST1l7+YvgAv18/3M7xC +wvXdTqeUJAQ4NounnBtPgpq/2J6jpXy8LXH4RGIqs9705KqIuXwc+TqkaXsm +CRfVnYlv75twMfePxVLZJARQzq7uj5qwwmVVflQ+CbevzZq5Yt+EPwTZqvpX +MvFwdtJAZCOWKnkboFdLgu/pCTPO1kZsPuwuGOCRsIeaEq5d1IgzjgYF7m8m +ITT13tu5uQ3Ya/d9od17EjZZJSp71DPvR0Sc1ppm6l++7K/8F3V49WTKqKGY +OGxLDu7tv1iH/YvM/CzExeH7Q7vidWZ1eFg77KjrXHH4mOIibpNbi4fkxfbG +KIqDZN5098qgGoa3ZiwG14rDpb6QgPFflfhb5oRkWbA4iPvsOs0rLsaf5v1O +2cTiwNW2Ws8NtstR7/4oej7JgY4XaSuK4w6j70+UptooDtS0eu8XZASi0T3W +2w7O44Dnmhz9Tp0oNOdhGhWuxAEtPmF943sC0rVzOlJhwoH8r3VSo0WZ6Exs ++Srdkxx4qPq7ahU8QWGftrqNBnEgvdBAr/znExT5d2/00xAOKCfNfe19pxjF +fpDp2RzFgZbzaumW0yUoTdf71uEEDoRr64zPySlHjc2LRSmPOfBd/ErywYFn +iFYv1vIs4UDIC8+ufBPmex64ZYdeBQfkjz5287hciTpUTj/CNRxg+49qTP5V +hX76tOxvf8mBI7w6+1jXaiQ7/zxP5jcH5EJdQlXSalGModo/NiMcKNKpaar4 +VYtm7cbyERMceKLMcfA0rUOTWaOeQ2wKNN1Sp7tb6tAHi0NzX3IpKNp/zpk1 +Uo92epFFc+QoULmb3VFhzEMv4u7sNltEQarB7rP/hPBQTWdb3iN1CsYfvXPP +4zSg+4Ebt8auomDzWNKy1ZxGpPrv54n6NUzeI6rW0bwR3a4NTRWtpSC02cbY +4WwjipYqHTpmSUFK6dipz4ON6HjOsgQbJwrewz/7Fegm1P+iDkU4U/BzUOrG +bzYfHRh36ynfQ0GWx/nAhFV85GSZuEb7EAVLy28lmibwkckHifY5Jymonqf0 +jWctQI8598LNzlAQhg5k8k8I0IrlFstPhVLgnpireSVZgBafCgruvUDBl1tN +cWsHBOjWHbmli6MpOGgAS5bNFyLp+kJ6x1UKXhxe/Jq/Uog40t9UeLco8Irw +j1oRKERnjS40iJIpeL0oNa0vQYjG9i45bphKQba7QM6pSIj6H7hWZ2RTEO+2 +54PxDyE60DLu1ZlHgbJzXPWj2TTqnLgmLVtIQcwWH6WXqjRq3iB0jyinIOHE +xASX8eMbj3lKVjyj4OQ/y0P1PGhUFc95MlTD1F+sHzVykkYmZSl7tBsoaFVT +M3S7TKPHH01nHRBQwA35VO2bRKMVs949THxOwdVV+r7LHjD8tSJg58tWZn3b +9BsRZQw/bOOyJd5SkP6+7Ho4j0a3TudlmXVSkFvxvlOjhUbcFGuHU10UnEg7 +8surk0aXeV8nH32hoOf+Y1eHrzQS/3EurbeP0Ys7p6r9O42CZVRsFv+gIC6i +pIkaptGocfnwjkEKzsQsMGwZp5GP247k2FEK9OKC6XXTNOqLGrLkTVKwcdre +247hrf87vxH+//zG/wWsgzki + "]]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.05]}}}, + PlotRange->{{-1.35, 1.35}, {-0.28, 0.28}}]], "Output", + CellChangeTimes->{3.666103640615457*^9, 3.666355897161044*^9, + 3.6664282085094976`*^9, 3.667305759685389*^9, 3.667306041476419*^9, + 3.6694686684023438`*^9, 3.669468952586009*^9, 3.669469019735528*^9, + 3.6694692038374166`*^9, 3.6774163634542847`*^9, + 3.677416441938417*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJy1XAd8V0Xyf+mAoHCHCqcUwbPi+f+r2LChqCeo2BGpkRY6CCqoIF2K9Koi +TUroSJMSeg0gIXQTSkiAEEIgIYQUksztd2dn3/sF71D4mc/nJXn79s3Mzk7d +t7NvhHeNaNE+vGvrZuGVX/0kvFNE62ZdKr/S8RPVFBTgOAERjuPUqezgf1L/ +ml/6pzV+mZvf+b+d/hNClHqYKKob0ex3iEbdTdQn2Akk6uXg2YBSRN8/RrRc +9d47nSg/x+ku7+XnEB1eRLS4OVH/4kS9A/k99atvqBNENOFhol9/IMo667Rl +nG30H/Xo1E6in17VWCyufgrGmPsUrBJEQ24lGvoP9FTP1O/eQUxjTrrzqcDI +TOa2gWVMv2CFOIzou0f5Gl7Rvt43lGh+A6IzsY4ZfYT+o3pnJPLIezl8fXOL +ouwVopR9oEn1KUZ0JZvo4DzmTu8g7jfo70Q7xhAVFnT2dpvyAhhhQN1MtEyN +/Ogq9exysHQryCNK3Ey0rifRsAoGcwDRwsZE2RdaMX0t9Z9QwCeKHq1moiT3 +xGz8tuQmeXw5jWjNl8w0PP6xBtH5Ix3lcdJWorEP8iOQtfpzotzMEvIYpOyZ +SjSyKnfppxiyojPjdlpIr+zzRJFvc4+BpdWcfq8eFN4scnDxJNH01/gx5OXA +HCNboejGXOoTzM8xxvSEm+UxOPZLB5f5EKW8rOaMv7kgSFivhOEO7jHpGQXg +hPM3/SyY5atfMWbghr5t5BUMbGETM1Oq82+LzSvq2cH5Clx5fjbxSaJLKU4z +xthMuiRtUySbiV6g5KbgilNWniXHQDT52dLWmCCnlTzLzSSa+iI/G1cNM+G+ +By7OfJ2fjb5HP/uY0X4sg4FUgMEYzIzat3sZPPYBfhMCk5dl5kY9y7ukePIs +P5v2sqLgonObPCvMV/LXxrx3J1FanBPOGMMFI/QQEg+pjp1WXt68nKqaS/Gb +U18CJJc3ORlEk5/jZ7PfBaudcvIM0728PT/DjJ077DRljE0FY1o80eBbeYx7 +pt4hb15KYY7hzUXoXGiINGOcWpOfQTXzc507BBwEWsaXkdSEkTWRp5fOsNKi +x+ZBFaQ5J51o/L+4OapbU0u9UrURlbl5yvOaz/aVFZ3NrD6E9saMp7EXIJ4w +wErSnJHEhKF55zhL1YpPjLKUhBGr6GXevPr8aNabmumNGA9MWF4WmR/nI+8b +s+ryGzBvimmVBUnKXpYlaF7ChkbSDG2X2TkTa3sD+g9PiFB70DIhHrSq8/re +xhRVhxOoIs3H1jC2Ibdj5A2k+eR21lBYqOTdtnfWWXdqYibr3gGYakaL1o39 +dN/68saRFSynID0j6W5p3jnOqPJTkAzbG95B815B3R9pe6fsY0pwpez7yKBd +1JTRflueURxd7Xwob6QnsLGHD0nado9uVl3mvM9ol7Ryu4JRMFBoX/35PdIc +M5mb4NxyMz80OLcNC9DuSfutE5sYAXiXmfyBvJmfywYfb+8Ye68VN6WCo+/l +5r3T69l56WXsQC2Qcq9QCnXSEvKRU8/gPhkdAHwBEBHHYUdHtGWw5/0C6/6S +kpKoRYsWVKNGDapVqxa9+OKL+n78+PF0+fLlGrpbGG3evJk6deqku9x99930 +8ssvU9euXWnPnj3aE2ha4A6BYl59537vlEBABpaBNxas2dnZNHnyZKpXrx5V +q1aNnnzySXr77bdp5MiRlJqaWsN0O3nyJA0YMIDuvfdejfmll16ili1b0tSp +UwEiRJDAEWJmByt7nHn6Pq/ci9nZNSHUDGX58uUaF4YAoPjbrFkzWrJkiSOI +c3Nzafr06VS/fn2qWrWq7od3RowYAfpCZMQwDSPu0jOt2H1grstuePYpxqxt +GoC+WqsvXbpE7dq1ozfffJPmzJlDmZmZiJE0vRht48aNNTN++eWXJ03zggUL +qGbNmtSlSxc6cOBAkGneuXMntWrVij788ENvM8UvZ6SwdTnpD0jz9hHG9L0A +8ZHeM2bM0OjGjBlDaWlpgYbKrKwsmjdvnuZ3r169cO884XnWuXNnql27Ni1b +tgzzYEdw4sQJ+vjjj+mZZ54BOy1NuRdVFFKF1fW3JZam1ENsJiEfKfuk9969 +ezW/waaff/5ZmhctWkTvvvsuffDBB+CUcCcyMpKeffZZGjduHJ06dUpGoPhK +s2fPphdeeEFz6MqVK2YOgtiaalsYgVmDMQw0864DRjgwqGvybj2T+/bt0/xX +chNmkGZkZFDbtm21RuTl5VU3gMeOHauHvm3bNifMQPz111+pSpUqYAcLBmI6 +WCLwInHzg7pbcdLWHu5Py8s3uidk5amnntJYlEAaPQumwsJC6tevHz3yyCOU +mJgo2JUq0vPPP0+LFy+22AGiTZs2AoIpEJOxvH01GXbsT8aI3Y9gVveaOHEi +vfPOO5jTMIMhJiZGiwQ0pbohRtkITQjERGEQxN999502JZBp/bNnGmNAqHPl +smE7z0goZxomrNq0LkpPf0pKSgmDF5YC4qZG4zxq2nr06EGffvopFRQUaPYB +DEbYsGFD+uEHFTfOrccg1/Z4SLBknrbGPuNglB7K+vXrBUt8fLzm36FDhywW +JX/a+ChiHImrYXygvnmxsxgDgo0r2RaLSNfyDtS9e3dNpJqx4gYi+AWr8uOP +P1osyqJoZikRt1iOHTtGzz33HP22YTYH93C+p3exoDrBokImDJ7TohKEsqQB +qKwHvfbaa1pv/9+0ff7551rNcXeT0ZL8/Hya0OElN/dQofC/BPShBbr9ZLeb +6EDMDgF9+vRpTdfBgwct6DVr1mh0Fy9edEqa19ctnU0ZX4Vy0payz0LNvqDD +3EIFeVrvJgIVIt26dWt4HQs1PT1dz8fWrVst1JMnk2h/51LiyYJ8uXHg1y2U +/FkI+4ITG0sZQAsXLtTGG6LysGn75ptvqE+fPvpOgOuoQrmQvK+DaNWM4Q+b +5pycHFrVrqLkMAL17NmzmjzlQC1UmC64E/C9lEA1Mdy0VtXAb4H684iOmgk6 +Mc4842UERPinn36yUCHWr7/+Om3fvt2FitRIvX7wk5spMeFokK8+gTZYvvM7 +I9nQwPjmZgrp8O0QTdw9ZNpg7hs0aAACDJIQS3r+xoGagOjoaEfEHITCWS1b +GGlcoEJzLEpQQJmgxfAOgkI5GE2VEiEXxe6JNvUbP24M1NpIYAj179+f6tSp +w0sNnB44Al9ZXapbty68oOkfRM2bN9cK686pEr8LxzlvVWxO2L1a06RU0KgR +/wnTevDGG29oA6d/lkYYHW7n3GygIygyRtx50LQpJdAy4M63EvY9U9xkXcWM +EGM4BZiQaqbPoEGDtATqnyMrmXlgYm6mHeGqVauoSZMmPvjA9Lfeeot27drl +4kMegiyv/01IOzVIqJLihMW3f/9+7cLgFXX6p1cmAqAkFh9mB6FOQkKCeS9I +O1XQ6nIU9r2Q00aMcetQjQ/2RgmD48PWYtr0ff/992R/kEHLMsuJTYIZwSDC +Tyj6A6YNZhIUKzPoyjxGiqwHI02LDzRdd+/erdUbkiuv79ixQwcKuJN+Op8H +0cva2kmFUZwwYYK+k3e/+uorodoyxy6BbB1q4UEtQaKXbARHTz/9tGaiBEWK +ycxsrAtcyRaQSpn0XHrJhguHa3GVMBiRq5sCFeZrqAEgMgDTYxwpa74ObTEP +1j2cjGZmj/onvK6gjoqK0mKrxN4E6kE6nBHxvmrU20cYkEE0bNgwHaXj7j7T +BhFHFHnu3DnHxnwIvvXKUwDWeASkisO0Dh49etSihqRDu1zUwW5EgrxV4tUg +WrduHVWvXl2Hc/I6EgJYL0Mz/17SUvJ1O9eIzr799lsfypXH0pw4f/68R8wS +jckohhA1iBmuMAbASQdAmTTDoTB4F1EJJwTKkq/k7D9tSVvq/FNnKtemHIU0 +CqEKHSpQrwW9KDMnE+GWxq0iAOrbt6++k3QO5qtDhw5W1UjFA2mZab8PK9pH +MGSCYCNgNVXYaofZtGlTWrp0qQxQg6Xja41vqEppF5L+G7kS+6kJo1dffVXL +jFCr5lsbdHDgmtSeO8KLdYisz+6XDEr5OerZs6cPEyCGsGA+1CLTwsKcCoPS +jqy7FrVgAjyWSowsE5DjrV271sPb4v+d2im1zLrSQJ7bADp+/HgAMg0992Co +0nsNJUQgKutWp01xcuo7fH2krgb6r7IFqkW91y2yG5kfmza///772obh7p8e +bt9///3afYaZ3nWG1Pk92BZ0h0Aw1kNSELIDLaIqhHFkbUOlBzpHc0lQCBa3 +oDotnT9MusBHjoBMBHcCH0HExo0bPfCvTXo7h9edPFyB9Tbu2HJFIkK4W0v6 +wfnXRTpYAwmBPAvp0D5kSq6EXJv07uV5PVpAB2DdQMtIx44dLVYW45JaLkMb +hzK0RuoC5Wr0Tid1tTX3DRnbrRG3ijifOXNGZyswe8IMxAai0yE3Bh6rAPCE +uLvbo9twyornhtfXDR5ZOyJjL3gsarRv394f1CMjgUspyhwRwhsEj+Rz8ODB +PtQjYYPrh3reEHMgJzoo85GTUlSjVw0GFK6ujurqoa7+6hqkrn7q+lJd7dXV +mAF+NecrRwieNGkSDRw4UN9VNW1IgUSyQ/2AAzYL6yJeHMhq4Z9vFIdYACwd +vPLKK1pDBQd8LlZ74HH8MQ74YAlwBQeCWSxw+YtXCPKK8gqZ07Zt2/zEK/Pn +FopLjnPlr5N5bbS6Jqlrmrp+VNdIdfU2smnk8VLOJct2yDFyobi4OKeKabva +8PoH16lTp3RQgcy8imdKYOtc1vgHF5Le4cOH6zvBBTOxZcsWj5n463iIpTjY +DFd0/YMLaoL8EmoiuBCgQ8T8xcMQXzGrPbg2+8IIdX2trjHqmqWuJepaYf7O +MOC+UFcLBjU+arzVChVO6alHqnOXacNKpURo/sSFxcjRo0fru8qe6YB1cWPX +G8PlnXqshanx2XEhLfO1KP4ZF9YIJSYXXMi5kVD5GxeWAiR7Eh4ie0I2lpyc +7BceGjELwZcRpzRuqER4CQ65OqhrgLqmqGupuqLVFauureparK6JRqLbOBp9 +xYiKOnFjWEF65VMvC2tNV23u09/7T3J8fPbCyiwDkS6KNny7CWscdl20PdTt +IR8kEBksoWPxM+jatOn/Ag1JCGGxYMF36idY/3vLdROnGOcEXoUG370w0xbN +/6aOiQimadOm6cViE+L8FRMLUzd06NA/O7G7du3SXuYvn1hwbezYsX96YqHX ++MbxF00stEwFcWYyAhoEsL3/RF1D1DVdXavVtV9dyeqKUddyg2ugw+GJoiHw +o0BDPmAFwY9r44c1cd3mPv29/zjc1QvsWEaoW7dusO2gKEOQqU3JdVAW1iTM +RaYo+/e//00VKlTQWAOvTZm8BhIgJpUrV/a8pqlUU3G9xCm2eaAFGebhO/jj +jz+uMQdem7pgw0F8njLLXy5j/TutWB5H1A2f9senFUv0YPtfOa34KnjnnXde +z7TCrP+V0+qGS8WbFv99jd1hNHab0dgfjca2ZY29r+t9jnw2xAo+vsbiroJp +6927N82aNUvfFfMjLuy4mDt3rr6707RhsRsZwNmzZ02/G8Mli6AQEiTvKoq1 +48LKOKJnf48Ln+L196QiPMTyh79x4dsV9h8U5SG8YWpqql94WCQqr/VNrasj +r0jHN/Ka6XDkhVzSRF6jVo5y5Bs4vuLPnDlT393hET18X8FdcT/gEhZh6uHl +IFLCIiwF4/u6v3FhJRHbQLzjwiemu+66Szsrf+ASHn7xxRd2DF4eYq+Tv8cF +kYIhw/cL4SG+KfiTh0XE7PCpw1fnkQA32eE8EvnkKHX1cXi5wuSRmdmZlkXy +6Qya8A/TBieDthMnTph+/sG1YcMG/UkOd4ILq5GIU5B8+hMXcu6vv/7aBxe+ +80riVNyPuBA1wSnju7KXh3C57nYV/+DCGgl2JXjHFRcXZ620P3AZMeM8shRV +71HdXQ0DqJ4OG8hB5i+kFI63CYPoMqOLI5so4EDwGQJ35U0bVvmwlIu7m/yA +A1/pVq5cqe/KediP7R/4uFnyBnDcZOAhv0ZgnJaWZseBnF9E1x/jAK/EMnp5 +JRbEHziwcxGrqkV5hejtyJEjN8SrUK/Y8Cp8cKNgVwojjKR1Mn9buVJXpnlJ ++TaMVRNkfri73bQdOnRIB4oM+DrAtygjX72R/z7xxBPaTJfzMBnfz/wAfvv2 +7Xr13Uu9fAHFEuR1gvdukpg/f74PeDg0LGxfP/WlvcxBaHnhwgXLHG9W7wO+ +YdAfpd58YJG9gTX713S/4V39Ha9du0De/ZifY7c/IEAAYVC/20wbPBfEFkte +wh/sFq/JDhPwPkJubcDbT4ftprZT9pH7r1+/nt577z19J3AhbLLz45Y/QTKK +SsjdsfHll1/asFNAw/mMGjXKpx/tnfGnSIazgXNGrCZwocFYQUXo/kdJVtEr +/dLRh5RNmzZZ3yKgDxw4oIXXZx+M2edUs2UAoP0vqjmQN16pBCWdS6KGYxtS +6RalKbBBIJVtVZbaTm5LqRdTmRp86F/TXaYT2oSvz0B+q2lDTCfeo5QBS/sj +7da1pHOJ/w1FGQMCq3RiVMuaNux8wvICYp4y16I2drZbaOBuI4JAwkdgFoRa +LG75sk9Re/GU2fwaRknxa69FLXaXywYqAQvhklyp9LWoPX+Ct/9g91HSVuEt +0i0xemU9IzBbhY1KlXB3Hm3s/7+mj5XbsC6Y95ehyALbWmKnCVJYWvny83fT +hg+VEiJYCUMpFuoUsPEnLU5sEfIUcDg+Pt7SjNV8bKQgj0ezG39XfWpNA1JO ++TYtqJWd07ulsA3SmpDIt6QsxnphfMOVnVbyLryo5BHlhOxjUTxilALm54hg +iIPFRl0v2ZLZ21FLAQuqKguu8MS6JXioY8RTbFnPzxXgsMXwjdiI+DfThk2n +CEhhxy1wXcT0ppRBSOyYkJCg5V5ZWPs6PlGbLROGBaZwYHilolIETYQ64a6M +hyJsNIiKijJcDUaxondo5T1dIdsqqrXYQRGSwYyMDBvh0s/N+PV1Pe1EoR82 +5iBzkXfBUdmv5MrSKZYlbHdK2ctU2mm0NalrvrSQ8Y0VlTVQg9KeOYRXUPmK +OygUaOpBPYLplgwTe1eQfkDn5XU4acSjKB6wNXUiLdgSmJcl2CMiIqxkyOtY +BzK7VN1xZaWyivG47vAQD/+AxENeh14jGcF+eosddZJ6G1cIyhMFO7ZbNmrU +yIf4w4cPa9XB3iWrJjPf4LGv7224b1gqkO+QvaXyBj68w0lhG4u0Yf6xaRBl +DJar2Dmra1GKo7BRlofw1atbN717yL4uG78TExPtMpIuoe6lnZvth/EjUl+z +Zo31o9j2gqIdLzya854dVAUP2VgqAg4v2ZhhbOy1lYtmk76uT8zPka74XIOl +HC8aFHrB7GC5w4461lRlTPg/7GIyLC1bVFR0KVGGAMJuf6zbYDOAd9s62hRS +FzgK5rAJWu8gHVnJdAU7pQ5BXgdLYQ8g5xXldRSGuhtIvWoCK4Ou3q3SCEYh +5xb7fuMuxz8Mw1XRdAVmGHPs3PESD8ujnjlCpS2SWf2ZnTwkCb67oXlDCgTf +R0OxgRT7lHURUQxLqPWitKKTKT1uZCGjjgork5BSybmxUxY7pJTLNP2CuTJI +ynapsJJnADBAQ4YMsbmjClC1lKJowBaCohARtSS81VxYqpRWO+AdO3bY12FO +4D18WJp+woxLl3TIV+AVK1bohQBUfwjxMFzh4eGIPV3s0NBvy/GEHllZVBuV +tbHYEYJh81lMTIyLXe87f1HKfct6uRrMxeZS67c/UhiLPTaYbkyPLDljMx2G +puIQl7Fn9vB0YXgZibKPAjqE1zE0eR2bCSCr2AYs/WTbLy0Kt3OKDXTgqvK5 +5l2u3IJVhfdRnPXRFCktjR4tULHqgimEBy/mgQpRnzRpkmOrbbGTF9MK83c5 +7RYP8dhW7SUejH300UexcuGOfdswE8c+C0oMY2+7ijO6gFNegjWBxEInVGAk +G85h88Ag2C6Fy6LADknYGKDZM1XqdbFTDexFxqIkRoBgRwu2gsB1KX9b1TvF +UlR8cJ7ARgyNxRhUg0RHR4d4mHfPPfdopRaXos9SwNuRbztCA0oWESsjwlfM +9Q4Exh8DUUJkK4xlomGzqVBogP7CKKGiqKCgQIBgexMGgt3CKipyhS2WdQhH +SFw4xiJsMutgt1B38vOYDqa9OE2ZMkV/S4aVReyDVV5sGoCIIaKGotpxSt38 +nPfM3tbiOpnF3n2ILjQTwS9MMSYRq/sIhmxNM+YcQTD2a2ckCgnwyBAo8AQS +jBIiODPIKJZ4UPRQWkAcXc2uGNFb9nnel1lCKwAKOR944AEd2MhIsHqBKknU +YijD90/vlI9/WCp4S3vGAr6C5RgHtiAjfHjsscf0WDZu3OgSoustyzGI2Gm3 +FWG2b5muRL0I+VGLAXVRhtQGw95SnZx0qXGG/UTshDdUtGJLn7ePdKPP/BwB +AsHEJidUSCl22NwFpxmATkRGSVsFCApKYmNjNSVKhCxsHLQg4cqZWIEN64Ce +MHuqtwSo9pCQ7x4xI3eTB8SptjB+lZUAhENDbmPNPxlti9Bhg+WwkCUtbRG6 +FK5uHuiWy0sZFErZczIs4B1jyZ7bkZVqqLHxPg4DkULu80et1qGWRI502DrU +ngKAmgCEsXzKgBUacZKgigpt70Xh3IzYmwotbJTIYJQooUqLZ76YFMADS58M +cUm2b9KChtw8t55jj0KA0uDgAWaZtVq6tNXITNZZe8wCqmwhGHwehO2NgxNw +sAHMedyy8l5qzJEQOJXDc4jEXUUpBZ/yshpKM871QTMfoWF7o/TanpSw1/ZO +P+6e5rKhr+2NkwpQOM4VNUyOG9MjSZPzMZa3q+yDOcBgTrSnaeBQH+FoTnol +rxyKcd83q7EXCBgKOk9urySMgMOUsJmn2TDJfAUzybx7PIeNKnGOhQA8/WsT +L2clf0eQkZ/jxtiIW2R8qz9raif2Z5ZVCM6Z2ApeSJI4YoKzLxhOuQC9p6TE +TLIUYz0JbgHk/bbEHpAC5kvcg3MpCq449mAVaAAO6pBnSiDs6S/Ro7gdapwW +b7EI/8HsrLPc7Abd0AY5MmbfLKsG+sgcIxfrezUT9FhvwSE7Uu6Yl+XYU2ag +sxL9w2QospsVpWF4Rai5xbKxv6H4dlDM7HKshCRuYY8J1YiZZA3Y8XVcrQVm +Lm5hj86B2R9e2ZX9K5cde+QOclg5DwULTfm57nFEmD45DgacO73LfQ/PxLVi +/tLiDeNMjBvC67FCDZZOqMANUVHSBnvdRy+62GOFzh9layilXJdSzCvmcKRx +D7ohh2JwKwG35gtuR8gat8y+Apc570N+hExbEcksNKbCHHIkZ1OB1+ePuOcn +QbNkehAC/LbEHKpljuoRrYM5O7XTpN8hMP08aF0k3UJLon0PkgiBwswhulHa +avEhp5C5wIpGZrJhpglvTRdMvCxDxf9ivLt6dvaAG1gi1FAk8WlkoZ6pDGCe +4wSVgiu3WEZdNqu/AXzNb+CemoZDvbBYKvYlOcZFuXeGO18zauuaXeas2d0f +ynqxsJHLELiL9ARbkwytRSgKRRf1uJzWQRDELWPRwyMcl3B0lVvOjHhl30we +q2jQ8TUd5DEyzx8e50dAjmWJ/Bz7Ng7ZkceY3M1IZguZ0aZ2JoxNpKRSvc26 +5uHF+tQYqYqiY2v5nCh9oJVx53undxYQOPBJn3ZkGACTghEr+Q2TPnB1qGIX +0wrpwAkyqo8twYLtw7Faci4b2LJpAKq67cZkNaUQCfQzp80FsVFK8ZZc2Bov +3R1Hrg2rYLoX49PA5n7APnTLEE7+V3bB8T+wkxYqDlCD/melOl01OKXop3a4 +p/UIW3H2HaINWGRUSAMdJE0fuhXgUomRpXBdVBchD185gLZvmEse7BfcelR3 +NiKYNqwATKoBzlpwCJpQ91ogdVCOPQlHjoLjAFOLHZrBcuSdsBeZp7sJDVg6 +wcFtI6uAy2bsxbCwrc2J7YcZRJA78Um3HxQV58AdWWmwm+L1Yiy7OFMFfm5t +D45gNvRmm3klu6fMOdQdp8pBaSAzO8ez4CorZfuAS8AM+YFF2TqEORy31KBz +8PtahyQ6Af8Bn11y0w==\ +\>"]] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"AppendTo", "[", + RowBox[{ + "$Path", ",", + "\"\\""}], "]"}], + ";"}]], "Input", + CellChangeTimes->{{3.66610548806144*^9, 3.666105504934466*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Get", "[", "\"\\"", "]"}]], "Input", + CellChangeTimes->{{3.666105520036358*^9, 3.6661055200369787`*^9}, { + 3.6661056152225847`*^9, 3.666105615670538*^9}}], + +Cell[BoxData[ + FrameBox[ + TemplateBox[{TagBox[ + GridBox[{{ + StyleBox[ + TemplateBox[{ + StyleBox[ + "\"\[ScriptCapitalS]\[ScriptC]\[ScriptI]\[ScriptCapitalD]\[ScriptR]\ +\[ScriptA]\[ScriptW]:\"", FontFamily -> "Times", FontWeight -> "Bold", + StripOnInput -> False], + "\" Publication\[Dash]quality scientific figures with \ +Mathematica\""}, "RowDefault"], FontFamily -> "Courier", StripOnInput -> + False]}, { + StyleBox[ + "\"M. A. Caprio, University of Notre Dame\"", FontFamily -> "Courier", + StripOnInput -> False]}, { + StyleBox[ + "\"Version 0.0.7 (March 28, 2015)\"", FontFamily -> "Courier", + StripOnInput -> False]}, { + RowBox[{ + ButtonBox[ + StyleBox["View color palette", FontFamily -> "Times"], ButtonNote -> + "Named color palette", + ButtonFunction -> (NamedColors`NamedColorPalette[]& ), Active -> + True, ButtonFrame -> "DialogBox", ButtonExpandable -> False, + Evaluator -> Automatic], + TagBox[ + ButtonBox[ + StyleBox["Visit home page", FontFamily -> "Times"], ButtonFrame -> + "DialogBox", ButtonExpandable -> False, ButtonData :> { + URL["http://scidraw.nd.edu/landing/scidraw-0.0.7.html"], None}, + ButtonNote -> "http://scidraw.nd.edu/landing/scidraw-0.0.7.html", + ButtonFunction -> (FrontEndExecute[{ + FrontEnd`NotebookLocate[#2]}]& ), Active -> True], + DisplayForm]}]}}, ColumnAlignments -> Left], DisplayForm],"\" \"", + GraphicsBox[{{{ + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + GraphicsBox[{{ + EdgeForm[None], + FaceForm[{ + RGBColor[1., 0.894101, 0.709799]}], + RectangleBox[{0., 0.}, {93.1764705882353, 72.}]}}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{0., 0.}, {93.1764705882353, 72.}], + InsetBox[ + GraphicsBox[{{ + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + GraphicsBox[{{ + GrayLevel[0], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + + LineBox[{{14.782805429864256`, 46.24615384615386}, { + 43.58047834518423, 46.24615384615386}}]}, { + GrayLevel[0], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + + LineBox[{{20.54234001292825, 36.150000000000006`}, { + 23.54234001292825, 36.150000000000006`}, {25.54234001292825, + 32.400000000000006`}, {44.34001292824823, + 32.400000000000006`}, {46.34001292824823, + 36.150000000000006`}, {49.34001292824823, + 36.150000000000006`}}]}, { + GrayLevel[0], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + + LineBox[{{26.301874595992246`, 18.553846153846155`}, { + 55.099547511312224`, 18.553846153846155`}}]}, { + EdgeForm[{ + GrayLevel[0], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}]}], + FaceForm[{ + GrayLevel[0.5]}], + + PolygonBox[{{34.418791692075665`, 46.24615384615386}, { + 29.704026666036818`, 46.24615384615386}, { + 37.415840042594645`, 33.886479882377664`}, { + 36.90680088862935, 33.568865116143016`}, { + 40.700711053652235`, 32.400000000000006`}, { + 41.31847355632861, 36.321526423509994`}, {40.80943440236331, + 36.00391165727534}}]}, { + EdgeForm[{ + GrayLevel[0], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}]}], + FaceForm[{ + GrayLevel[0.5]}], + + PolygonBox[{{32.97890804630967, 32.400000000000006`}, { + 28.26414302027082, 32.400000000000006`}, {35.97595639682864, + 20.040326036223817`}, {35.466917242863346`, + 19.722711269989166`}, {39.26082740788623, + 18.553846153846155`}, {39.87858991056261, + 22.47537257735614}, {39.369550756597306`, + 22.157757811121492`}}]}}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{0., 0.}, {93.17647058823529, 72.}], + InsetBox[ + GraphicsBox[{{ + EdgeForm[None], + FaceForm[{ + RGBColor[0.5, 0.539994, 0.53]}], + PolygonBox[CompressedData[" +1:eJx13Xk0F9//B3B7CG1SSqgkpCxFRZpRoYVIUrQoaaNFIoqkQiupT4lKpLK0 +p53qI9FClsrSinxK2oXeFOk38/6e1/uP3/NMx+d8zuOce+4+d+7c9507A73X +uC6RkZKSklHk/uP+P9//zDz/Mx3Meu+h3J+I+f/+0J50ZuouKVbIc7aNSFvT +LCfoh8r/phyYpyTosfudj9wsUBV0hUrj1DV9egg6xmXMQ2nHXoK2PxBhdyCi +t6A7qx7m6V/tAz69K/TVfs7X+vdgb37UFPRqL4/b07S1wL1eDU5r5jz0xHGr +aldt8H+hgdZXDUSMf3PL3BsTdcH3gi/nOhqLGMfeiYelFwwEv/L5fErBTMQY +jLZ5MTVkEDiuUCdnhqWIkfN42+fA/sHg0r+bgo5MEDFvN0a5vzmrB67X3K9T +4ilibh81PKj/YAg4ZPF22bLVrUzineJna97qg8/1CI0fc7aNWV+7tufN9qHg +z8GF1UHJMqyrjMYMGQ1D8L6Dmj7/hXYwI/Sy904zNQLL1Bsf2XxfnlW2X1By +YOow8EY5z8EiY1m2fpmMarWPMbhnbHLCyRA5Nm9n2rShm4eDPYd2FX0epsQe +43q7f+IIcLnHcb+Hl+XZjcXfHt68bAJOKNw1NCZCnj0T/Gib9DJT8InMOUa5 +Zsps4o7+g/Vb0OcX/D2xfa46uz1xVd7ULWbgA1fvnr35gGXXn/530Ro1c/CT +kj0f0udKsT45PaQPHEH7txzeX3pAmnV9vDjlhsFIMJOQsvjYQCmWfXOVeXMV +3ZGvV2D9Xycz4luXGumJo8Cvh5VFDTjxl9H66xGuX4Z+fC6yh0+IFKvc/eyA +afMtwG6pCz++/yzFtul23lrzCW3vW7qpubs0W2/mMu9AsCX4iv0Xj7qL0mzF +hNT2G3KjwXq9g4zv7pNh781sOfxmH3pr3YOEnHhZ9pKPvZWMzhjwp/AD//3p +lGWTgxJe6J9FH53/yObEZjk2JvpTyLSxY8EJXXK6/3grx4YeGtfX/z46TOv5 +i8qB8uyKjNjrB2ZagaPSWscVhMmzs2/Wut+sRcc7pFh4l8qzdoXmojerrMEa +FTdHvOimwI58FXlQph09btHLH27PFdhBXypHDd0xDqy3O9dCbUsXtvsfg/Jp +vW3A1Qb9p3bvo8h2qoau809Fn79r6/TaX5H9ol3c86DJeHCq3FpbnRRF9qWJ +TtbNW+iSkPDsn7eV2Ifs2hnVUxjwoKp3V783KLPXZtxrlKlCfx84VPvvtK6s +6yXlh73MWfDwyEVJd/26stzF3CctBF2xuynasK4by+bNWzbmX3TQXlnrV1Yq +7PVCee7PFtz03j1P0VyZHfHsvMJ8R3RaJN+gSmzaq9nu3/ej65dcS76Qp8Rq +vZNK2/ICbVf+irvilNgDXzJ/9tKdAP60bH32rhlKrPJPV7u0pegSY08rdXcl +duuf9gNjzqGf6jfm/bJRYtvkT70rbEbHhFnrHmSUWH+16aPmW00E59vnmXvY +KbH1Gq3bvkegu8t9Pv5jmRK7QCfl2ZYH6GMFETa1F5TY8qFTBqurTQJbBj0P +2MzZ0bQpIM0NHTykdU8nV595Y45wf+gLrelmNwKUWCvbST2L3qKLVXtuPiOt +xF6c8nXRfAM78CaDPhYOR7uwBq7xl76vRku9/Mp0c1RgUzwZ6a1X0f5dTjY9 +WC3PaixucFHvQKvuKLwyXUOejfXbl5I2wR68OFe7cXaMHCsXaNU4ZidaXXzD +kmPDwv5jikrRFx3dn3Q87MI2Re7ZO1/DAWyx9l6m3GtZ1jfGoub7PLTpnPdc +j5Rlaw9Wj9h6Ap22akfJoz6y7Jxj28PVP6GLewydrF8hw5akmXJ/k8GrTf2+ +FZyXYe0vvBgwNhi9e0JuwHhfGfbW9a2rim6jh5v22v1pngw7KnfY7flyU8B+ +9oa7itRl2NMPy7kZJzpffW2fNg0ZdtCTTfO27kP3Uz9t3ldKhuXvBurP0S+7 +2SjkvZRmu9eVtqdpTwVX78i4PjtFmhXfLpagCw8qzN22TZrtbBp4pOgMerRX +v6oNU6TZwPbCT/Ob0Gu2yBXsNZNmv8jyHWIaOF9+U8RG7n66WGXArq2b0a3X +hjg3vpBiX6rff6F+H53b81KH1g551nXAGsN0FUew5zDdf5f+1WYfDum7YexM +dPPxeeVaa7n5xoi7D4sS0eYqd9+Xj5Zir1n69l1Qi369XIorkhQ7gum1vFHf +CZzSzaXboGd/mZMOfI9Al2kcPabWyM1XXJZ06X0F7bfSeuqth3+Z/XPUZqf/ +Rs+1n3nJLeIvo7zoetpY2+ng8TscmctcehErFoqKtqNNZEffXzvFgm1bq8TN +aNG+5rlHlzTLsKs3Zh1sVHcGf+t8lNhfr5Op3zr3/da56ErNW/az7/9h5u2W +s+idir77tKjqzOE/zLN/zkWmN6Bd6z2rnpz9wwyZPuzT0T4u4P89D/xhFj79 +26PeCn2qvIZNlPrDHHUvH2uyAB3dfuq10rMO5vnLjEUhW9A/SsYkHozsYHp5 +bdp59yT6xVifvcO9O5jp/83g7ujoiv9meYfmdzC7lum/mPkZfX6H/vDmunbm +/uffUklqM8A13vGtS7+0M9L+pQb1Zmgb8YS9nRnXcsLFZBbaa3jtC9vYdiZE +/A9tN2Ca/8lF7cyVDseUu0fQb8JWzPswpJ35HjGQe6RGu2QULpSS+8MYyYu+ +z6xDn9Q5OVL1uBO7dGdhnyR5V7C72vCspO/ybKpqMlNvgB6yo+tvqZ9tTPW+ +dctMHNFzR06dMS+tjdHUmLw3ZA1a0Wj/z7QnbYzbYa3rd/ejm5IcuqYm/WLi +tH9UK19DBxuquG9I/MU8Ti1QcHuBNj3Y27mf9C+my9DDI5I60Lod8Q0Bs9qY +CWdWu9frzASfW1G9dldsGxNuMpH7Q195tVk7oWUwm81PB5eifXb3Tfz49Dfz +c/SX4rs70WGX/I7tWdLKmN7K/al8Dn3M9GuI0cpWZiV7cIBbGfpgWnHvcT1a +mYz8FXZJzejH+alWVUNamf8mj19Vr+EGdpLZ9umHUSsjnm5boa/zw3mfVsZz +xodbIfPRw8QLDq1MfEXOu7sR6D/TX+R8axYxTzziVLqeRHeb/H7vG4NWRqXa +Z5TbA7S4u09pZSZ7j52X9Al9sNP0RwwXX2S9Kvc3C5w/v3bu4yYRk+tbd8bE +DO27XH+L7U8R0/7t2rMQN7TdkdyuH1pFjOW63e13g9FFx+2uNf8RMQGtXoO7 +HhH2+dBR09zuoP+z7Jc7V7eV+fhXcV3SW3Sm/ouTZYW/GL3IN4fr5dzBiz0e +bNpxUsQsVMzKMzFA+/m79Bp9VMQc3cPPGNA5z3Lb3hwSMVXd5/bMW41u63ms ++dZeEcP3hq770eV8cC6+6Zpy3m5X0Tpz8x86cvHtSnq+M+k52val3YlPSSKm +YOC5S/Xt6G8Rbp3PY0QM/zRjojMbfE1Zq/NzvIgZZ+QuvWECmtILOW9kmLcE +Ld9ctG3+DhFz2fyvS9ed6FgHi0f6USJG3B3OoqtPnzpfHCFijKwzUpJK0Y+l +nw223i5ilv4b9rC+CX3v05TYPVx9pk6c0WiiMQd86ubZ6Wc2i5g3D/gJEbrz +/FJDy00ipq/jbyZvHnrOSV25uxtFjFtZybKuEejcloclA0NFTJzbib1uJ9D9 +Pm3NPBsiYoqeB19Puo8OrBkXOXq9iOEeVmvqP6I3Dk6tXrBFxEx4q9vFVNUD +PGWKufrnYBETvuTniA2maL2wx8fiuPze/PjIPW8metlftZZ4rrwtq46Fdw1G +TxQP2CJG/Lh3WNgr1zuUJN1Gr9FI2GkXJGLSf/cX1deihxZeHOu0VsTUhTcO +MJXzBBv/M2sUEyBitGUL7DYMRfs6NcfODBQxnuIFPbTTIY0L6atFzMGuq7k/ +dJuvdKkaF1/Z3gm33fahw0QFmvWrRIyKep/3SVfQ3d6EuP2zUsRMTvis8qEK +7Rk8iZm8TMRs08odZdqOXv7U3ETbV8Twq/kbtOeCtW6nvRu5RMT81lsRmWeL +tt2l4hnrzY2nmTZnuy5BU3oBw3uWu+1Af+zWq2bMGhHDjxZJZ9DcZPPvhoUi +psEiZ/CHEvT8AoOXcgtEjHg5uQk9kivNDS9uPB3vs25D73lgWg8/Il4wQG/b +H+vsNVfEVNqr3us6D0356Vn09pPbZvQeveeTJs7nxlPnaz2PpaLvOhqfXsd5 +57NdVh8K0FOPH/w+jstP/mwvb9OPaMtNMvJB7tx4+nrkrg0q88GPFl9lBs3i +xlPxDQUdHBX5285ZxAS/e/2i60y0zKzzyZO4+LKWX5KetR79+FLiy+pp3Hj6 +JcrwWCI6tf9e3/1O3Hi6lp9xoLtZvDZ5P13EiIeLWjSV5/gGWe5vAfhEvHPh +g9ki5vUf/gcf9CCPNf3OuXLj6dazjV2nomdvubf5DWc3hS19Z61CP/vZOUqB +i2/vrlnssTh0Onc1RHL5LVQzWv7hMpqvbc8Z3Hj6T+de0yp01g+b7CSuPSf0 +eXZ9w2/0+AO7Dw/m4tt0JL0mb4CXoG/ohHVRsUU7fd+w65cLN57yjys+6LDp +hj9HczY1GDL72Ha08ecb3fa5iRi/s7/CP5xGv1LhF6xEjHg5pwQ9sPp8dvBk +bjy9klqy4Qd6WuBNo3x7rj6PWocuUl4IpvjOVQ/ppqCFHubfdmHuVK6+dbuf +OD0crbxytEUz198avH9bOjPoBw0tNV+48Ar8cqcLenWzlbw3F17vQ8mCBG80 +jScTDG82jQtEa/VWzo1y4MYbvxPRb6PQp1ask3eexN0vz8X0iz6EjleL6r3B +lhuPvgefN8pEZ03hBwTufmrmPaE0G31/1aiI6yw3H1znWLnuMZpvbX3OLVct +fftWo93EC27ceMb/YPMdPXL7FjvlCVx/4WaTi6QXgam9p4f9HKLQC+2jFDvK +eAV3v75Tc/O0HvpIlWF3Py6+nVKFTs6W6L8L+Adu7n4+4crbZgf0Z6vDP3tw ++S2IPBaU4IH+33o21x/v71Cy8UMvu1Bx2opLT0qJm86Hoam/ak+bbxYdi24K +/+s8dgo33sY4FBiloOVP7LeS5vqTZ6mZR+kl9L6vYYwFdz8L7qH1dd09dPIQ +tTNDx3LziZncgFWBpt+LLx9sVL9dj9ZuGN6uMop7nqt6mbGoDb1ljVlR6Ehu +PNcsGKeg7A2+eijK9CxnlXkXyk73R7f1exiVxaVndCzRx3k4el5q0ayBnCfX +bmtrHo9eJH7g4ebbg1bvSXBBP8rp2z+Q8zafObo23mjqr8fTuA6xDl15xP6M +uik332kwnhwdhdbU2SnVnyvPa6M+r40OCfv3Smn/0gx00mmnaU0juPvNhc+y +gdloafMZ/RdxtvxRcajvY7Ry/uHudlx+3EbmDrv9Bh3y5kPFITMRszbo9L+L +vqNrh8eltHHee/3ATAXpxeDUdU1270y48ZQfznuiKb1C6xWhznpoCt+waWa3 +Fgs0tZdCrs2JBAe0fPvP3jO58HoyBqNtPIQ9gf+5xhc97OHc3eeMufE0umNB +dBiawm/intaMYtGU3yPKT6JLk9HUHjcdc/oFXkJTfJWxp873vYfuFsN0Hc3V +dws/oS9HU3/r2Wtj5aJ69GOlP1dNufRMZ/n4KrSh08cdYiu58NMPTe88reQD +pvT8XozZ79wfTeXdyW9XMEZPvPqP/zIufPp81eyE8Wjqz/nJrU42Lmjaz1L3 +lvu3CE3lldJ7HBS9Dm3heSpiHxef9tJrSsOi0A/YOTnjh3PjKf+4Ho+m+vL4 +tMssMEPYwcZBBX2z0VQfB/kNQUXodeoTX53i8nuZ/8HwDXr1tGO1l7nwZU0j +tyh8R1N5v43S7n1GagmYrjeVYMVM557ohLcZLlJcfo246UbLYGFPbn9dlmCB +pviW2DzwsXFAWw2eGrqNy++2zZfa3s5Bm+6Tik7m6vv43SN7on3RT54evziI +C39HNlp3WJiwX9v5XymNQVN+f2/3nByYjKb26ls46XXfS2iKz1LFxP92Hpr6 +y0x+wascTeHXxskmKNSjW5O76G/ixpu9T78OO9OK/qevnLsaF99Z9ef/Oist +BVN9FbrnzWzph6bwDQlnPyQYoym/Cq/iQ23Goyk+vQFbutU5o6m+JnhxE9JF +aLrevI7PGj1sHbpj+VndNVx8m/ifmyPRVF9Hhhh5Bcaj/zUsHRJnwT2vLFNv +7puBpv5YmdkZffsm2uem2+dSLr2Wzw39vIvQNB735DdkvEFTfZr6355w5hua ++ptTVnqls9QyMN0P/Fr2+bb0QFN5d1qGdSYMRlN/SQtZut/GAr1i66/3d/nx +NNtFv84eTe1Z12GVHT0HTf1Biv9FzxdN4bW57lAaiqbw1vd+BQXGCNtD/p2S +ZjKa4gvml+Muoqk+D+68YeadJ+ysotQChXI0pVemGuNx5j2a0vvmHPzVuRVN +/Vll/6ItLYrLwd93hMeVcPNho/JpvRP7oSk/DhqWmTbGaNrvuYSbjtbZoKm/ +bTvMTTic0RRfyusWn2GL0DffryhabsSNp9o1baUBaOqPrxc+2hMYifZqvND4 +hsvP79TLuprxaMpP3/dJV26noym8xdAdk71voqk/z1wR8FqhCE31sZbfrvwa +TffL2K/2ci7f0NSeZ03MElr+oim9wrX9jRN7rAD/bz8oN55els+1GYyWjKf8 +z62j0JRfvTEvP0Tbo2k+ZLsxP3TYHDS1p9et893KVqCbKr2H7ebys6kz4URg +KJrSO8xuG60ZI+wb/HaZY8Ku5BcUL6KpvVsUJjQr5KGpPnpOMd5+5hl6oGXP ++EdcfzTZrdHf5T1a/++1uByuPE7FUhdaRGjKj1+3zxMSFX3B1N47ZlRU2vRD +86u1Wvx4+s+/vnXD0BRffgV3Q7FB0/NEXZ8D+4c5o6k/SXmG65ctRNN8ecDR +5dmBAWi6X1pXu07XjERTf/TghovbB9FUXvG+93Q0lffAyR7KXW6iKb0sfrm9 +EE3plRnUm7m8RkvGU9+ygpavaKovlXPZHol/0ZQfw+8nv9r08APPWrC0/RfX +XxzM9m6pG4Sm8WbJug29t49CXyqptcg2FzFbry7OHGaPpvZK4R5XymajKT93 +xo55ErgCTf39deigJZqhaLpef99W+XV7D5rqu49U6x7vY8K24H9wu4im/MyM +LLpy5i568KWnPzu5+5X//auTXZ6hqb/HKnJ3lHdoiu8sv11ehKb6LtwTKDde +cSWY7qcNJQsS6jTRNN7J9+AGjGFoao/BM0fmDrNBU3q2/HaK6WgaT7yqujQE +LkTTeBSm2RSqGYCm/n547utud7YJ+0bS/RPeB9F0v62suTi6Szqa8tPCb/e7 +gab89PCJ8nIpRFN4k7Q1zS2vhO3U4LE98Sua+qOv0aT+4/+i75xXu+/JecfK +ERfquq8C03w07XzfidsHoak98htlqoaNQlN/qzP/6ltmh6b7zd/Aqs7A2Wga +TwZcv7tfcwWa0rP+dUb/zkb0rujshUZceeZYx2d770FTf1+/KWJ6l2PoiBZ/ +P3tDbjzlbidnLqApfJb0rPUud9GUXtlERvnnUzTVxzf+57R3aKqPrg97mY8X +oak9DZU7C+q6rAbTeOLgyHUITTSNtz6x3APtMDSlt7Xs1payceivqndME7nw +KT3TewdNR0vGU7d9mZoL0dRfX3OPs3fWCvvX8yVPvLehqbx9+rss6XIQTc+L +FvOtfp1JQ9PzmmuyXozLDTRdj/5v1Qb+fISm/MQO/nUl8RWarqezS/6bPP4r +Oup276VjuPgK04tf13WiaTz88PG6//bua8BU3/LGqXLGg9B0vQxevSehbCSa +2tv24nrjIDu01qpVR6q4/r6gaWGu5mw0pRfGb5dajqbyHl5v0eC9Ee1y8K6U +Ihf+Bv+D5h70+C/fgoL49YDfSt3PJqGpPZr5DZsX0FSeHpurR//MRdP1aMJv +V36KpvI4yl72Gv8OTderr11Sc91PNJUn/x73T9YfTPOVp+9uqMaroKk/1cmf +n728N5qup0b9E8ettNFXtArK1nPt9dch4bPKUDQ9T6qtiLGoMUE3TNK0TOfC +a+3auvnSGDT1V2P+hTlbNNW31eOVvdynoqk+pvKvY8xEOz7WUtDg0hNv156L +7nPyYcp7AxGz3MTxx2MfNOV3vYutdfIqNNVn1FrLqLXr0dTfuaeB0omb0XS/ +4R+nNXagqb6zynsvbohDU33zu0mzE9HU38o0uAljKprKy/Vm1usMmuL7NufT +LrMraKrPjg015bK30dQeykfKtSsL0FSefrceLc8oQVN4gzd3sjZWoWm8HtN5 +ucOxFk3Xs71Opr3ORzS1lzt7LO7HDzTF57Pon5f3fqNDhz32d+PqK3DrDr14 +2bVgGq+2nti0erkKmsbjuPyAG1a90VSfKe+Xyahqoy/M1K2M5NLj3yar0UdT +fd4Z6hp/yQRN/fHxZIfabWPQ1B9erxhn5G6Lpvbgfy4xmIqm+Q4/nfrtiqb+ +qFjcX7F4Lpri0/jW3TXZB03l0e+mcHTtKjTV9yjT9vcT16OpvJP47Zib0fS+ +tmvA+w0N29GUnjfXHbLj0FRe/yulqjGJaCpPeEX+bK9UNKUXK7p53OwMmuI7 +2ufCZ9kraLpez445aVF5C03l5Z62N2cUoKm9CzfGPtpYgqb8Pj+yrZdTFZr6 +a8OtkPk6tcIWvVmV/qMBTeWV++v9494PNN0v1HW5GflvNNXHIFunqOWyAWDq +b+beE0qtVNDhA51M/x0nYvjlMtXe6Fnu41bIRYoYl5PGi2sGoKk/LOA3POuj +KT+r+BciTdBUXn63lvsYNLXXLgPp3Qa2aBoPDk8Rlf+egqb2zPD9rF3siqbz +DG7srl2ePBftIBvSVY8Lf/9sRdZaHzTFV1lc2DFxFZrGy3ff/rXXWI+m8E3d +rsY1hKOpPmTMTr/M3o6m/tSdn5DHoak8uusOrPZKFPaIAztvmKWiKT/jr4bL +yJ1B0/3GsXKdY+VlNIWf17o8PuOWsPm33TYWCDtk7EwjpxI0XQ87PCcH6lSh +qb74x6UfNcJOO2qumN+Apv505TZ3Q/mBpvbMr9Y6uvw3muITvy4muw5M7SXe +Tq6Cpuul0ZabcaijKb5Obri4NABN+VHjXyjRR1N5tE69mu1ugqb+bny/7LjB +GDSlZ/Wh4PNvFk3xTVXMsSiegqbyzDG8uDnZFU39cdnUU4/WzkVTfa33O9xr +kg+a+ov4dd9VaMrPAf51wCB0dVYpe49Lj9+tmR2OpvJmfV9tHbMdTfWd290n +yisOTfkpM/MoNUtEU3z8crhcKpr6+5d1ExdXnkZTfXYcGHMu4zKaxlPla8Nb +N95CU3v3q+LuKAVoag+Dtj67dUrQlN8xmqoVPyrRlB/+NIr8GjTV96y53IDR +gKb7jU/Yl6zlP9CU34Cktx1Wv9HUHlvvVNqrygaCqT/E1RTF1XRF0/NSitTd +l5fU0ZTe+YHX9CIHoCm+O/wLe/rCFh9nYiJs8XEXo9FUn59O7XIsZtF0vbTd +3xyfPAVN8Sk2BNaudUVTe2oo+RpNmoum/qBv5BWo4YOm+PjlkIaVaAo/aeUU +xZwgYbvGjHeNCUdTey48P/Ko13a05Lwi/nXXODTVl/h1mEQ0tWdsj14bK4+j +KT7+dpJxGk35OTvzj2roZWFnBzbNdrqFpvOaCg9+OK5TgKb0nl97/flHMZrq +q77qiUV+JZrSE/EdogZN7SXHP9A2oCm8uvWlXtY/0JTeoHlp81V/o6k+zfkN +/zJBguYfZy91RVN9OP8bZR2pjqbw3Gwjyn0AmvLLb2c10EfTeB02aIlm+wg0 +jVe7JnouLh4t7MM+zueSWTS1V0bUpNa1U9CU3xtpY20nuaIpP/cfjNitMRdN +5SlvGFzRsBhN633vlDR1claiabxoMlJbEROElsxX+QXBcDSl131VW4fZdjSV +R5ff8BCHpv424kJdXGUCmupzfFnVy4zjaOpvjj8e64WeRlN4z555q50uoym8 +78jrN3RuoSk/IW5nZZry0TSe7Ag67phfjKbfy+P5f5Voul+nXeceWGrQkvnq +8wgj6wY0tQe/nUn1B5rq+2k/vzs1v9DUXrXWCxWzZNaDqb4a581yjewq7M5N +U4+6q6Ml81X+df0BaMqP+HW+IcI2fmu4sXgEmtLjpxvJo4XNn8YTwAp7ziSl +OZOmoCm/S5d0HtdwRVN+1kc3f27wFDY3G7XIWYyW/N728M3mmJVoCp/68ekj +ryA09dcs/riocDT1B/FxMtvRFF+JY1Z65V409bfqVek/MhLQFN+X2KPWocfR +lJ+OC/uinE6jKT5+u7rOZTSNd/2aQjWbctDUXga91i7Oz0dT+NGjlp6LL0ZT +evb8hLQSTeHd+AX1GjTVl88hu92qDWjKT8ANq4qaRjTdz7a+MNHJ+oWm+ozj +X1iVCQZTflL697vs3hVN9X1+XLc/BurC5nqDQ7sWmvL7OPxXXPEQNF0PL5O/ +vUwegab4PuX+pxcwGk3laXv7fPUkFk3pKcqW3NCYgqb61tC7J/NxBpryo293 +wzHHE031zXeHmMVo6g8TtqfWeq1EU35cMw4ZmQeh6TxPfruiXDia8uv/acud +ymg05Te8a7Bi5l60ZL5qvNI1NAFN9X3UadFRp+NoKu9Z/riR02gqj/h15Cw0 +xffwIrsxPwdN8T3npqPx+WjJfJWfcBSjqTyiXrpzrCvRFJ4/LUi1Bk3h1d2V +v9R8QFN9Dgr+a5HVKGyzhJbNkb/QVB8sfyCATAiYyjv9ZXUvw65oim9B+7P5 +7b3QNB9bqfUovVgLTeUNs7nzI3kIWjJfXXDZOmAEmvJzeDM3Ix0tbP51FA0W +TfV57e5+zY+T0ZSf+3XbF+fMEHa57KZzMZ7CfqcX0Oq1GE3pNdktszVfiabw +Msvm7ZYLQkvmq/yGy01oyXw1014nMxpN9TmCf6Fsr7DHfTa97JSAlsxXVfT/ +6BxHU317Du/v0JSJpvz4Tu++Lz8LTemFrJF/FZ+Dpvh28DeUfDTFx58WaF2M +pvo6xf+gX4mm8FeaX8jUVqMpvTz1UsesD8J+yg0XkY1oKg9/2qj7LzTVZ2Pw +eSNDmQ1gyg+/HbldGU3xqWUn3CnuhZbMV1/FKKZooSm/wzq2ugYMQdP9wGpA +yNFJI9CUnvi4pNFoim8Of5wCg6bwSyNmb8yZjJbMV7nHlZgZaAofmWerttAT +Tekd+M9yjvlitGS9Vc44VW4lmsJfHDLwS2Ugmtor117DMnOTsPnTZEKj0VSe +6h1ShU570ZSe+DjSBGF38McVpqCpPNzdJD0/E0354ZdL47PQkvkqP2DkoCk9 +S37BIx8tma/yP9gWo6k/8dvRaivQlB+frGOLs6rRkvVW/sC9D2jK79aWHa3u +jWjKb1zvcFvDX2ha703mD7SS3gim8eT87OUVxcpoyi//c21KL7RkvTXRdUWA +lrBfZjtcnjQETeX99GrcH40RaMl8tcPM4aMlmsqrqD10Xw6DpvrS4EeMyWgq +j97CHkMWzkBT+FFbFNaYe6Ipv+LjphejKT+u/HHEfmgKv/Dde8fMQDSl58/d +TkI3oSXzVf2yWqdotOS8fIcCI929aMl8dXl2YNMhNLXX6Z0X7uSnoCXz1dMn +FQ9lCvthEdchstBU3uf8A20OmupLfNxbPpryK+KPg3mMpvqQc1m9MasCTfnh +H2cjq9GS9Vb+wM8PaMoPN9uYY9gobLac6xFtaEpvOn9goHQomNprgcZwyxRl +NIVfOXpQREAvNKUXNqdP4SQttGS+ukFFvc8QNJU34bD0go/D0dQfMnJE6TmW +aFoP5ZfTYxi0ZL/An1rrhZPRlN9y7coo8xloyu87pqhUzhNN+eW3m1Z5oym/ +MvwLH35oiq/7idPnQgPRFF6bf6F9E5rKM+L9AVvdaLRkvqqwa3dTrLAdh26u +yD+Epv7M/5x/KAVN9eW7gvuXiab6COEfWLLQlN/tZ2b+Uc1BU/h4fsPYPTT1 +15NfbfZlPUZTea6ojXwVWSHsPBODIbOr0ZTeU5cBaww/oKm84s9RfBd24/4u +siVtaIqP306YIh0GpvpW4aYbAcrC1hLV107qhaby8MeF9NESttWYJ4Ef9dDU +HpM97t/JGY6m/M7ZmKMYa4mWzFePXHRdyKCpPtbfOnXUfDJaMl/lj6ucgab8 +7OePs/JAU35SdaI2ZnqjKT5+uSPUT9i5i9aoTQ9EU35LtvrM0d2EpvDVJzxS +m6LQkvlq/vQv+bFoKk/7+4mWhw4JW7nL2IgVKWgqb19+QpqJlsxX+QX1LDTF +Jz4OO1vY9rtVM7LuoSk9/ueWyMfC9ilutZ5dgab6COAPdKtGU3r86+Lt9Wgq +T5xplWbJdzTFd2zG48UpbWjJfDXg7rkA6U1gyXz1n2utk5TRkvXWK2ds+/RC +U/iXFSm7P/ZH03j/SXSwIkcPTfHx2z1ih6OpPhS47rDQEk3paXgGXTZn0FQf +eqG+f+QmoyXz1aNeDlUuaIqPP00y00PYrtVTXoV6C3vh3/FDpvuhKb01uqPW +6AaiKb/c08rNpjBh7/HWli2IQlN9H93Wy+lQLJryw09HVxxCU3zZBdyEIwUt ++Z4Vv2CaiabyPO/SEFh7CS1Zb+U3rGejKb2fU54qRt1DS9Zb/R64zn6Mpv7e +c8+to4YVaMrvIP7AzDdoyq/4OL56NIVnvx/ZmPIdTf2VXw4LaENTfheYRavZ +SYcLeqVr6Jw+ymiqj43r/FM/9kRL5qsHlnzJ6Y+m/CZc9bSM1UNTehmVzhEL +h6Ml662tkwrNLdFU3/f7WqnLM2gKz592X+WApvK889TLyHRBU375n+NCPdBU +XqkktXHTvYXdnT9Qxw9N8fHHQTStE/YIqW+aBWFoqq9xA/9bfCgKLZmvTnh+ +bkUsWrLeupi7oRwSNn+arFqKsENOXd9dm4Gm9KL5DcmX0JL56ofjOlHZaMl8 +lRsuZt9DS+arhnsuGz5GU/i8qVv+tJejJfNVv/UOJW/QFL52j9++lHo0lffb +uYWvAr4Lu7Nk1hC7NjTFJ/7cnvRmQWvxn8NTQlN8RuYWsrd6oiXrrTONnGL7 +oyk8/7iyUA8tma8eVH9rPhxN4fnjvuQt0XS98a8DV41HU34i25rvZDqgqT33 +a35UDHMRdqpVtet0D2FfnPvsqK43mtLL5Y8L90VT+JKk26YF64TNvw51KAxN +8fHLpSui0BSe/9rFuFg01bcyv+BxCE3x9Z24PbU2GS2Zr/IbTjPQFN6Sf2Hu +Epra0z5tacTsbDTF5/ZgbqHhPTTFJ/6cUpGwA/jPrZSjKb4I/sD3N2jJeus0 +06aAejTFd2zlkHF234V9PqZfdJ82NMW3gD+PQCoCTOHF3zuUQ1N+V/MLpkpo +io9fTr6oKmzxeQc9hS13+kvKVg00XW/8adWf+6Epv+LzsHXQ9D6e+DyFwWh6 +33Ug/706A7RkP2DYE484YzSlZ6r6OPyXKZrKIz6vwULYDP+9orFoqm/uafzr +qPFoSk983vcENMVXwZ8H4YCm+Obx33Odhqb4xJ+Lc0ZTfCv5z4m5oSl8M3/e +xBxhiz9HNF/YMhPjeocvEvYu/jzzJcLmXwdw8UVTfvntAjdXoym8btTGzEHr +hJ3eO6hkd7Cw+a/dtoQKW/w9qghhj3/gY/MgUtji89p3oqk8/HELiTHCLuc3 +TO4X9lwl5yd+8WhKry5xiqj8MFqyXsif95GMpvBN2ePZ9BPC3jBt7JLuGcIW +n0d/Vtji80QuCrsb/z3Kq2i6HuJjBv+6chNN4bX5f3eELT6vJE/Yw/nvjd0X +Nv+6p0eRsMXn7Zeiqb7F56GUoyk8P5088FzYT3u06Xa+FrZnapPdsrfCfsuf +t/IeTflZfu/D3rGf0BS+cWbdldRvwg7hvyfQLGzxeS6two6Wfzq4ul3YavyC +tNQWQR/Uf7Dqopyw+a9VaSoJW/w9OVVhG/MvFPQQ9mX+ewkawrbiX5juJ2zx +94x1hD2l33H/uMHCLjt95OCvocIWn3djLOzaoriaIlNh89uBLCyELf4exFhh +i8/TGS9s8fdmJwibP879hb2w+eNeJ0wTtvi8Hmdh88fF9HYTdmqtl3H4HGGL +v3cxT9ji84AWCVv8PfUlws4dNDV3kK+wJ1+e9H73amGX8ucNBQhb/Dm/YGGL +P/cVKuyl/Pc8IoT9lT/PKFLYgfyG1J3C7kjTbvCLETb/OnfFPmHz273Hxwtb +/D3Iw8Luxz0udk8Wtvh7JSeEbcCfx5Qu7IuH2z5NOyvslrqgTRHnhf1/q7yk +ww== + "]]}, { + RGBColor[1, 0, 0], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[CompressedData[" +1:eJx13XlUD9//B/B2lcpSIlIhSaKFQslMqCylJGlBJFtZkiJKQmUt8VEKKSFl +l73wCWUpLWixVvqQ7Km8i5LfzPt7Xu/fH88zTuc4j3PuufvcuXPfd+4M8F3l +ukhGivunKCXF/z838PScwNMdzFrfIdyfiPnQnnJ66k4pVsgeW0dkrGqWE/RD +5X/T9s9REvTYfc6HbhSoCrpCpXHqqt49BB3rMuahtKO6oO33R9rtj+wl6M6q +h3cNrvQGn9oZ9mof56v9erA3PmoJeqWP561pOtpg9VeDMpo5Dzl21KraVQf8 +X1iw9RVDERPY3OJ9faIe+N66S3mOxiLGsVfyQel5A8Cv/D6fUDATMYajbV5M +DR0Iji/UzZ1hKWLkPN/23r9vELj078aQQxNEzNsN0e5vzuiD67X26ZZ4iZhb +h4cmGDwYDA5duE22bGUrk3y7+Nmqtwbgsz3CEsecaWPW1q7ueaN9CPjzusLq +kFQZ1lVGc4aM5lDw3gQtv//COpgR+jl7ppkagWXqjQ9tui/PKtvPK9k/dRh4 +g5zXIJGxLFu/REa12s8Y3DMuNel4qBx7d0fGtCGbhoO9hnQVfR6mxB7hentg +8ghwuefRgIeX5NkNxd8e3rhkAk4q3DkkNlKePb3u0VbpJabgY1keRnlmymzy +9n6DDFrQ5+b9PbbNW4Pdlrzi7tTNZuD9V+6cufGAZdee+nfBKjVz8JOS3R9O +ekuxfrk9pPcfQge2HNxXul+adX28MO264Ugwk5S28MgAKZZ9c4V5cwXdka9f +YP1fJzPiW5ca6YmjwK+HlUX3P/aX0f7rGWFQhn58NqqHX6gUq9z9TP9pcy3A +bunzP77/LMW26XXeXPUJbe9furG5uzRbb+YyZ/86S/Bl+y+edRek2YoJ6e3X +5UaD9XuFGN/ZK8Pem9ly8M1e9Ja6B0m5ibLsRT97KxndMeBPEfv/+9Mpy6aG +JL0wOIM+PPeRzbFNcmxszKfQaWPHgpO65Hb/8VaODTswrk/gfXS49vMXlQPk +2WWZcdf2z7QCR2e0jisIl2dn36h1v1GLTnRIs/AtlWftCs1Fb1ZYgzUrbox4 +0U2BHfkqKkGmHT1uwcsfbs8V2IFfKkcN2T4OrL8rz0Jtcxe2+x/D8mm9bMDV +hv2mdu+tyHaqhq0JTEefu2Pr9DpQkf2iU9wzwWQ8OF1uta1umiL70kQ3+8ZN +dEloRM7PW0rsQ3b1jOopDHhg1bsr3xuU2asz7jXKVKG/Dxii83daV9b1ovJD +dXMWPDxqQcqdgK4sdzH3zghFV+xqihla141l785ZMuZfdMgeWetXVirstUJ5 +7s8W3PTe/a6iuTI74tk5hbmO6IwovkGV2IxXs92/70PXL7qaev6uEqv9Tipj +8wu0Xfkr7opTYvd/yfqprjcB/GnJ2pydM5RY5Z+udhmL0SXGXlYa7krslj/t ++8ecRT81aLz7y0aJbZM/8a6wGR0bbq2XwCixgWrTR821mgjOt79r7mmnxNZr +tm79HonuLvf56I8lSuw83bRnmx+gjxRE2tSeV2LLh0wZpKE2CWwZ8jxoE2dH +06agDDf0usGtuzu5+rw75hD3hz7fetLsepASa2U7qWfRW3Sxas9Np6WV2AtT +vi6Ya2gH3mjY28LhcBfW0DXx4veVaKmXX5lujgpsmhcjveUKOrDL8aYHK+VZ +zYUNLhodaNXthZena8qzcQF70zIm2IMX5uk0zo6VY+WCrRrH7EBriG9Ycmx4 ++H9MUSn6gqP7k46HXdimqN175mo6gC1W38uSey3L+sda1Hyfgzb1eM/1SFm2 +NqF6xJZj6IwV20se9ZZlPY5si9D4hC7uMWSyQYUMW5Jhyv1NBq80DfhWcE6G +tT//ov/YdehdE/KCxvvLsDevbVlRdAs93FR916c5MuyovGG35spNAQfYD91Z +pCHDnnpYzs040fkaq3u3acqwA59snLNlL7qvxinzPlIyLH830HiOftnNRuHu +S2m2e11pe4bOVHD19sxrs9OkWfHtYhG6MEHBe+tWabazacChotPo0T59q9ZP +kWaD2ws/zW1Cr9osV7DHTJr9Ist3iGngfPmNkRu4++lClf47t2xCt14d7Nz4 +Qop9qXH/hcZ9dF7Pix3a2+VZ1/6rhp5UcQR7DdP7d/FfHfbh4D7rx85ENx+d +U669mptvjLjzsCgZba5y5335aCn2qqV/n3m16NdLpbgiSbEjGPWljQZO4LRu +Lt0GPvvLHHfgewS6TPPwEbVGbr7isqhLr8vogOXWU28+/Mvs81CbffI32tt+ +5kW3yL+M8oJrGWNtp4PHb3dkLnHpRS6bLyrahjaRHX1/9RQLtm21EjejRfub +5x1e1CzDrtyQndCo4Qz+1vkouZ9+J1O/xfv9Fm90pdZN+9n3/zBzdslZ9EpH +33laVHX64B/m2T9no042oF3rvaqenPnDDJ4+7NPh3i7g/z0P/GHmP/3bo94K +faK8hk2W+sMcdi8fazIPHdN+4rXSsw7m+cvMBaGb0T9KxiQnRHUw6j4bd9w5 +jn4x1m/PcN8OZvp/M7g7Orriv1m+YfkdzM4lBi9mfkaf224wvLmunbn/+bdU +itoMcI1vYuviL+2MdGCpYb0Z2kY8YW9nxrUcczGZhfYZXvvCNq6dCRX/Q9v1 +nxZ4fEE7c7nDMe3OIfSb8GVzPgxuZ75HDuAeqdEumYXzpeT+MEbyou8z69DH +dY+PVD3qxC7eUdg7Rd4V7K42PDvluzybrprK1BuiB2/v+lvqZxtTvXfNEhNH +tPfIqTPmZLQxWpqT94SuQisa7fuZ8aSNcTuofe3OPnRTikPX9JRfTLzOj2rl +q+h1Q1Xc1yf/Yh6nFyi4vUCbJvRy7iv9i+ky5OCIlA60XkdiQ9CsNmbC6ZXu +9bozwWeXVa/eGdfGRJhM5P7Ql19t0klqGcTm8NPBxWi/XX2SPz79zfwc/aX4 +zg50+MWAI7sXtTKmN/N+Kp9FHzH9Gmq0vJVZzib0dytDJ2QU9xrXo5XJzF9m +l9KMfpyfblU1uJX5b/L4FfWabmAnma2ffhi1MuLpthX6Gj+c925lvGZ8uBk6 +Fz1MvODQyiRW5L67E4n+M/1F7rdmEfPEM16l63F0t8nv97wxbGVUqv1GuT1A +i7v7lFZmsu/YOSmf0Amdpj9iufii6lW5v1ng/Lm13o+bREyef91pEzO0/1KD +zbY/RUz7t6vPQt3Qdofyun5oFTGWa3a131mHLjpqd7X5j4gJavUZ1PWQsM+F +jZrmdhv9n2XfPG+9VubjX8U1KW/RWQYvjpcV/mL0o94crJdzBy/0fLBx+3ER +M18x+66JITog0EV99GERc3g3P2NA5z7La3tzQMRUdffueXcluq3nkeabe0QM +3xu67kOX88G5+KZryfm6XUHreuc/dOTi25nyfEfKc7TtS7tjn1JETMGAsxfr +29HfIt06n8eKGP5pxkR3Nviqsnbn50QRM87IXXr9BDSlF3rOaOjdRWj55qKt +c7eLmEvmf1267kDHOVg8MogWMeLucAZdferEueJIEWNknZmWUop+LP1skPU2 +EbP43/CH9U3oe5+mxO3m6jN94oxGE00P8IkbZ6af3iRi3jzgJ0ToznOLh1pu +FDF9HH8zd+egPY7ryd3ZIGLcykqWdI1E57U8LBkQJmLi3Y7tcTuG7vtpS9aZ +UBFT9HzdtZT76OCacVGj14oY7mG1pv4jesOg9Op5m0XMhLd6XUxVPcFTpphr +fF4nYiIW/Ryx3hStH/74SDyX3xsfH7nfnYle8letJZErb8uKIxFd16Enigds +ESN+3Dso7OVrHUpSbqFXaSbtsAsRMSd/9xPV16KHFF4Y67RaxNRFNPY3lfMC +G/8zaxQTJGJ0ZAvs1g9B+zs1x80MFjFe4gU9tNMBzfMnV4qYhK4ruT90m790 +qRoXX9meCbfc9qLDRQVa9StEjIpG7/cpl9Hd3oS6/bNcxExO+qzyoQrttW4S +M3mJiNmqnTfKtB299Km5iY6/iOFX89freIO1b2W8G7lIxPzWXxZ11xZtu1PF +K86XG0+zbM50XYSm9IKG9yx3247+2E29ZswqEcOPFimn0dxk8+/6+SKmwSJ3 +0IcS9NwCw5dy80SMeDm5CT2SK811H248He+3Zn2vOWBaDz8kXjBAb90X5+zj +LWIq7VXvdZ2Dpvz0LHr7yW0Terf+80kT53LjqfPVnkfS0XccjU+t4bzj2U6r +DwXoqUcTvo/j8pM/28fX9CPacqOMfIg7N56+Hrlzvcpc8KOFV5iBs7jxVHxD +Qa+Ljvpt5yxi1r17/aLrTLTMrHOpk7j4spdelJ61Fv34YvLL6mncePoleuiR +ZHR6vz3++5y48XQ1P+NAd7N4bfJ+uogRDxe1aCrP0fWy3N888LFE58IHs0XM +6z/8Dz7ogZ6r+p515cbTLWcau05Fz958b9Mbzm4Km/vMWoF+9rNzlAIX356d +s9gj8eiT3NUQxeW3UM1o6YdLaL62vWZw4+k/nXtMq9DZP2xyUrj2nND72bX1 +v9Hj9+86OIiLb+OhkzV3+/sI+rpueBcVW7TT9/U7f7lw4yn/uOKHDp8+9Odo +zqaGg2cf2YY2/ny92143ERNw5lfEh1PoVyr8gpWIES/nlKAHVJ/LWTeZG08v +p5es/4GeFnzDKN+eq8/D1mELlOeDKb6z1YO7KWijhwW2nfeeytW3Xvdjp4aj +lZePtmjm+luD729LZwb9oKGl5gsXXoFf7nRBr2y2kvflwut/KJmX5Ium8WTC +0BtN44LR2r2U86IduPEm4FjM22j0iWVr5J0ncffLs7F9Yw6gE9Wie6235caj +7+vOGWWhs6fwAwJ3PzXznVCag76/YlTkNZabD65xrFzzGM23tgHnliuW/n2q +0W7iBTduPON/sPmOHrlts53yBK6/cLPJBdILwNTe08N/DlZQR/spxY0yXsbd +r2/X3Diljz5UNbR7ABffDqlCJ2dL9N95/AM3dz+fcPltswP6s9XBnz24/BZE +HQlJ8kT/bz2b64/3tyvZBKCXnK84ZcWlJ6XETefD0dRfdabNNYuJQzdF/HUe +O4Ubb2MdCozS0PLH9llJc/3Jq9TMs/Qieu/XcMaCu5+t66H9dc09dOpgtdND +xnLziZncgFWBpt+LLyU0atyqR+s0DG9XGcU9z1W9zFzQht68yqwobCQ3nmsV +jFNQ9gVfORBteoazypzzZaf6odv6PozO5tIzOpLs5zwcPSe9aNYAzpNrt7Y1 +j0cvED/wcPPtgSt3J7mgH+X26RfMeaufh56NL5r669EMrkOsQVcesj+tYcrN +dxqMJ8dEo7V0d0j148rz2qj3a6MDwv69XDqwNBOdcsppWtMI7n5z/rNscA5a +2nxGvwWcLX9UHOjzGK2cf7C7HZcft5F5w269QYe++VBxwEzErA459e+C7+ja +4fFpbZz3XNs/U0F6ITh9TZPdOxNuPOWH855oSq/QelmYsz6awjdsnNmtxQJN +7aWQZ3MsyQEt3/6z10wuvL6M4WgbT2FP4H+u8UcPe+i966wxN57GdMyLCUdT ++I3c05pRHJrye0j5SUxpKpra44Zjbt/gi2iKrzLuxLk+99DdYpmuo7n6buEn +9OVo6m891TdULqhHP1b6c8WUS890lp+/Qhv65LgDbCUXfvqB6Z2nlPzAlF7A +izH7nPuhqbw7+O0KxuiJV/4JXMKFPzlXNSdpPJr6c35qq5ONC5r2s9S95f4t +QFN5pfQfh8SsQVt4nYjcy8Wns/iq0rBo9APWI3f8cG485R/XE9FUX56fdpoF +Zwp7nXFIQZ8cNNVHAr8hqAi9RmPiqxNcfi/xPxi+Qa+cdqT2Ehe+rGnkZoXv +aCrvt1E6vU5LLQLT9aayTjHLuSc66W2mixSXXyNuutEySNiT21+XJVmgKb5F +Ng/8bBzQVoOmhm3l8rt108W2tx5o071SMalcfR+9c2h3jD/6ydOjFwZy4W/L +xugNCxf2a7vAy6WxaMrv721ek4NT0dRefQonve5zEU3xWaqYBN66i6b+MpNf +8CpHU/jV8bJJCvXo1tQuBhu58WbP06/DTrei/+kj567GxXdG4/m/zkqLwVRf +he53Z7b0RVP4hqQzH5KM0ZRfhVeJYTbj0RSffv/N3eqc0VRfE3y4CekCNF1v +PkdnjR62Bt2x9IzeKi6+jfzPzVFoqq9Dg418ghPR/w4tHRxvwT2vLNFo7pOJ +pv5YmdUZc+sG2u+G2+dSLr2Wzw19fYvQNB735DdkvEFTfZoG3ppw+hua+ptT +9slKZ6klYLofBLTs9W/pgaby7rAM70wahKb+khG6eJ+NBXrZll/v7/DjaY6L +QZ09mtqzrsMqJ8YDTf1Biv9Fzx9N4XW47lAahqbw1vd+hQTHCttT/p2SViqa +4lvHL8ddQFN9Juy4buZ7V9jZRekFCuVoSq9MNdbz9Hs0pffNed1X51Y09WeV +fQs2tyguBX/fHhFfws2Hjcqn9Urui6b8OGhaZtkYo2m/5yJuOlpng6b+tvUg +N+FwRlN8aa9b/IYtQN94v6xoqRE3nurUtJUGoak/vp7/aHdwFNqn8XzjGy4/ +v9Mv6Wkloik/fd6nXL51Ek3hLYZsn+x7A039eeayoNcKRWiqj9X8duXXaLpf +xn21l3P5hqb2PGNiltTyF03pFa7uZ5zcYxn4f/tBufH0knyezSC0ZDzlf24d +hab86o95+SHGHk3zIdsN+WHDPNDUnj43z3UrW4ZuqvQdtovLz8bOpGPBYWhK +7yC7dbRWrLCv89tljgi7kl9QvICm9m5RmNCscBdN9dFzivG208/QAyx7Jj7i ++qPJLs1+Lu/RBn+vxudy5XEqljrfIkJTfgK6fZ6QrOgPpvbePqOi0qYvml+t +1ebH03/+9a8bhqb48iu4G4oNmp4n6nrv3zfMGU39ScorwqBsPprmy/0PL80J +DkLT/dK62nW6VhSa+qMnN1zcSkBTecX73k+iqbz7j/dQ7nIDTell88vthWhK +r8yw3szlNVoynvqXFbR8RVN9qZzN8Uz+i6b8DP1+/KtNjwDwrHmL239x/cXB +bM/muoFoGm8WrVnfa9so9MWSWosccxGz5crCrGH2aGqvNO5xpWw2mvJze+yY +J8HL0NTfX4cNXKQVhqbr9fctlV+3dqOpvntLte72PSJsC/4Htwtoys/MqKLL +p++gB118+rOTu18F3r8y2eUZmvp7nCJ3R3mHpvjO8NvlRWiq78LdwXLjFZeD +6X7aUDIvqU4LTeOdfA9uwBiGpvYYNHNk3jAbNKVny2+nmI6m8cSnqktD8Hw0 +jUfhWk1hWkFo6u8HvV93u71V2NdT7h/zTUDT/bay5sLoLifRlJ8WfrvfdTTl +p4dftI9LIZrCm2Ssam55JWynBs9tyV/R1B/9jSb1G/8Xffuc2n0vztuXjzhf +130FmOajGef6TNw2EE3tkd8oUzVsFJr6W535V/8yOzTdb/4GV3UGz0bTeNL/ +2p19WsvQlJ71r9MGtzegd8bkzDfiyuNhnZjjuxtN/X3txsjpXY6gI1sCA+yH +cuMpdzs5fR5N4bOlZ611uYOm9MomMso/n6KpPr7xP6e9Q1N9dH2obj5ehKb2 +HKrcWVDXZSWYxhMHR65DaKFpvPWL4x5oh6EpvS1lNzeXjUN/Vb1tmsyFT+t5 +slfIdLRkPHXbm6U1H0399TX3OHt7tbB/PV/0xHcrmsrbu5/Loi4JaHpetJhr +9et0Bpqe11xT9WNdrqPpegx8qzbg5yM05Sdu0K/Lya/QdD2dWfTf5PFf0dG3 +ei0ew8VXeLL4dV0nmsbDDx+vBW7rvgpM9S1vnC5nPBBN18uglbuTykaiqb1t +L6w1DrFDa69YcaiK6+/zmubnac1GU3rh/HappWgq78G1Fg2+G9AuCXekFLnw +1/kfNHejx3/5FhLCrwf8Vup+JgVN7dHMb9g8j6by9NhUPfpnHpquRxN+u/JT +NJXHUfaSz/h3aLpe/e1Smut+oqk8+fe4f7KBYJqvPH13XTVRBU39qU7+3Oyl +vdB0PTUaHDtqpYO+rF1QtpZrr78OSZ9VhqDpeVJtWaxFjQm6YZKW5UkuvPbO +LZsujkFTfzXmX5izRVN9Wz1eru4+FU31MZV/HWMm2vGxtoIml554u7Y3uvfx +h2nvDUXMUhPHH4/90JTftS621qkr0FSf0asto1evRVN/554GSiduQtP9hn+c +1tyOpvrOLu+1sCEeTfXN7ybNSUZTfyvT5CaM6WgqL9ebWZ/TaIrvm8ennWaX +0VSfHetrymVvoak9lA+V61QWoKk8fW8+WppZgqbwhm9uZ2+oQtN4PabzUodj +LZquZ3vdLHvdj2hqL3f2SPyPH2iKz2/BPy/v/UaHDXsc6MbVV/CW7fqJsqvB +NF5tObZx5VIVNI3H8flB1616oak+094vkVHVQZ+fqVcZxaXHv01WY4Cm+rw9 +xDXxogma+uPjyQ61W8egqT+8XjbOyN0WTe3B/1xiOBVN8x1+OvXbFU39UbG4 +n2KxN5ri0/zW3TXVD03lMeimcHj1CjTV9yjT9vcT16KpvJP47Zib0PS+tmvQ ++/UN29CUni/XHXLi0VTewMulqrHJaCpPREX+bJ90NKUXJ7px1Ow0muI73Pv8 +Z9nLaLpez4w5blF5E03l5Z62N2UWoKm9CzfEPdpQgqb8Pj+0Vd2pCk39teFm +6FzdWmGL3qw4+aMBTeWV++v7494PNN0vNPS4GflvNNXHQFun6KWyQWDqb+a+ +E0qtVNARA5xM/x0nYvjlMtVe6Fnu45bJRYkYl+PGC2v6o6k/zOM3PBugKT8r ++BciTdBUXn63lvsYNLXXTkPpXYa2aBoPDk4Rlf+egqb2zPT/rFPsiqbzDK7v +ql2a6o12kA3tqs+Fv3+mInu1H5riqywu7Ji4Ak3j5btv/9prrkVT+KZuV+Ib +ItBUHzJmp17mbENTf+rOT8jj0VQevTX7V/okC3vE/h3XzdLRlJ/xVyJk5E6j +6X7jWLnGsfISmsLPaV2amHlT2PzbbhsKhB06dqaRUwmaroftXpODdavQVF/8 +49KPGmFnHDZXzG9AU3+6fIu7ofxAU3vmV2sfXvobTfGJXxeTXQOm9hJvJ1dB +0/XSaMvNODTQFF8nN1xc7I+m/KjxL5QYoKk82idezXY3QVN/N75fdtRwDJrS +s/pQ8Pk3i6b4pirmWhRPQVN5PIZe2JTqiqb+uGTqiUervdFUX2sDDqpP8kNT +fxG/7rsCTfnZz78OGIKuzi5l73Hp8bs1cyLQVN7s7yutY7ehqb7zuvtF+8Sj +KT9lZp6lZsloio9fDpdLR1N//7Jm4sLKU2iqz479Y85mXkLTeKp8dXjrhpto +au++VdwdpQBN7WHY1nuXbgma8jtGS7XiRyWa8sOfRpFfg6b6nuXNDRgNaLrf ++IV/yV76A035DUp522H1G03tseV2pb2qbDCY+kN8TVF8TVc0PS+lSd15eVED +TemdG3BVP6o/muK7zb+wZyBs8XEmJsIWH3cxGk31+enETsdiFk3XS9v9TYmp +U9AUn2JDcO1qVzS1p6aSv9EkbzT1BwMjn2BNPzTFxy+HNCxHU/hJy6co5oYI +2zV2vGtsBJrac/65kYd9tqEl5xXxr7vGo6m+xK/DJKOpPeN6qG+oPIqm+Pjb +SeYpNOXnzMw/qmGXhJ0T3DTb6SaazmsqTPhwVLcATek9v/r6849iNNVXfdUT +i/xKNKUn4jtEDZraS45/oG1AU3gN64vq1j/QlN7AORlzVX+jqT7N+Q3/MiGC +5h9nL3ZFU304/xttHaWBpvDcbCPavT+a8stvZzU0QNN4HT5wkVb7CDSNVzsn +ei0sHi3sg37OZ1NZNLVXZvSk1tVT0JTf6xljbSe5oik/9x+M2KXpjabylDcM +qmhYiKb1vndKWrq5y9E0XjQZqS2LDUFL5qv8gmAEmtLrvqKtw2wbmsqjx294 +iEdTfxtxvi6+MglN9Tm+rOpl5lE09TfHH4/1w06hKbxXz7srnS6hKbz/yGvX +dW+iKT+hbmdkmvLRNJ5sDznqmF+Mpt/LE/l/lWi6X2dc4x5YatCS+erzSCPr +BjS1B7+dSfUHmur7ad+A2zW/0NRetdbzFbNl1oKpvhrnzHKN6irszo1TD7tr +oCXzVf51/f5oyo/4db7BwjZ+O3RD8Qg0pcdPN1JHC5s/jSeIFbbHJCWPSVPQ +lN/FizqParqiKT9rY5o/N3gJm5uNWuQuREt+b3v4ZlPscjSFT//49JFPCJr6 +azZ/XFQEmvqD+DiZbWiKr8Qx+2TlHjT1t+oVJ39kJqEpvi9xh63DjqIpPx3n +90Y7nUJTfPx2dd1LaBrv+jaFaTXloqm9DNVXL8zPR1P40aMWn00sRlN69vyE +tBJN4d34BfUaNNWX3wG7XaoNaMpP0HWrippGNN3Ptrww0c3+hab6jOdfWJVZ +B6b8pPXre8m9K5rq+9y4bn8MNYTN9QaHdm005fdxxK/44sFouh5epn57mToC +TfF9yvtPP2g0msrT9vb5ykksmtJTlC25rjkFTfWtqX9P5uMMNOXHwO66Y64X +muqb7w6xC9HUHyZsS6/1WY6m/LhmHjAyD0HTeZ78dkW5CDTlN/DT5tuVMWjK +b0TXdYpZe9CS+arxctewJDTV92GnBYedjqKpvGf440ZOoak84teRs9EU38ML +7Ib8XDTF95ybjibmoyXzVX7CUYym8ojU9TysK9EUnj8tSLUGTeE13JW/1HxA +U30OXPfXIrtR2GZJLZuifqGpPlj+QACZUDCVd/rLavWhXdEU37z2Z3Pb1dE0 +H1uu/ehksTaayhtuc/tH6mC0ZL4675J10Ag05efgJm5GOlrY/Osomiya6vPq +nX1aHyejKT/367YtzJ0h7HLZjWdjvYT9Tj+o1WchmtJrsltia74cTeFllszZ +JReClsxX+Q2XG9GS+WqWvW5WDJrqcwT/QtkeYY/7bHrJKQktma+qGPzRPYqm ++vYa3s+hKQtN+fGf3n1vfjaa0gtdJf8qMRdN8W3nbyj5aIqPPy3QuhhN9XWC +/0G/Ek3hLze/kKmtRlN6dzVKHbM/CPspN1xENaKpPPxpo+6/0FSfjevOGQ2V +WQ+m/PDbkduV0RSfWk7S7WJ1tGS++ipWMU0bTfkd1rHFNWgwmu4HVv1DD08a +gab0xMcljUZTfB78cQoMmsIvjpy9IXcyWjJf5R5XYmegKXzUXVu1+V5oSm// +f5Ye5gvRkvVWOeN0ueVoCn9h8IAvlcFoaq88e03LrI3C5k+TCYtBU3mqt0sV +Ou1BU3ri40iThN3BH1eYhqbycHeTk/lZaMoPv1yamI2WzFf5ASMXTelZ8gse ++WjJfJX/wbYYTf2J345WW4Gm/PhlH1mYXY2WrLfyB+59QFN+t7Rsb3VvRFN+ +43tF2A79hab13lT+QCvpDWAaT87NXlpRrIym/PI/16apoyXrrcmuy4K0hf0y +x+HSpMFoKu+nV+P+aI5AS+arHWYOHy3RVF5FnSF7cxk01ZcmP2JMRlN59Of3 +GDx/BprCj9qssMrcC035FR83vRBN+XHljyMOQFP4+e/eO2YFoym9QO52ErYR +LZmvGpTVOsWgJeflOxQY6e1BS+arS3OCmw6gqb1O7Th/Oz8NLZmvnjqueCBL +2A+LuA6RjabyPucfaHPRVF/i497y0ZRfEX8czGM01Yecy8oN2RVoyg//OBtV +jZast/IHfn5AU3642YbH0EZhs+Vcj2hDU3rT+QMDpcPA1F7zNIdbpimjKfzy +0QMjg9TRlF64R+/CSdpoyXx1vYpG78FoKm/SQel5H4ejqT9k5opO5lqiaT2U +X06PZdCS/QJ/aq3nT0ZTfst1KqPNZ6Apv++YolI5LzTll99uWuWLpvzK8C98 +BKApvu7HTp0NC0ZTeB3+hfaNaCrPiPf7bfVi0JL5qsLOXU1xwnYcsqki/wCa ++jP/c/6BNDTVl/8y7l8WmuojlH9gyUZTfrednvlHNRdN4RP5DWP30NRfj3+1 +2Zv9GE3luaw28lVUhbDvmhgOnl2NpvSeuvRfNfQDmsor/hzFd2E37usiW9KG +pvj47YRp0uFgqm8VbroRpCxsbVF97SR1NJWHPy6kt7awrcY8Cf6oj6b2mOx5 +/3bucDTl12NDrmKcJVoyXz10wXU+g6b6WHvzxGHzyWjJfJU/rnIGmvKzjz/O +yhNN+UnXjd6Q5Yum+PjljrAAYectWKU2PRhN+S3Z4uehtxFN4auPeaY3RaMl +89X86V/y49BUnvb3Ey0PHBC2cpexkcvS0FTePvyENAstma/yC+rZaIpPfBx2 +jrDtd6lmZt9DU3r8zy1Rj4XtV9xqPbsCTfURxB/oVo2m9PjXxdvr0VSeeNMq +rZLvaIrvyIzHC9Pa0JL5atCds0HSG8GS+eo/V1snKaMl662XT9v2VkdT+JcV +abs+9kPTeP9JlFCRq4+m+PjtHnHD0VQfClx3mG+JpvQ0vUIumTNoqg/9MP8/ +cpPRkvnqYR+HKhc0xcefJpnlKWzX6imvwnyFPf/v+MHTA9CU3iq9Uav0gtGU +X+5p5UZTuLB3++rIFkSjqb4Pb1V3OhCHpvzw09FlB9AUX04BN+FIQ0u+Z8Uv +mGahqTzPuzQE115ES9Zb+Q3rOWhK7+eUp4rR99CS9daAB66zH6Opv/fcffPw +0Ao05Xcgf2DmGzTlV3wcXz2awrPfD21I+46m/sovhwW1oSm/88xi1OykIwS9 +3DXMo7cymupjw5rA9I890ZL56v5FX3L7oSm/SVe8LOP00ZReZqVz5PzhaMl6 +a+ukQnNLNNX3/T5WGvIMmsLzp91XOaCpPO+89DOzXNCUX/7nuDBPNJVXKkVt +3HRfYXfnD9QJQFN8/HEQTWuEPULqm1ZBOJrqa9yA/xYeiEZL5qsTnp9dFoeW +rLcu5G4oB4TNnyarlibs0BPXdtVmoim9GH5D8kW0ZL764ahudA5aMl/lhovZ +99CS+erQ3ZeGPkZT+LtTN/9pL0dL5qsBax1K3qApfO3ugL1p9Wgq77ez818F +fRd2Z8mswXZtaIpP/Lk96U2C1uY/h6eEpviMzC1kb/ZES9ZbZxo5xfVDU3j+ +cWW+PloyX03QeGs+HE3h+eO+5C3RdL3xrwNXjUdTfqLamm9nOaCpPfdpfVQM +dxF2ulW163RPYV/wfnZYzxdN6eXxx4X7oyl8Scot04I1wuZfhzoQjqb4+OXS +ZdFoCs9/7WJcHJrqW5lf8DiApvj6TNyWXpuKlsxX+Q2nmWgKb8m/MHcRTe1p +n7E4cnYOmuJze+BdOPQemuITf06pSNhB/OdWytEUXyR/4PsbtGS9dZppU1A9 +muI7snzwOLvvwj4X2zemdxua4pvHn0cgFQmm8OLvHcqhKb8r+QVTJTTFxy8n +X1AVtvi8g57Cljv1JW2LJpquN/606s990ZRf8XnYumh6H098nsIgNL3vOoD/ +Xp0hWrIfMPyJZ7wxmtIzVX0c8csUTeURn9dgIWyG/17RWDTVN/c0/nXUeDSl +Jz7vewKa4qvgz4NwQFN8c/jvuU5DU3ziz8U5oym+5fznxNzQFL6ZP2/CQ9ji +zxHNFbbMxPheEQuEvZM/z3yRsPnXAVz80ZRffrvAjZVoCq8XvSFr4Bphn+wV +UrJrnbD5r922hAlb/D2qSGGPf+Bn8yBK2OLz2negqTz8cQvJscIu5zdM7hO2 +t5Lzk4BENKVXlzxFVH4QLVkv5M/7SEVT+Kac8ezJY8JeP23sou6ZwhafR39G +2OLzRC4Iuxv/PcoraLoeEmMH/bp8A03hdfh/t4UtPq/krrCH898buy9s/nVP +zyJhi8/bL0VTfYvPQylHU3h+Orn/ubCf9mjT63wtbK/0Jrslb4X9lj9v5T2a +8rP03oc9Yz+hKXzjzLrL6d+EHcp/T6BZ2OLzXFqFHSP/dFB1u7DV+AVpqc2C +TjB4sOKCnLD5r1VpKQlb/D05VWEb8y8U9BD2Jf57CZrCtuJfmO4rbPH3jHWF +PaXv0cD4QcIuO3Uo4dcQYYvPuzEWdm1RfE2RqbD57UAWFsIWfw9irLDF5+mM +F7b4e7MThM0f5/7CXtj8ca8TpglbfF6Ps7D542J6uQk7vdbHOMJD2OLvXcwR +tvg8oAXCFn9PfZGw8wZOzRvoL+zJlya937VS2KX8eUNBwhZ/zm+dsMWf+woT +9mL+ex6Rwv7Kn2cUJexgfkPqDmF3ZOg0BMQKm3+du2KvsPnt3uMThS3+HuRB +YfflHhe7pwpb/L2SY8I25M9jOinsCwfbPk07I+yWupCNkef+3/8HfiuVeg== + + "]]}}, Frame -> False, + PlotRange -> {{0., 93.17647058823529}, {0., 72.}}, + ImageSize -> {93.17647058823529, 72.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + InsetBox[ + FormBox[ + FrameBox[ + StyleBox[ + StyleBox[ + TagBox[ + "\"\[ScriptCapitalS]\[ScriptC]\[ScriptI]\[ScriptCapitalD]\ +\[ScriptR]\[ScriptA]\[ScriptW]\"", DisplayForm], { + FontFamily -> "Times", FontSize -> 14.5, FontSlant -> Plain, + FontTracking -> "Extended", FontVariations -> {}, + FontWeight -> Bold, ShowAutoStyles -> False, + SingleLetterItalics -> False}, StripOnInput -> False], + ShowContents -> False, StripOnInput -> False], Background -> + None, FrameStyle -> None, FrameMargins -> {{0, 0}, {0, 0}}, + RoundingRadius -> {0, 0}, ContentPadding -> False, + StripOnInput -> False], TraditionalForm], {4.658823529411765, + 64.8}, {-1, 1}, Automatic, {1, 0}]}, { + InsetBox[ + FormBox[ + FrameBox[ + StyleBox[ + TagBox[ + "\"\[ScriptCapitalS]\[ScriptC]\[ScriptI]\[ScriptCapitalD]\ +\[ScriptR]\[ScriptA]\[ScriptW]\"", DisplayForm], { + FontFamily -> "Times", FontSize -> 14.5, FontSlant -> Plain, + FontTracking -> "Extended", FontVariations -> {}, FontWeight -> + Bold, ShowAutoStyles -> False, SingleLetterItalics -> False}, + StripOnInput -> False], Background -> None, FrameStyle -> + None, FrameMargins -> {{0, 0}, {0, 0}}, + RoundingRadius -> {0, 0}, ContentPadding -> False, + StripOnInput -> False], TraditionalForm], {4.658823529411765, + 64.8}, {-1, 1}, Automatic, {1, 0}]}}, Frame -> False, + PlotRange -> {{0., 93.1764705882353}, {0., 72.}}, + ImageSize -> {93.1764705882353, 72.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + GraphicsBox[{}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}, { + FaceForm[None], + RectangleBox[{-1., -1.}, {94.1764705882353, 73.}], + InsetBox[ + GraphicsBox[{{ + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 0.}, {0., 72.}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{}, {}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{93.1764705882353, 0.}, {93.1764705882353, 72.}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{}, {}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 0.}, {93.1764705882353, 0.}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{}, {}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 72.}, {93.1764705882353, 72.}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{}, {}}]}, { + RGBColor[0.333333, 0.333333, 0.333333], + AbsoluteThickness[1], + AbsoluteDashing[{}], + CapForm[None], + JoinForm[{"Miter", 3.25}]}}, Frame -> False, + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}], {0, 0}, {0, 0}]}}, {}}, { + PlotRange -> {{-1., 94.1764705882353}, {-1., 73.}}, + ImageSize -> {95.1764705882353, 74.}, AspectRatio -> 0.7775030902348578, + Frame -> False, Background -> None, DisplayFunction -> Identity}]}, + "RowDefault"], + Background->GrayLevel[0.85], + FrameMargins->10, + FrameStyle->None, + StripOnInput->False]], "Print", + CellChangeTimes->{3.666105631737959*^9, 3.666355903266961*^9, + 3.666428210439102*^9, 3.6673057658802643`*^9, 3.669468669939788*^9, + 3.669469206229609*^9, 3.677416365371888*^9, 3.67741644799282*^9}] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"DefineStyle", "[", + RowBox[{"\"\\"", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"DataLine", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"LineDashing", "\[Rule]", "3"}], ",", + RowBox[{"LineColor", "\[Rule]", "Red"}]}], "}"}]}], ",", + RowBox[{"DataSymbol", "\[Rule]", + RowBox[{"{", + RowBox[{"Show", "\[Rule]", "False"}], "}"}]}]}], "}"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DefineStyle", "[", + RowBox[{"\"\\"", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"DataLine", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"LineDashing", "\[Rule]", "3"}], ",", + RowBox[{"LineColor", "\[Rule]", "Blue"}]}], "}"}]}], ",", + RowBox[{"DataSymbol", "\[Rule]", + RowBox[{"{", + RowBox[{"Show", "\[Rule]", "False"}], "}"}]}]}], "}"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DefineStyle", "[", + RowBox[{"\"\\"", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"DataLine", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"LineColor", "\[Rule]", "Orange"}], ",", + RowBox[{"LineThickness", "\[Rule]", "2.5"}]}], "}"}]}], ",", + RowBox[{"DataSymbol", "\[Rule]", + RowBox[{"{", + RowBox[{"Show", "\[Rule]", "False"}], "}"}]}]}], "}"}]}], "]"}], + ";"}]}], "Input", + CellChangeTimes->{{3.6663576921602573`*^9, 3.666357749504216*^9}, { + 3.6663577822973347`*^9, 3.666357784728098*^9}, {3.666357948376087*^9, + 3.666357994504772*^9}, {3.6663580788496447`*^9, 3.6663580802246323`*^9}, { + 3.666358166673134*^9, 3.66635816828092*^9}, {3.6663582500493298`*^9, + 3.666358253224718*^9}, {3.666358318137806*^9, 3.666358322769499*^9}, { + 3.666358690530039*^9, 3.6663586943585997`*^9}, {3.6663587372104816`*^9, + 3.6663587609453917`*^9}, {3.666358806088179*^9, 3.666358845090521*^9}, { + 3.6663589696496067`*^9, 3.666359010371131*^9}, {3.666359066908009*^9, + 3.66635909969907*^9}}], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Diagram", "=", + RowBox[{"Figure", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Multipanel", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"FigurePanel", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{"(*", " ", "Plots", " ", "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"FigGraphics", "[", "B1", "]"}], ";"}], + "\[IndentingNewLine]", "\[IndentingNewLine]", "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"1", ",", "1"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"YTicks", "\[Rule]", + RowBox[{"{", + RowBox[{"{", + RowBox[{"0", ",", "\"\\""}], "}"}], "}"}]}]}], + "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]", + RowBox[{"FigurePanel", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{"(*", " ", "Plots", " ", "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"FigGraphics", "[", "B2", "]"}], ";"}], + "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"YTicks", "\[Rule]", + RowBox[{"{", + RowBox[{"{", + RowBox[{"0", ",", "\"\\""}], "}"}], "}"}]}]}], + "\[IndentingNewLine]", "]"}], ";"}], "\[IndentingNewLine]", "}"}], + ",", "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"(*", " ", "legend", " ", "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DataLegend", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Scaled", "[", + RowBox[{"{", + RowBox[{"0.185", ",", + RowBox[{"-", "0.02"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\\"", ",", + RowBox[{"Row", "[", + RowBox[{"{", + RowBox[{"Subscript", "[", + RowBox[{ + RowBox[{"textit", "[", "\"\\"", "]"}], ",", + "\"\<0\>\""}], "]"}], "}"}], "]"}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"\"\\"", ",", + RowBox[{"Row", "[", + RowBox[{"{", + RowBox[{"Subscript", "[", + RowBox[{ + RowBox[{"textit", "[", "\"\\"", "]"}], ",", + "\"\<1\>\""}], "]"}], "}"}], "]"}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"\"\\"", ",", + RowBox[{"Row", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"Subsuperscript", "[", + RowBox[{ + RowBox[{"textit", "[", "\"\\"", "]"}], ",", "\"\<1\>\"", + ",", "\"\<*\>\""}], "]"}], ",", + RowBox[{"Subscript", "[", + RowBox[{ + RowBox[{"textit", "[", "\"\\"", "]"}], ",", + "\"\<0\>\""}], "]"}]}], "}"}], "]"}]}], "}"}]}], + "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", + RowBox[{"Width", "\[Rule]", "18"}], ",", "\[IndentingNewLine]", + RowBox[{"RowLimit", "\[Rule]", "1"}]}], "\[IndentingNewLine]", "]"}], + ";", "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"Dimensions", "\[Rule]", + RowBox[{"{", + RowBox[{"2", ",", "1"}], "}"}]}]}], ",", "\[IndentingNewLine]", + RowBox[{"XPlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.35"}], ",", "1.35"}], "}"}]}], ",", + RowBox[{"XTicks", "\[Rule]", "None"}], ",", "\[IndentingNewLine]", + RowBox[{"YPlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.28"}], ",", "0.28"}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"FontSize", "\[Rule]", "15"}], ",", "\[IndentingNewLine]", + RowBox[{"PanelLetterFontSize", "\[Rule]", "15"}], ",", + RowBox[{"PanelLetterPosition", "\[Rule]", + RowBox[{"{", + RowBox[{"TopLeft", ",", "14"}], "}"}]}]}], "\[IndentingNewLine]", + "]"}], ",", "\[IndentingNewLine]", + RowBox[{"CanvasSize", "\[Rule]", + RowBox[{"{", + RowBox[{"4", ",", + RowBox[{"2", "*", + RowBox[{"(", + RowBox[{"0.28", "/", "1.35"}], ")"}], "*", "4"}]}], "}"}]}], ",", + RowBox[{"CanvasFrame", "\[Rule]", "False"}], ",", + RowBox[{"CanvasMargin", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0.35", ",", "0.1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.42", ",", "0.1"}], "}"}]}], "}"}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Input", + CellChangeTimes->CompressedData[" +1:eJwdzltIUwEcBvB5mxkDaUgoaV5CbQciUHHarJwKWtvMHWU1UFuGM0OTHAzF +vOCVkpwPI5YDFZdiXiaaOS+FGMsRbSnDBy2LfPCCqzVkO7EeDp3vPPz58b18 +3z++oo6sDORwOARzsN0i/xYsd4mFwgYPnJQu/4XHCSo/LO/vp+FJMi8ghHH3 ++kMBtDocBCRuiy7Dpq4rGXBCILjKqtRkw7M+twSSMUNS+O/tzB04cG61DBoo +l5rtexZUBauKjfVQWmLRwHKuuRlSIV9a4OJ6agc0UT491HlMZpjS8mIWJhT8 +XoJz+ZeWoUJ72g4frf5yQH1uxVe4IPjMKqdoCvpWtH64+XyEhnHEzUAuo+pU +bTqU8UWZsHTHmge3+TbW3YhGCaRtUzJ4oVojh4a0bAUsqikog/a9xyqos4w9 +gOsNn6qh0fuqFva4FzVQm5/5BF6UzLfBhftnuuGKM0PP5sLEl5Akt4fZ3o01 +M0y5Z3gHE6/FfoBJU0o7HOps3YPqUOk+u2uMywplzBOKbsDI4GQZPH8rtQia +lJwSGD2So4Q/6vqmt0jmn8HIOUg4195Dfxb3I7yb02z1KlxiZ5NnE46rf57A +KFuSFx4cHQb5GOnvf1h5+/NhcHTHz4PRbn57jNol7k17/RRGhZN9MOL4jQ7+ +BzDfNCI= + "]], + +Cell[BoxData[ + GraphicsBox[{{{ + {FaceForm[None], + RectangleBox[{-25.2, -30.24}, {295.2, 126.66666666666669`}]}, InsetBox[ + GraphicsBox[{}, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, + 126.66666666666669`}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], + RectangleBox[{0., 59.733333333333334`}, {288., 119.46666666666668`}]}, + InsetBox[ + GraphicsBox[GeometricTransformationBox[{ + {Dashing[{Small, Small}], LineBox[{{-1.35, 0}, {1.35, 0}}]}, {{}, {}, + {GrayLevel[0], Thickness[0.002], Opacity[1.], + LineBox[CompressedData[" +1:eJwUmnc81d8fx21SZFWSihSSpJIkdYSskCQhUVZCRlS+EUKRnays7L0yL3e8 +P8nMCNl777233/3df+7j9Tjnc96v9/t87nk/z+NxeQ2tNUyoKCgoaOkpKP7/ +bZQTOL+/T49pt+2TP4CwgJP8N3foMcnZE1J/dwFx26Trvd2gx9T4XxjdWgf0 +n/r1bz9X6DHfEi69ezOA2kTLa2YW6LGe0MqkrR5AV1gfUAjO0mMtI9w6qjWA +AhZ7xY0m6TGtL6kC8j8BzTSZv4oZpcciKqyeTAQDUsxbT+gcpMcUlx3brtsD +Sgry6OLoo8eWbJ+w3bgPiMqOlVW9izze/v704jlA+g9jFHza6DE9B4dEkw0S +wl+94FzZTI8VGT3tjaokIU4OXAHlX3qsbKwsIjqQhOxX5KalaumxHeKwtLUW +CYkU6mvn/ybn80C2IKmViLxDpv3ngB7zUvpxhjuAiMbfOFScJ9BjdXKeJZ/l +iChWPOhKbAE9Fu+x9vt5AgHtHj39sjuXHrs94iI/oUJAuusZP45m0WNbjsGH +ApbwiB1XccgviR5jeNjy3PoKHtmEa8hWx9FjAxBz63ddKapz6P+POoYemzjz +fcnCqBR9vrE59l8oPSbBE8ux9qkEbZQK/zL1pMca/mPK+hFXjDQjS9bj3Okx +y9Gpy0o8xeino7xIrws9Vu2EVKsji5C51LPIhw70GEnt9J3AL4Wol/jtjfRL +eqxrbOLEU5l8VIZtnee6R491NPkE5b/JRKfiPJ89UqDHzN6xHLbmyUCOHznC +AmXpMan59AW7qjQkJiNCQy9FrrdTtuyxgyko5ffzvmVhegwreWl+0CoO+VZW +B9Uz02OxYtYG7yQ8UZfAnfhiRnpM1HI0IqTZFQl+KfkZR0fOV/b62u4/e1Rx +L73xzR4dhnHDU1Odh7DX6MN8ao4O42mQfh7O4Au23WreVvV0WOn3868+eCcA +JlX1XbuGDpubW8+mYEkC5hiUJlNBh+2kWbzhCUqG9Gei1UeJdJjzr2Ppt3zS +YGSUlQ4y6TChnCPyyso5oLXQ8vGwLx02DAfNnUYKIPGB6tdNTzqM6oNGmbZz +ISzlVcQOu9Nh3ImRfcBRBAFviqDYkQ5TEva80CBeDH1tIn/j3tFhY3rjP+XL +ikFYIqXPx44c30shZ0YJB9VbYbsGFnTY55QsY3PVEjiqx8Kk/IIOs/NSespZ +UwImRC9uMSM6zCG7WjNWuhSoXP+7yfCEDrt6RpNq6Qwe1AcXlZe06LA/6Zfu +h/nhIUbGXLdHgw6b8jNrqF/Gw03aJ//lKtNh3dMXtbLyCOBt+s8rQp4OU2Yw +T7t+kAgdVffCPWTosHduD2uOGBCB/3x5itVtOuzMe8J1yWwi2HtLFWtL0mFv +A4/cCN8gQtl0QaWMOB3mrf6+je82CVhVL7YJXyGPL0f3NzmT4Fl20uhRETrs +yZXwmbBSEmQfPrVKIUSHve78amC5SIIdm1Ca6XN02HKnuqk8H4ByMzNHKy8d +5vQ9YfukOkD4VU8+OEmHcdzNmJh+BzAevH8l7TgdhpZoKtMiAMTX3sl8O0KH +PTRo2nmAA/B4vPDgAysdRiEQWdXfCNCMM3v+gokOi5I9cfX+CAAP16DNgwN0 +WMyv7lPRSwBpQ4aNrrR02MW0GDfNbYArGSOXcinpsBdsAY4B+wAEO9OA/l1a +zJilwlaVrO9KTcwxb9FiLRvuVv5bAA005mq312ix58ducD9cBNCun856tUSL +7VcYVUYNAwyGvGKKnqPFLs6a6rxqAjDXn7esm6LFpJdlDatKAZb5beu2x2ix +Pj7EnP0DwGl+6cKFYVoMi3oldM4VgA5n76PbT4vt/BXmu6wHEOC6NvWlmxY7 +mO1O3X4VgFPJQbmknRZ7EvDKnpseIJ51K23iHy2mvspMoG8jQUH8rplCHS3W +4fB+ZdqUBLcsXKrfVtNiVzSoHFcESVB5lVIwuZwWo/jsR1k2RoTOcppxGiIt +xnnQvqbpEREM/T7Li5XQYj1fNQ0E6Ykw84gh2aiQFhtrN4u0LCDA3thBk7Is +WizIjJNqlooAnjl+5YtptJjg5gs2mUQ8sDgcPsubTIsVNbQGFt3BA98B9mGX +GFqM9wYp45ptKShe4Hp+K4AW2zBsxIkm4qBpORKz9CH7P9lfwiuIA13CSZ4o +T1psKnTzXk5qMbxS5e3fciH7G73GPfGjCIKsBZ/ibGgxsx/WpYNmBdCTL65z +VYMWEz19UKhsNhtMnHA4QzXyfgVzGHVHZsGcnCRnkDK5HnSYaf3dTKBsu9W+ +IEOLeZtwKOz4pQH/htyj7Ku0mFdzquHYSgLYSD18cP4ILSZVGavcEBQI3H/O +d1qw0mISFKbjF9V9oPoxxfNsJlosVvm4L8u7T3DaLsvmKh3ZP/805/B/dtCQ +Rh94a50Ge6bFsGr10REJHyM0POikwTqaA+N1OWNQR2KQVnArDYaxnDMLdYhF +Hlde9rU10WA7Ivdoq4biULfq0bknf2gwvSX8P3xOIvL2sGEyxdNgLPeCLfL4 +09HE4lmV99E0GKnpofRx0TwU7LL9j/CdBpO60EjpXZOHpJman+yH0GCWrVna +r5/lozBBFwsPfxqM+8Nt0P5cgOQNOr39XWiw263CPjq5RWhpJoetyZEGM/R8 +hj2/Woxi3n+OYHegwap3d68r5Rej1ZCr6eE2NNjE4X1D2zQcSqzzq4l/ToOZ +ylXaG7wqReq6xg9Gn5LXdz+UGNZainbGJTsFdGmwoSv1mZcl8egh9cREpgYN +xpk75fVoA4/2Akk282o0WKNYd0nFAwJKPxWycfkeDdbyaMjNOIWAqCRlGIpl +aTDB3rviFApElF3FGbiJaLCGpc3I8UAi0n00f0xKigZzy9H91txGRHTDFT+c +JWgwq1GlnGJOEvppEyXwS4wGk/n4kcmf3J/19l7nUF+mwTwEKh+rkvs3g6/S +dfmLNFjwAl3FbAUJFRznAa/zNNgYtzmX2ToJPUtZk689R4NpRMlnFp4FtFeI +SyHw0mBiNwNTuB4Aiix/z5B9kqztU+o9HQBJ/JN6+eM42Q+PQe9aBJlfBvdq +Ao+Q4/vfe2aIA2S/gAm5sZL9a8dmVDQCYt1387FjosFwy7MD3COAspnuzhgf +oMGE/pDmjJcAqXDTq2rRkuvfyf41chvQlFBNlgIlDfa5EHsAZJ7yvOHDfGOX +Gns2mOz1dw/QWUVVa6FNaozZufFJ3QagMq3DjSdWqTFhaXMomgVkYNIkyrRI +jdXlR70J7AW0Y/ft694MNVbQLMesVw0owu3R0vwENZa74TPGnQ3o+tdjDwdH +qLFD8gaC7f6AWn505jcPUGPenytrAswBvc6O5CjvocYYi7l8Ve4AOkx8+qaw +gxoTV+beZmcHlFl7ui25hawfTFrM9pOQctegeHgjNRac9297IIWExicSwr7U +UWNqMccC1s1J6AydoI5lOTU29jBCqHCIiDCOqZKnGDX2Njy00TaMiJ7yZXLd +J1Bj7z9s/nQivw/h0qI9lwuoMcuht7G53wlI/P6SFF8uNeakUoNWbxLQv6cF +0RyZ1JiQfZAkdOIRs6OEwXoCNRb1kkPxDAMeZX7Zgokf1BjV/tfInvBSpBRO +4OmKpMZMzWsq9c+VIo9C6SHCN2rMvpE3lOZKCdqaVzRxc6fG4u01hvZPFKPw +PcZKOxdyfqC1etKvCF1jquc3caTGbAIDLqVuFSIboQcTCnbU2N64TJh+bQEa +NdaxYDIi+zNVrdq/m4fc7E7U7emT/Y9c+CoQ/RPxuPUKL+hSY0XnWOg8FnOR +7o/nc80a1JgcR1Zg4Nkc1Nj50jZchrwfzNkbZ63SEEHt/Tu+M9TYxLHE8f7o +CBRcfldQ9xQ1JqrPfsMuPwy9kmTtDOSixgQ/LFzEKoLRKf5UyT02amyAOszj +Xrkfctlt3e2gpsYwAXap+8JmSCbzsof/KBVW53n6hm1WMHCd2RWrGKTChC86 +pt+KDIPlsOrR7V4qrNw68ljVpwhIdDdQeNlGha0FlZiUCsQC7RM/RrkqKmxq +xkT4YGsSVB+YDNxMpcLeO57ytVTKhViXgjuiSVTY7XHyGTGTC/+tuiyZxlFh +A7Qu+m99f4LQ4FHNlu9UmPgFpq/1FXngg5M7luNNhWEWsqKFnIVgLMJSPfqZ +CguMn5l5nFwIUondDtzuVJjmW43uHdEimAl43fXFkQr7+ITxOOWtYlB7ERtt +bEmFjbjcXl69WAL8vRZqkWZUWAGLiFx6XAnsaVzfbzKmwoxpl+f+sZZCzu2G +Z+gpFXam3OOf0ngpeBV8Z32rQ4XB+zx/BxU8PBMyKct8RIUdKvVOH8wi97ej +O3xcalSY6dBEwUUTAkz4VLWoK1Nhrr7l99dLCfCL8tsnT3kqrITnbUr1ISJE +vNMXJ8lQYR5+o69CdYnwevb8+MptKoz50drQo0QiKButhl24SYX9bKJu25kk +wplOTNHwOhUWmqqU8vECCf6VP07/e4kKE6gtuEMZT4IYPLNY4QUqDB8d81Kw +mwRmeRXECAEqzO7bfpHqYTLPpDkpuPJRYaOTfvlmtwF2flxtMjlNru8ro1Jb +M4DK0CndeyeosEf0Nzef+wEE+sWNiB4j7w+vr+3VLABdD22ro+xUGGeq++ZA +FcBZx8Mb28xUGM6vS8q0F2DOtvLjICMVVh33hQizADizDwer6KgwrWTdlqkN +ADcDsZBMKirMyEvr5+gegIrW9KmgPUpMNZ1FL4fMU0dV41PfbVFifGJ/8xXI +/DUgq3Pl6Roldt4o0DqHzFPpkiwEmSVKrLJ95uTEEID95aq7gnOUWPJY29mV +BoDbgs5/maYoMZ918V9thQAMp6/pLI9SYvuUJnTBYWT+OzIz1DFIiZXdcukV +tQeIOpRgSeqlxB6eiaHJvwdgSq27ltBJibW2jTLxngIQ3WJx/dJK1hJv9N2m +SbC1UHXAuokSC06+crE/nwTl487fNOspMW7S24/S70jg33ftpGQNJXZJKeRy +7jUSaLfOJJ+uoMReBMkNSsyTealMt3SKQInV0cVU/n5IhKISVrlGHCXW9vy1 +eP8eAVxzq+sLCygx2Xb2o/JJBOCIER90zaTE3OX8mC+P4KEveNbcNJUSM5SP +cGpxwkOqT+LKvURKbKK+ep+SFQ9S/7ExHIuixBpuMWzeES4FY805kSwfSox4 +jWnQQhQHIveScEGelJgYj/aGTUoxbNzRk3Fwp8Tej3wz/cFVDL6X/jySdaTE +XA+W3GtZLYQCxmSnTnNKrKqU11/WLR+cKZ/SgSklpn+SR0KsNw8UN9gDEw0p +sa2ySPEj1/KgZ/RjgrUuJXb0am3dkZ5coPn19A+tMiVmXyC3rsmRCY/eHeG8 +cp68f8W81e8pY0HmKu8foXPk+r12VlZeiAKReWEnPl5KLDGoU46z8zswvJAb +4DhOiendqoo5/OMblGrZpa4zUGKBEUVShoJOcEq8SYI4QYFJMAs/oboWhBiX +eqYKRygwnmNtQdKPQtB61kRU9gAFph11PkTwdThqPEdBGdtBgXEmyuxSx8Yg +tyOXatyqKTBcscVRCYMkNLbiq6OYSoG9PlWRpfUiFzXnhh+8k0iBcdHY5Y6z +/0RgmUi8EUuBpa5SDtYRf6LwETzvhXAK7G2d7vz5A/lIuWVqksmLAis1cJs2 +dCxE4oFrkXQeFFjfn4uFlYeLEJ8Kldq+CwX2zPQPd3FsEdr5fTxv4R05np1I +0nBxMcrJV3z/7wXZzzv7NxwlJSjKWlO4zogCGzvx9LHbpVLkdeFZX7kBBcbg +tF7YHleKDBPeyRQ9psAUG9Ppl/7DIzUD95Xsh+R426kXQ/rx6OaJgOSU+xTY +QIXlzR5pAuL4lsz4XYECMz31Y+j4GgFR3M8jfJWlwLxGB86sKBHRLCPJyhtR +YFGdu1E3vhNRV2UNj/tNsr93DVO9w0RU6dba7HidAit38DFoPU9CebcHPeyv +UmC+9+MOHLEgoR9bM+KvLpHj6ZgWBJH7uW/RxoTJBQrs1Jf8STlyv3d4TROp +L0B+Xspg+QwboNiQ49FRfBQYzS1DK7FbgKpwIj+6TlNgZ3stPGmNAc11y8Zx +clNgC3bH1gI/Azq6r52gxUneX+4OuuZEQLfPWCUFc5D9ukZFlpMAmdx1T2lm +ocBc1fWFTVoA+ZqFp7EwkeMpRFfljgIq8MnKUDtAgXngK9iSyDzVk12W5UtL +fh+i3JSlyTxF3dye84eSAosY3JL5SOapR1OdRqw7+1Cmu/XiBVknitKY+a3s +g14HLXFpC9DyWxHLA7P7gMvT7eUjrydD1Lb5NLoPDGmd29tkfvtK7W5P2bcP +6Sd7h5z+ARpQynL40LYP1QVby6lEQJcC2502G/bhtX6ugHsCIOc2yo9vqvbB +qW3n0OFPgOq5hT8tksGOP224Wt0QELeR1pdXuH04VN9zRPUmIIs0V7/JXHL8 +0UuyB1gAlc6nfzVJ24e2uzfFfAZISNtp//vTiH1wTnFr2LInoZSy8zGdQfsw +oqZxYl2ChNYYNOMf+eyDoRu1bdsGEQWHpKarOu1DptLR7OeWRDTc3ZxdY78P +qV40+Tw8RHTlzG7e3Vf7QJH1cHPiLwH9zX6Av6VPzi98/cMvPgI6teoIJVr7 +0Hf/htBkFR5Z3kz+fe3+Psx8/LSgaIZHjNVbtRel94FbqurJaHQpkh9M6Dl5 +Zh/8faWTTvbhUIhAw8B3rn34I9Vo42+CQyOvNkaOsO9DNu3X21mTxchtS2WW +iWYfOLq5yyQmihCJfW13l9xIbj/52f0eK0BMujxU7/v2YG6uee7epQKkF6tM +t9a2B5rVF34/jcxHW8I/mOeq9sD+r2ow+caExOUVT/el7UGg6emky705KNsh +Qpr0ag8G3komp51NQgNY5FqYyR54CTN+0I9NQGwHojNtn+7Bhoa62jxnPHr3 +/QfnOdU9CH/r+QdRxyDp0sQFH+E9wJTzvIxsvqJ/29mxOtO7YOP6TY/3mivQ +yeVqXR3ehY5XSz6LoZ9BwvfnIabuXRA0bn1wdtUXorgLHLA/uxBYqWh7vykY +TG+VqAuk74Ix1t5vkhYLG86/KVbNduH1tVd3rCIzQaiqvKjh2S44Y9UffOiz +Qe9wpWWq9i5whCt7dVnlwK8f1R1PFHchc6TDguPYT/DG6nPLBHaBRirbD1eQ +DwSGv6ZRp3eBZeSNyEfNAphXb+R+e2wXVgUk1xgWC0BzsNnrPP0uXP0toLF0 +ughOUnU8CxzbgT0GvOtXDRyoK3ceNe/bgXs2y6yFrThwC+qqk23bAe5Dlahf +swTGzvRKrFfsgIygzc81+VLgtOibayTugMjLvOvEklK4l9+fmF64Aw2vwkal +BPGQKzvEop+0A2Z1tjm8G3gY8hmuvB69A8FyVZ9NdMj9sGXEiTVkB2wjmyl5 +igggzz12Zdp3Bz4atyvJMBPhP+PxiXKPHSBmPJAjPSdCZuZETIzTDsSXXg/5 +nEuEvpVJTQf7HdAxPBnnv0UEmU8z2AXjHZBllr93yZUEU5EUxwL1duAP2zfB +0WISBOVxvFrR3IFFvUMKGuT+L1kj+FtbdQcMGaLeW3MBDPdLHSfeJftP570s +fhfAd03dmvf2Dryc1bOLtQAQYzKp+CS+A3W+ZaOpZJ7q4fvvxJTIDvjH3axR +zgDwkPSzVRPYgfWjf7c/lgMIP4iryju9A0wS1zaVOwFaXhSePMa5A5G3H3XH +TwI4OdfYObLsgHVzpq7nKpm/Qnpr+hl24JN5XMPaDkBdxuJpOcodaPLAX1wg +85R9Ge3b1M1tkMmsZbIj8xZ35/G6Q0vbMKuwmeBC5rGK+YtnbKe2QeEyvvzo +HIAVnYxD69A2OLOVDt/oJ/PYSa2GG93bsBMYxT5dC0C6an425t82eNwj0l4s +IPOSsvN7qrptmCj8c4A6HID5eVCjafk2MA+oM9m+Ayh6l8xfS9iGXImLkY4a +APr+pU6XCreB22CmS+A8AF1SQ/O3rG24eIIt0HGbBNn4IcGNpG14Hnzv+Ica +Emg1rznrxWyD7aiP9dVvJNibYGzFQrdh4AL7uWRtEqTsn7pwLmAbhq49M+49 +TgL1o1c/fvHchv2VQ/ODbUTYEFZon3XZhge9IdzEACIo6lq7F9lsg3FsQcLp +VQIs2Lh3cr3cBmXw9yPEESDcM+ySy/NtsMmsvf5EmQCTBdCtoLENYzit438D +8BBU++9ypvI23Pizp0kSxoPk0Lgni+w2mKVxaw1XlIL3YRaxzqvbYKB5LoBh +tgSu8J/1viW8DW7hjrQCjiXQJSUxEHd2G+7Xj5UU05aAkPkzX/Mj29AnVd9j +y4KD2vLcke21LaiLeFZxea8Q7LvLJZ/Nb0GZ+cqTKttC4F7qCCwf34Kofzb3 +DYYKwPI05S2/ji04PPO6cKw0Hw69fxByqnQL3KT030bd+wlql5bu3vmwBcp6 +qtSieylwszFnpvbNFnAr4uSY4pJB0PbVNy2rLWDRcmUZkk4C6vyJAQuDLTja +v/zukkM84MT7HUPvbIHgGfPsqyHfgfd23c9p2i1wLQtvsfpuCMz9X7Tf7m0C +xbT/8RoNWbTjorBPsU7W1Jo/LspYorZfZSpHJzbBNZ6XPu23G/K+WzIu/WcT +FrzK3+KpQtCKSvLJUP9NkLKlY7NvTkKDs0blPJ6bEChuWm98OQU1+PNaZLhs +gr2beekNv1SU1hiFw2w2QUzB+VSbZAbS1/z2cFpjEza4VF9YieWie6vqW2/u +bcIYRxbjRksukghljqOQI88vGjkjbfcTsXd8mTtybRPkPSn5i1PzUPUT1y/S +x8jzm9vqqVYLUOHOLdHaw5sgsXzISPpjIYqP3m57xED2Y4kdiWIsQh/63561 +2NwAV4kfwcYcxcjcVax2dXEDjj7n+ZUVXIy0eZdsXckXHb2RwMZ6Vhy6YvQK +Qro3oLHLZ/E+VQk6TXPBlKdlA4KOpVd+fVOCDiVNHMqo24BS3cuM5qMlaGzM +SBcjbkCf/pRefGkp+ufJS3mvaIP8O6DuGD2NR5hgf0pr9gYsKQlFf/6IR5Hm +uqtTPzbAQadAOPMGAVkyzav+C9uAKTvdadkwApLKdU/GB5Djn5uv1F4gIKaH +nPsJnhuQacr7s0eOiPpWMx/7kg+C97OsmmXBRJQdfifX/h05ftcrjt1+InK5 +2cbw1Jqc34oF+0d+EuL5uF9y0WADev5uHLyRREILfMFsRx9vAMeFKTqdXhL6 +VSlosae2Afbe5vIRZB4Jekn8PSa/AXPi3AUrtwEZHtLg/nt7A8yPxO4/MwN0 +JWfMvlh8A2KPEn90+JL5S8Ox/ofIBphJmv17lAmoZeUwvxf/BsjvZsb/qyTz +V1iis80psp+Db/tVewDZS95o1z66AW7HxPl/zQC621t/6Q7zBoT/sukT2iDz +oquh13m6DUi25Lv5ZQ/Q2Jn1Ada9dWDbY7rZTea5ogqfG1ur6xBv353KswPI +04wnaGh2HTANoRO6y4C0DxZO/Rldh9dd9iteZH4UzFaSze9dh9RTnYY5zYA2 +1PsiI1vJ6y1jBo2lgGqWX6+4169DWdXLnPloQBGh9KqWFesg5qEywOoEyPxG +VJImcR3U/jNRlnoE6GaP6J5U4TpkeuoxvzkP6JBLhda5rHVYivTj+L1BQj28 +ujlMSevwOXXxoMhvEsoqn6Nfi1oHguKEGcmLhJxfuD/rC16HvltDRh+USEiN +kbOk0ncdyndm1u1pyftz/455mNM67NRMRNywJiJsqbXMxZ7stwPpnzpJRF9D +zE+YWa5DzIWi0xaVBHSl+1udhN468HyYPGR/kIConAXP8WqS/ae14lRT8Ogf +D/HDAZV1cPsXpv/nNh7Zm46JdN1ch/CkoZvzz0pR0aLEV8cT61Bqee1kvx0O +fQ6unzRiX4fKYywBv+eK0ePrhjIqB9dBj++awqBJMdpw8lnm3l6D3MMvPE4r +FSFJhr5HpK41IEgbDQqM5SM45c5FGbEGZ51rVBV5shBdoBC7fdAapPbW62jX +ZSAVyuaD495rUC3QWB5qn446hnl26xzXgOKt10m90hS0lErqD39Knq+Qzf+A +Jx7xX91KFOVdA2wi7VgJrTeyTIyLTji+BgN3834TTnqg/CNKoUfZyM9/IS5v +mjgh6Y0wzx0qst7ZlIv+rYF0iNfMq0dWwesKd9GGzifwVbC99Cx1FSRCLm5F +78dCM45T8F/sKmwxZ1g/soyH40IYj/z3VSgbDdz0aEuA5EOH2YS9V4Ezcinh +U3wyYE2ZK+sWq6Auc1e8kD0T6GQ1Z82NV8HYLnuh2TQLVAu2R3v1VqHxK1Py +WGE2dIUqt/9WXQWNDz6SUQm5sPxkoiTg0ipULiioNXHmg2R9QB6V4CoY2SQW +lefkg+vt6xlveMjr50aXU8sVwCHez1FPWFehQaWMwG5cCPxjfC4CyytwSi86 +UMe1GCwf176LmF6BruILLJ/3iyG/+rUN08gKxPokfDN1xIF0xq/nyy0rwKh9 +mZHiZQno2hjIQdEK2Cc/bGg9jgeP4d65gOwVmPvq8J72Ex6ytfS+P0teAd6R +31u/p/FAeUtnjjJ0BfZ/fOvOyCCAUG57eLPfChQHnpYpoiGCJp+WbMIn8vyt +AT9WHSKkHngYLvdmBabOB/B+WiZCs1OTzJFXK5Alc83R4wYJdubvz44ar0BL ++pfB+Pck4DdqCCvSW4HP8XlNrUUkuN+mIuOpuQKm/GeC2edI4KBUO/NYZQXy +3grcfsgDEE9QChOUWwERP4N8X1UyP12qvrN5cwU45GlScG8A1uLlZ2qursBf +Wq7oRjLf8BytCI24sAIyGY7TDUUAyl9k71jwrcBEfHlp9l8yb+38mr55YgUe +rnLSWw4DRFtLhx5iXwFf0dpY6iWAyiGSdC/jCuSzDgjbbQMsPLo1nUW1Ah6d +1udKyLzGVYMPcd5aBi6p0c4WMq/JSUlK319aBtzgcetKMq9Z5eCmTk8tA4u9 +er//LED4meshC4PLsCJxaOtSL0BZSCH61bkMS9KVRplVANMMYlNfm5Zh55pr +CH0WAIdTXrBhzTIUdYv13CXz6O15UXT11zIEaPNrW5oBmBnmTFKXLIOMMeOO +622AoNaLwS25yyDhzOHrfRjI507m7aTUZWB62BcV2E2CMbzQ5JtYsj9nkaDI +eBKwXEr7Jh++DPje6OgCYxLciBe4fSxwGS4nnSCO8pLA8EjyxLjnMji4qJfc +6CKCr9fZbziXZQidH+Aj+BFhwIp3Qsd6GX4Z3rJ0HiMA49CPIKEXy3C1tkGx +04cAYo9O3drWX4Ye9mnfcGECeN48ERSltgzav2c83Z7hQYThiFT/xWVQY960 +H/hWAtqO38Zyzi2DFTHT6trREnCbY/3qenIZoho+lX8IxkFrC/MYL9MylL2y +m5T6VAxOcQyBxjNLQGNzbHHsRiEkc3hKXhtZAvXomFXZmAJo9KQdpe1ZAllr +/x2V/Xw4a0UlmVK7BMExZyT/FOdBreTO8GT6EmTCar0BbS5ISpztH4hfguyg +4adp6dmQek2lqz1iCeQKUUv93Sz4LBrVWOG9BCSd0vgkq3SQ4ZcixpkvgchN +5rH6wETAsTqF6ggtgeLtycfuIYEgcDjxq/qZJeAh2kYnjXlD6KE6XwWuJfC6 +JHH9SIwH2NFzu19jXILG943lPxhsQGQXb806tQiNTyiePBb/iBInthVr0hah +4PP9TAl8LGIf45PD4hbBa2wgvhTFI7fhe6j4+yJsjFi2mfxKQAZ9kdeSvizC +s3Sq14r4ZMTVcvPMx5eLYHxSuqDBLRN9aTI66fB8EZyWFJYEprLQRoMPp7XO +InRcEW/vVMlBbTXdzE+VFmFEx6mxkPIn+gqO2xLnF+GMicRQcVg+oiAmrF3i +XQSrR7XrHdcKkFVp7SL/8UUQxnlfbG0sQCqFJyY4DixCQ7X9gf2dQoTPkx0+ +SLkIuVzJu7t+RUgo16KPanMBTKs1C9+fKEYMGfiWhYkFcB10Wg65gEPvUof/ +jg+Qx0ufnGPMxqGxpIO1fR3k8XBOhxThEvQ79smvuuoF6HH5qHH4VClyDt3O +Sk1dgGQVuqff/uKRoaG4klDcAtjTPbncKURACiK2IxnfF+CoiYnufTcCYqkc +48rxXoCOIwJd0eeIaPUrb5Go+wI0E69xPrMloq6neg/yHBdA8ViyE38JESWs +NnkWWi5AY+4ji+9SJOT16xDfdZMFeLZhLizmQEKWfgok3NMFkGRbc8/JIaEH +Om46kloLkNpxYYF6mITEzxFX8GoLoNfC5iLEBohrcT3glgJZN9j95b4FaJ9w +5QKgBSivLWJtNQI04vWqUlpiAZwfZTKofQZUrZn6vEyUnP+CDKN7IqAsnuEd +2fPk57MFKWxIZF6bORlewbsAE6BtxtoC6C1O+6oC1wKwrAc/MibzzxOPbw3V +bAugIlBrbboESFq94aXywQVge2y6Qr7GoLPcB2jrqMn+i32KbMl8xdboKR25 +MQ9U2rKn/yPr7he7b2Mm58Ey1Pci+VqEEvdfZ8V1zcPcbf23PuT1rMImhhNr +5yHcJOhsODne9Uv6XKmEedBdI248JPuhqPqnnpE1D2tUK4q/yH7/6Ct5ZsfM +Q3qbPcUwOZ9vayTiz4B5aOlS/EEg56vnL7ZS4DoPlTpVNzSMAfHzpwvhbOcB +J3rAIZVcrwXi6ed4w3kIdlcIKSfXs+RRSBjp4Ty4evEbZJLr7TbL2PBLbh4o +PGbETHNJSOWTK03FtXlQZEmi2yTv15GTa5LV/PNwpUFU0/IWCfUVWNjWHpuH +lR93hKt3ich2RKuvaXMOIgKvvNd7TUSSTnUcrVNzUCTwtD6Fn4hoOGTudXTP +wZYmhxFlOwGFyl7E9RHnwF77yCajMAER4qmDpj/OQcMR5w+VqaXok+R/1XOv +50B+OLam4XYpUmue21s0moNy3MSuUlMJGqTssti4OwctSYf7WqZxiO557l1a +xjkIenurZGOjCDVunHNi2J6FM6FaRx7YF6HvgZF5B2dmQfJ+YdqPmUIkjH0+ +zdYwC1s5BRovWwrQg9NPN08FzUIX6aV9jVseGip1/db7cRbyPv59VdD1E73W +SrwYZTsLYu0xI1WXfqIgv+nnxx/MgmUe7fGMhBzUvP3fH3aWWQh+truFFtOQ +RkdoJIP/DAgqmKUcyIhEQ3al16o+zIDi99vx53zC0evDfX8/vZoB6fXgLzov +QlCQ/DkaatUZCKTv/8cm7I+aC/Itdw/OANagonSh1RBpfG28tfRlGjgFQv8l +MYXBkPBKe+5/0yD4rW7H/lIEvK4+9tr65TTUqZ8RPq4aDUH7+skzitNQEBBW +tkSIg+ZXs8zj9NPQ1sQpPl+RAoYHWNOS1qfA+4H1ljpKg6VEMVnj8SkoODe5 +m1WQDmw9ju8GK6dg6HBRiWVQFmgoMw50f5qC5niVrpYvP2Fo9OL7iDdT4LAT +uCR/NQ9ef3zAoWMyBTETl6z/deZBEC5csU2OPH5Pia75ZAE08wv8bKSeguyE +dpMY5yIwLFO+F7A8Cf+eNEgeZy6GpadWo6rDkzAS1x0/8b0Y2EIKj9eWTYIr +//gv4WQcPKSWc6v4OAkxudF+lAGl0HDTT+/760loLOdlcV8vBWX7NvFXRpMg +0fxSSUEPDzKjZtMcdyfht3ea2zMuApBO5lVMXJsE/ANj/kg7Akhqbf8g8E/C +HiNr3XA1Aa5U+WkaM0yCEtXJpzYviJC93yYisTkBqwnXVGJyiSAkwXPg0NQE +6NmBQvYqEZJtXg73d00Au9QJQqg4CXjT8oj5tROgGsyXpmZHgqjB7TBPwgR0 +6Vsm1GeQgJPr7usnWROQnPWq9eAACYI1/FUuxUyAefd3CioWABafdn7qgAmo +KtR3TrsJ4Pubh7LdZQJOBrPe2TEEYNh52Z1uMwF5kpUtK58APMTyC52fT8CO +Bcsz/0SAfcudAA2NCXBnyk0sJwG8T7przi87ARerBSiCW8h81+svt3V1AqwO +37bcHAV4fbTjVMPZCbj+wcxlicxrc2q8m3FHJgDseF99IPOauaf5vzd0E2C/ +KUD3ncxrY5CfpbQ+DqyVaTg5sjbc2PE8OTEObI6PA123AHpF5Q0XO8aBQGMk +rvr//4O9DJCqqBmHOT6zxQwyH7bEdRz9XjoOy3woKaYJQL2Ld9EyYxyKykqa +BfBkHmWzqJWOGofPmsphyrEAivcKkjj8xqHxUkgm40eAcvddl4kP4yBiM/PC +8imANEFel2A1DvtnikrsrwHgVwLEAg3GYWeJIHz+AID4xU5mY/VxYLawGA3o +IEGeyZnJ63fGgTS9GJuTQCKfowXR/WfGwf3em4MSF8k8fXjvXT77OMTM9Ar8 +nCZCvIKChifNOGQsZ5+mSSbCd1wn3aWxMQhv4ujUZyYCx+KZQar2McD39Mc5 +EggQeN4S31Y1Bt9uhTyIMiWAV8SetXPaGAhlLgUdz8EDzT8FZY2IMQid3g4N +UMWD68GvZ/l9xsA3UMhIaqIU3jnxddZbjkECE80hO7ZSMNVXlDkpOgZusRwi +ezdxMBT6lXuRZwyOPH4o10gsBv2/XWvlrGNQLeUa+FiqGB5Jv8qwXB4FzhBZ +poZLRSB3JoiDUDQKbN1a/ZZL+fBZ/4vGveRRoCy3vnn3fj7URLgGdoWMQn+a +TcVGah6osVsf2rQfhZY3UyL6D3+CNo0KjfjVUWCBA+gVcxZYjNGu5OSMwMZr +aS3EGAdB6f/9S0gdBk5fMUMWrq+oZcyG9Wr4MCwcPi8beC8YHeMzu1/mOQzV +mR63y/4LQ1GRWrUDpsOA4Q6NCf2JRsm+V3+fPDcMFFs8oU+PJqGJaiHKLA6y +NrxuWxqRjC7QnkFSNMOgvsYj8PJEKsr9wILXHR4CQvWVO2UsGajUajYvLG4I +hKgGdnQMc9FO+sgC/9ch0LgwJfuW7SdC490iRa5DwG+su/0HfqJygz/pLQZD +UOmipZHFmo8a1FPiWU8Ngfb3Pxz6AYWIxS9mIJZpCHrqZ+Vk+YvQw5qQU6K7 +g6DGeFber6QIddzxiFDrGQTcXV7zhZZiNHjleZBPxCDoW9V4v+8pQdnuGbYv +vAfBt13v4NiDUvS+ZVVd9v0gyGhwnhb9XYrY33of3tYZBJWMKu/j3/FooLJl +rk1pEPjDE9XDdvEo89jphrwbg/DeCvPOfUpAd0vyfc2PD4LYkij+PxYiYmPc +s5A/MAin5JPimYyIqE9X8d6ZzQFoZtsfoflJROkZQUJ7EwOgSDd29+EWEb3b +6TnQ1TEAAw3icrO3SUhOVWCysHoAqtWaTlQ7kxBLjG31V9wA5J1TquosIaGe +OXzKq9QB6FBxoDy+QEJpiM5TKXwA9D4vy3/gJfNRoLrpOa8BEDF51r6nCkhm +MOIupcMAqOEyi0LfAGK+Mnq298UAjAkIZN8OJ/OP2yWakscD0NbhoLpYCCj1 +33/DwQoDwDXvMp3WAMj+bHmZzfUBmKljTDEeIvPVG+Z4FYEBEFy0e3FqERBT +pfZHwWMD4KZ3qrdlC1DX0YRnNPQDIGbe/PEzma9U/na5YLP9IMi0HX6FrEdt +rG871PdDuNnvS52bgJzZaHYvZfVDG4njpOM8oGMF4fhx334QKban5BoAlPvo +4vsflv2Qu/9bHlcLSGn9l8RjlX54+6j3tE4eoKFwrXVmYbKmOuJFEQzIUXK6 +sPJgP3CNhsvk2wDi6HGxd57ugxiun51vFcl8+YHjqnhtH9iYD0Y/OAFI/nTa +4mx6H2iETCcqT5JQP3YrN8m7D7hy86pf5pGQg2Gz1VPzPsCK9pOK35JQetL2 +dN15svYKqqRdJCJZhcB0jwN9IHOYn/ZEChH1TJx9KTXZC4rUgQte2kTELKw2 +lpHaCyLDLp2xWQSUUj+UaOTVCw7/PU4zeUBA0tbvjE6Y9ULjLbtK3AIevc6L +HfAW6IW1T7mKCmfw6KDmtR8y9L0wEdzNnlBQihJXa55ujfWAkJzicr1MKWqT +WO56mdwDZyV+HejUKEGScLdV8VwPuDExjgzIFqN/z7q+UdD2wN5W/GxdURGy +pLLWwI10Q0FGkpkg+fcTczf8r0BiN7iu8Rz8slWAqOumauj4umEg+cl5f6c8 +ZJ/yh2GSphv2/I4e7Br4iUbc0hVqx7pAlO16XYHMT1Rxw7wiIL0LXOXe3eve +y0GeKZMY55UuKD9nplRKSkcH3SeKhe50AgvhsqKF+A/ELjmWpGbQDorF8zm9 +DgHgcaRyRPROO0wYWRy0Tw+ClYUkPna+djAW5wuZCQmB1hSTuPaxNjAOuJX/ +wygSwo6MRj2zaoO3lkzLLi8S4MTi8LfXH1qBqiCNKkEhG3zrfjdrGrRCWZKn +2EpQDuykJLBev9MKmdkaeVuWudCrbxSwTdMKdESTLqGsn/Cjbsjbw5fceKWT +CyYPFwBLalmNqVULcMR+X1mKKwBX93gGJfUWyCWWVQhdLoTnkoafmThaoMeL +TaZDvgj4Ugc/hkb+g6HIISMeVRzw+Jz0mn//D9yqPk4mNOLglJWOv6LuP4jt +LXa6oF4CXGJNEVuc/2C1ncl3VaYUOI8xxT3caIakwoNMrEWlcHRLMSWzvRlM +E2Iyhs7igQ3D8vVDm4HTmafm+SoeWBJ2SorfNINe26uGWS0CMH+WwFgeNUPU +liX1bD4BDr20r3wp1gzI8Nd/6oeIwKiSW1fG3gxBlg4UjM+IwHBppvnEchPc +SlfnP5RDBDo2wU775iYYNRi6qbxJBMqOH6P8X5tgLGVG9Z4LCfZKu6ddbJrA +4Ypf5UYpCXaijy113G8CijcZQsWLJNhyfbhx+VIT1Lpfzf3AB7BhFLDnzdwE +q713deTUyTwjX0szMtsIm2Muq9QOACvn6Q/eqm+EO4Z8fEURAEuHZFlDMxvh +/i9u9Uc4gIV552PzPo2gzzVR2tNI5p3m0pOKFo1AjNe0UxwBmClc44tTbgRH +P/4nIWQemgq/IrR1vhFsxcL4f5F5aMLRSvThgUagfZev94fMP3VEzVfaTX8h +GIU/zt0DqHav+48x8C8Qz/nJ2W2QeUVJ7jNB7S8ond/l45gFgMOEICumvzD0 +WbUmuAegtPXqD566BuDPCuparwQoiszIaPZuACl9vkbpTIC853w4D6UGkD7M +uGLnC5AtEFkuztAAYVGaz0NfAKTPsjVNVNbDY2sZ6uxbAMn53r0Rn+rh87UH +wb+YAeL/o5pSkauHG5qC0R1dJIhB79f2qOqBUtrIbjuOBBG0S1Q/f9WB2qyk +xFVjEoTWvjxs5FoHAwHM7V94SeD3WEewarcWFlWu3wA/InidbBL7j1ALXovs +xYVSRPAYVrxzwbEWODWFXbfGCOBkLaEbsPEHmI2LfyVfJIDDtVzTO8V/oAw5 +bV/4gwf7bQG75Td/IE9cd0/SEA8Wnsd8Hy/XwInskZYbn0pB98ca8fRcNVhV +bQyXhONAy8TqT1NmNQjy85t7suPIfX2szd2iGs7rVuq+8y4GpeLW+fGJKuBI +XuI+9qoIJP4W8OYOV0J6SBRxmL4Ahhl+ixQnV8LPP3Hlp2zzwV+m6SbpZSU0 +HLxyOa49D4YLZx/VzVcA6QrBsznqJ/hH8XtPbJcDDcHrUzZHNgy/DF/i4fgN +omJ/DScOJcDJAxuf+b6Q4FnE+51QQzf02okj7vJhEjTqfEyP0vFC1fOieBRC +BOm6ycEbqv7oddvL+SdxBFhw45CzYw9B1Qndj4NLSqFxIN9CwigW2d8GQdqp +ItBWO8RlGZmB/vzslmG3KQJXFb/iI8uZ6PS5DT3etULwuObJmiefjf4cvPz1 +FlUhFB36h3OzyUWnO+M333DlQ3lnl+GnOfJ5qgLsHrF5MHbJTCTaMx/9ge6L +Qfx5wKXje2PzZAGyT+YwzL7yEzQvzdwVkilEweOHQupDsmFvjcFSyrQYDRx9 +15efnAXhXGrmMFKMLsgPCkQUZ0J4/GrYwWc4VJZYWGramQ7eah8iiColiLnl +NI3qVBrkRT0JpyaVIF1qb9Wr26lgf3zwxL8LpWjxuf7APncKxNswH2vZKUVS +X6vPj11MBvsb920nDfDIC7tiV3c7CYKlLnOpAx7xnKan+/4sAUQJV9z7XhOQ +pZrtfRfbeKDI3DsxV0lAxR+6w03c4uCsGw3u1DEiisYZPDZW/AGV977r4jKI +SOyY2JSoeTQwNnYbMS0QUd0bhg+7PpHAgLd2eCJKQkYtPYf/ZH2HNZXBxe+W +JLR15Wd86N8wWDAIKcQSSSjo66drRoshEPx+4Fp1BwmdX9CpvsQeDOqzjHZp +DIAwNZEnO2JBcLT9zs5TMUDaWVRz1VqB4Lxov9D/BFDfsWzKC4u+IELHu3/e +hcwvrVoC5WJfwH6J7uX1GEBSQfsqTx0+gTTPXwqaEkDm91Nfr+E/woz+9wu+ +fwFdPh4venrfEXro/xusGwTk/23Z8cFnexjR7836TeaXthPe/vQnzGHj9FiO +FZlveHh1lTs0tGBCJDGibg9QZqsL7/s7t1HEM/nCHjIPbdP6Zf0pMUTvH1/p +jtkBFMvw5mB+qw2isDngxL4KSNafD3NVc0BWhO+RNycBjbE326tVuSBONnwT +ZyegchWMgznWHQUKcypnlQMKDTg2b6/nidTnhn9vZwB60WxV083pg0aq33+l +DwAkcaQyQabVH8noLIS1vAJEm8kMLYpfUZ3CF7UXZD6yUpUUZhD4hqY+8JLK +T5HzmTP5fpM2BG1VOLsukXkTBX6lsx4ORRMzAbBGIqHUy0S7+F/hyNIlXKzD +i4T+s+dQO+Achc7YVFiqs5DQ0BFpvJReDJriDjFdryeipO5rHBInYxGbowdl +lCeZjz48/2ixHYckVSldaOYJqEx1/fqnqXgkcenBRE8UAb095TcX05mA9n65 +7XbLE1A/4J40FychczbpVacAPAoOVGObSU5Gbyld3K6L4JHi85Fq2tAUFBxU +wKRcU4pyqVjEb9inoVhh34mslRLkdvcFS6xoFvI/lrzEeAaH6jq5fanFspF5 +3a9MvYhidMSqmf7F9RwkMU34u8hcjDRrY/aP/shFVPTFF9FsIRpbPrDem5SH +lPHyk8uu+Yjx7sCoRX4RSqxqzau6lolEDuMTTl4rRjRDn3u6KtLRw86Q53+L +ilFH9ve13AdpKOrVvd4rpTgkep3rXtDTZHQptKhlEytFPIEVR3+pxCLNcd/f +ng0kJH00IHts4wNy+Pni4w118ntBZ2o2KG2Loh1l0HQTINevKx7unBpomd7p +aYo5hrDWB1fd5u1BKupyJ6PVLxTcT2uPn/gKf8ujGpvsfyPnF/pnXqomwdB5 +75z0wt/IuxSdGKtNhhX/d/7ua7+R0JMY4Sr5VODU0VC55lCORG8JKlSKZoDh +LH11uGMFEhbZjEl9kQsrR+zAwK0KVewceDDvVgja9H+ih0lVaGzX6pwocxHg +N3icXmxXoVljam/T0CJw626QsLavRsLdxg9fRhfDaN25Y8u51ahMS+sNKzcO +FElOq29nq1HQMCSbhuHgcJxQnrNpDeKgw2e0uJfA66CPgVQJNajtRdRY3UoJ +tLl3WH3ur0FnZtlpLhuWQpTp5wv+2n+QN4cbO+UVPFBo9x5gC/mDPM781VcP +xoORkthESNMf5GWiIdu8hAch4aHEaOVapOwQekcykQD+J2+483rWot+Hekfp +1wmwyBz4POl3LVpPKL/ZfpcImhTj6DxFHaJ7SDSJDiQCbvHWqSypOoT/ksqh +3k6EE8PBO6L/1aHzs3JfRo+TwLlluqugsA4l630O0dQmwd3i72EEkXqk0PAo +IrqaBKmpC2+kLerR1YCWY2ZbJDgUoaBZnlKPlKR2JGYFAKx9Yq4ojtSjS19F +i/kfADQ7rbLU8TSgw842w8xvAcStVObvP21Amr9OpcSGAnw3SKj/970BjTgX +epDbJeyob2U8bmtABwnG4Tl/AJ7JPPDuZvuL7qZHhp/rI/PO1VQzg/t/0XSW +U5s4mXcEzu3LD/v8RX0sUrcH1wG8j2qde1H9F1FovnzMR+aldfe2j2+oGpHb +Eb67O2SeSt2htC3maUR4j2uVFrsAum8uPtu83YicDPiuvV4DODSnff/m00b0 +8d1xL5ZpAJKpx+0Pjo2o9ledumI3gE1/zkX43oiCV2QIJ6oAeLW7uSlxjcgC +/ynIL5ucbyPdIdm2RnTGV1o87iuAh9KVbY+VRsQipJSoa0POv+zpVCVbExKc +YLMjKZN5T/JLJ8PlJnSFeKi5iQcgIr+gWvl+E4qVnvKKWCLBPeGBYt9XTYg7 +rX3tFEbm18SDKQ0+TWh9IpzVlMwJ2Sevh7KkNyF3+mDjd2okYDvsbx881oQk +bqZWHq8jQrlniVEbTTNa3VxpIHgQ4Q3FqAYnXzM64We2r3qDCB2LNy9HGTSj +2yz2FCahBPA2f8HT96EZEQRG5CkRAaSGgw7zRDWjp6lsMbhhPPxomZxN6GhG +5/5mPs3gxYNpcVh6xoN/SCbUwf2MbQl4C75ofvv6H+J2W2Q8uYSD7O/iW3e+ +/UPiIteeMFnjYN2xVamj5R+SuP9j4OzTYvCSZp+k0W5BqVrqhmmHCiHz5xBL +o0MLeuRSaFhlXQBNZ/IkIr+3oKNlG9yhf/OBi/aB1+XuFqS6+OlA9qc8yKjx +F9DXb0Ue1aojjtE50Cipf/+8SysaG7pyOlUsG1YyLr5b+dGKzPS5WRcqM0HK +v67Se7AViYqt/sZ606BBg9G02LgNFXErCjN1J8BC96dEFot2hBV+wtGI+AGH +6qO6bp92pFhuQbxU+RkkSGdXkjPbUeBZ5m/puq7wMfa37K058vynolcrR58A +mwnl8EvbDiQtdMsz4tZnJDbnxPv7XSfKlA961Ccaj7QNVJT8w8l6Y+6gfWkC +cmo8YatT0omkiGmd7dJJqCKvFJvf6kSBVYMmTLKpSOvdhgG3cxeakffXtjia +jf6jsI9549GN+hq/CAYbFiBvxWj3lMRuVL4g2T62U4AiAivNOsu7kf1v+/6l +b4WolOf41Vu0PYhH1lmss7gI/TGT4bQ+14PEC3QXP8kVo65ci93Yuz1IeHd1 +LrC+GG1Jk6poPvcgxvqoXMsWHGL8Mp4pntyDCE7nX3GQ7+dcTSxBZpU96HVj +3/Pq2hJ087mRXh1dL9phlQ0/kF+KVNJ87+zx9yJ+yXu/XvPgkd5iIb+oQi/a +aG9c+/EFj5w+Mix+8+xFuuYiXrT3Cci35nJbRUov4h65x3E6g4CiWJ/g16t6 +UR7THTagIqJMHY/Y8xO9SMUio6X9ERER4rI+PWHoQx17x430Esn8Ndlm7idI +1oHsTtJzRNRzmUIdFMn6JUWYw1US2v2lwcX3pQ8pJlg+Ls0hIWZGp33NtD6k +MlsRljtGQqc0kkY+1/ShKI16thZOQCIRDTW4yT7Utsewyi0P6PbQevbUgX70 +v5rOPJqq93v81+VeUW/JlBRJKklSSCL7CalMKWkQkoQiSQiVMoYkSRKRJENR +Zpc7PJIkkbkkczIlLvcaMn7PZ63f78+99t7PHs5e53mdtc55DmJylIJcMZgq +bohZp9gFMs6rXXijMdi4G/qYGnaB9/Qyhcc5BH+UXrO5c6kL7D4fSFCrxuBH +TtTLC++CmYsTHzs6Cd4yrFToe90FHsd9Xe+PYngePfafxJcuONUkLLef4K2c +NknOwT9dEPpNRH2a4C3bVRtGGJRuUMw//OEtwVtOhYWdLeLdUFkulOM4h8Ht +tGHD6KZukGw/kiY3gcF7ofMD/+5umE/1kOz5ReyzL64VyRp0Q9B7efSqHkPo +gWWZmie6QXdoVNqdhiFq6FnCMYdueMuu9zZKwBB3f2eks1c3WP1I7lD3Ifbt +nZV3gkK6IZl0Mmn3MQwZLZbXEmO7oTdUs8F8M5Gvz9iForRuGJUZOhIzyQKa +dNCpuqJu2LP/SNESZkHZe0mjwcpuyFN1PZcUzIKqC9n7eL53Q0GdiKuPAQvq +BXRVpAa6Qd/eqTiezILuo87ixvw9kHHLfO1PFyYMTi7xX1jdA2Z6WY9XrWUC ++2nM7K0tPeAXGLuMWcEAnl5m17uDPdCnq+CeKcgAwZBjjVUne2Bz5C4P/nQ6 +iCgOVPQ49oDuyeX+YkAHOXfh16KhPSB7t9roll0p6JLPe1yv6oGYzStUfLxp +YCPQuPnG9x5IVvm6T2ehGG4I7//h198DSXvzLd/7FUOBzHqdEL5eoO3U/23g +XQSbtH7yP0a9sIcWxzY8WADLPMwT8mi9IAtecfSatyB/o9yk6FMvBJnU6Py6 +nQ37A3aSSr/1QvvG1gsCO7LAN2rlhffcXjhOksxfFpAJf7K+KNer/AL9tH2u +nKWX8PW3XvnfjF/g5Blinr38IQyP5HmMF/+CbhF1kuq+CODnbtgyWfkLoiIZ +b9TPhgAikyLm+wj95RnPZnVPyJVhWCzf0Adsl5eja8Z9cMxJtSGFp31wiO/1 +CUpNIs6xeZmglNEHhmUHpLnmybjmgoipSnEfpJqMTGTjF5jiwc7TaCHkeNmI +wgep2Csq66bBqt+wLEDn4YcVr/Hpz/LC9mG/obfypEe3Qh5+W/PbJuvpb7B0 +EP3eU5eH+erTsrmZv2H0bK1877V8nPNNwSi4+jccJG6Q1/MKMLVPKSRteT+8 ++pihspu/GFsN/G0eXdsP87WR3q6PinHe8NuNGkr9UP/CeKh3LQ1bj6u8/2Tc +DydPH6Zt3VCCCxbV5gfv90N0oqold7YUC5KnDHcm9UNAqLt4nQMdn6UUP/V5 +2w+2uqrRh7/SseAKTQ3Bun5YsWPSuf0BA9uunA0+1tUP9rqqXS1DDFwkQm+O +H+uH4HyrAzuBic+t2ee+TXgAgnfNyrX+ZOKidYtl12QHAB9dHyu4keAfWbyS +oTIAu3Ojpl0usLDdxjs2fPsHQOmpZTY3hYVpm/dnGx8dgFu0+V9PfrKwkCJ5 +PubcAIS3zz343/eD57d/MOy4OgC5xeZX/tPBmKYS9HRTwAAE3KgSrHfEWEjt +wODl6AF4JixZHBmBsb0GVaMohfCnC8bqZWFcuvdT8GLeAKzhPf9kqBJjYZ3Q +ZoMPA1Cfm+Vzsx3jC/sPb3zQNACeDcPVMyOEvb6g+/dfA/ArSH7ozAxhf+hL +2XruAKRn1pNTCV5yMIpY6cQ3CDoqsqvr/3c+g6mJTY7YIAiu3zLVNYexyDGh +7Bn5Qbit2YeaJzB2tKibQ+qDoG+45eLbPsL+VJRh2IFBsBE7kevWQNhbHX3a +YDEIg9yVSjIlGDudFRlc40Csp59DL00g+Mquabed1yBohr1bZeSDsZhDTPDr +kEFQfPYru5ngx4sXLZonYgdhTUNSh/Umwt5FYqNW+iDsOf629C+HhcXcvl8N +LB6EyA4NxQgmC1+6Flf25RMh//H6uT+Ahcu8Tq8Uax2E4eLTBpK6LCzhK2Vj +NTgIZ9YvZq5ZYGLnWz+zUmcGwbBUaPnRfCaWCLI2VF8zBJEJKpkPVzGxy12Z +p7e2DoFLSl9pQQkDl4d3DXzUHILtpxWv7Ldm4MsPzwWfsBwCt50LIU2xdFyR +dKHsesIQPC127khtKcHKFJ6616+HILXJynPT+RIc5/yso6NkCOpNucnSf2nY +ZU/TrF7rEByaFugtmirGYo1IXVh8GMzsqd+9egux3552PT35YbB589Q83qIQ +DyZdP+alOgzhiZaVHz8WYIbz2yvtR4fh2GUNSnBiPj5PWfc6I3IYIlZ7Co0q +5eIa52Laz8RhuLj7otOT8By8u/HYJ6HsYWg7hsf7v7zDgs/D+jy+DINCbqsd +KGXjvD3TMvuX/QGnR/RLJcx0THZpfPTD/w8s83zg65cYh10aL6esePgH6hcC +tkm9fYy/7RHIheQ/wP7Z6p9Lj8avKejrKxbh/7y1ZTQpDB97nr3Mfe4PkO6k +/f6TaIxfNIbeEvQcgYxP2d1RP2NBUFM+Yl/QCLQKzJ9I+fwUPJ7jeLdHI6BS +9FVauuAZHHKZKv6WOwJ87X8aT+q8ADbFfiJldASUDngJhw2mAdIERy2nvyDY +cfH9ny85IHvvbvOG639B4aasosKlXCB11O1fFvIXpAYSbISpeVB2x3Zdy8u/ +sGgvsPrh7nyAKv8G166/wArz7Zb1LgQZqWodi9G/IOwV+yqEpwgWnUWytBb+ +wt5HbdS5u0XAWvkyZNnaUdi976Jk1b1i0DlZoZVyYhSSk6/2iV8uAZnMFZmh +F0ahwKBDX7ijBBZnj0tc8RiFt6G2Ko8PlwIr6TdbK3oURg6tEaNI0iGJvd1G +7sUoeCxUuTX70MFP1+vLspxR0O5T3zT9nQ77+qlpLbWj4PbrQQlfGAPW7Tki +ymgfBZnRiT/ffzJgPuzJnZQ/o/AtZ6tMnSLBPz+7/obOjkLKofKyLk+Cl7Yr +nLkiMAa7D7V8XmIw4dlttyoLyTFwcbAu2kRiwc0Gmrr2ljHg23jr3iFggbbn +YWGBA2MgmTyVfz6XBes+Pbw1Zj4GmzXqKoz7WDAv2TbcYjcGpXcPaomJYmi/ +JHeKcXUMGkfaWvL3YWAwLn1MuTMGowzDnk32GJ4J5e8KezAGZm7nNC+EYLhp +O/f8StIYWKWlHL6cisEqT++/E9ljEDox8N9eFgYtvghfbcYYtJ0ZFqlqwiB1 +onlA7ssY3LxJ8xL7jWE2fZ2FQBsRf+eaoXUE77T9sy8fGxwD/bq2N12zGEqN +snd8mx6DvmqhR2cIXqr96mtqw8uGmdadlChCZk7LBDcIEvI1NHdz7n/va32g +64uwIammmLSRgyHxsONE8Ro2OMkFqgb2Y4hwX7512wY2TIS06D1vIfJPeHc2 +SYENxqvY13zKMLhUmMeuUmEDX1jzE7F0op6/0zVBGmxiXvrEPMIwGEs8453R +YUON6+WeBEcM2oD2Ohuwod9UNihqPwYlpz63ThM22DtcFz25GsO6h6HpRy3Y +cIfGrz45yIIVpUqdFVZssKzE664WEf3vrRfbY88GkqpoRMNtFows9zR648wG +bV/RBukDLGhXWxMgc40NKT88P1pTWVBjzaQ99GVDdERI7dMPxDyEnBvjC2DD +6G2B7203iXlozbT6E8UGg6UHJtG/GJCx5NVDesqG+F+0wD/EvBVu1neQeMGG +7l+dRyu3MeCrR+eV/blskBv4r1Dbjg4/E95wT5QQ+WjKUWemSmGw3NvH5T0b +KgWM7DzulgLPKtHAJw1sSA5ny04nlIDQnm7+7B9soN0QjZOTJZ4nzmZHlPew +QTGvbN/pZBqoZR+M/TvOhgI3/+2aj4vB4fDNTD2RcXBnSFesMy8Ed7fDyqel +xiGqJM5mqqQAbj+RyHeVGwdSC8/NCOkCiPudw3i6axxuiqToHf2ZB9X+v+vG +jo2DfFmMyn9qObCj1HQq4dE4FMQNanj0pYJ2z9obuQnjgO55F5bbvYRDy4aW +Kl+OQ410eBlv5wuwOxEoMJE/DlXa5Mev4hIhZqJ43aHmcai36Gruln4IM4ob +9LhiE0Abn9ym7H4H8x0b/SQgPQEzph8EyonnxVU+dOP1mybAO6r+E159Hyt+ +sjhhqD4BzSFVj263xGDr8+EXky0IueZqfGlSMi5P4Dwwjp2AoMG4R1M+Wfg0 +N9vje+IECJvi9MAv2Zht7HTa7tUEGEfP7JyTfIelF9vlvAsm4I5ZZr5PUw72 +tq0sfNk4AXpzYaarD+TjlSV34pXbJmDx0Q6O5M98nLZK63ZJzwRklRxpPuda +gJvK3x2qY09ArS1rxDuiECtvevpzVogDZQP+489Ti/HHW+ZlwRIc4vkg5yJD +joatvv33SliGAzyiO8bCEmk47G6A6+btHFBsO603GVqCZbu1zXPVOKC/daDG +/V8JLtozraGtzYEdhuMdtg6luG/ImeeYEaF/FnPGXJ2OfXU397cf44BK57ZL +Wk/oeFVCd7WjJQfuBq4/dGaSjnWMLWJuXeTA7EC71co0Bm5JXemz7CoHzDxG +Le/NMLDLwmfrR94cSOLuKxU6yMRP3+psybzLAY+WyXU8rUyswv9vudoDDvzi +p+paSbFw5dl8NiuWA0781kJPTrGwNe1yy+EkDnh5H5jNiGZhrrBCafMrDijn +8wiHV7Fw+MXepLPZHEASv0Z2zbLwhvJngcMFHFhQMSl/toXgNamTTp4MDji/ +SD3x3gxj02urTEgVHPgQvJWa4Inx7y9fdt77wgGd88wP8rEY35QPkZBo4sCM +Q8wayzyCj26hueQ2DgwONmzVqMY4s2W2a1svB/auFX5H68AYKRdWFA1xwLep +cf4nwW/fQq5k7h/nAMf691LSNMaXu7ZG1sxwwMD0pQ6J4De+PX3uJ0lcMNFT ++rFI8FtCVNLJXn4uqDwJCItfwHjX0Cntyyu5cHU65mXTFMZV+0U3zEhwIfXX +LvE3fzA+G19LCZThgpPYyAU5gh+nJu4O/7eZC2J1bUVaVRhHGOnWxW3nwvXt +p8v/vcN4Y+p8/kZ1LnSef/Hz7COCL+eL4t5qcyFJ5PToVXeMj1pcvaWpz4Xx +PH4/NROMB7O32VUYcUFrl/errI0Y+1H7DY6Yc0G5gSLRPcnC4meTt7VZciHw +bLNEywcWziq2FL5gx4WSMU5g9H0W1hUWnxy7yIUJWbfa9eYs7PY+jEXx4QLL +3/5RdQMTy0teHt/lz4WVa+KjvgUx8XdXM3nbMCK/nclogyoT66xbHV76lAs/ +qIIbMvwZeNx9ljHwggs7skQGSXIMnPq5Y0zsNZF/UXx4A5OOl19PtbhSyoW8 +F9sz1g6WYlbt3dBn5Vwoa9sTVexVit3lnemfq7kwFbBHQZinFLc27Nwg/5ML +Mlsk+/QESnCaEh5pnePCn9B/fBNDRdgyMGU9lW8SjDb2LLw+VYT/aws+prpi +Eo7vybha/aEQe9w1pt1fNwnr3PgOJT4owPt7fwTq7psEB63+X8dJebj9CVcq +y28S7AU341v0DBw1+t3kR8gkVJx7ouqtk471DtDvUB9MwrHJEzIFzFf49YR/ +v+3zSUiT3tw0mJuCr5uszBMvmwTZ8wO81uw4LMKrePg2zxSQntc88qvXhUOu +Z68fC5oC26DVd5YbZELI1A7ByXtTIFb+2KAp9TV88CMlPnk0BfpXrfg6lt6A +zoMX5e0pU9CnduwfJ/MtqOX8+s/x/RTIfS15drsvF9z3FCQLfJ6C6n1vjh8N +yIN3ZUGqWfVTYHmrKChMOh8UGzadHu+aAvaVQu9vRgUgO+GYemNxCnxbm9Pi +govAxnePhgx1GuKK2+OPriiGBLJAddl/06Cb1Vlf+6AYJERfj1GkpyFcOyy+ +MoIGxxN8AzLkp0HJQjRtPbUEHm40EjdSmgbJtacGuTdKYIXayN4orWmoQMI2 +jValYMhg1O7Smwb2N/750k+lcFf/vm2L4TTE7tz1uluZDmQL5RApy2nwThmr +yRynA+pYlGSem4aU5ie/d5ow4NaFujdnL07Dsg8elmWpDJjxdGtI9Z4G2uhZ +Gj7IhN2LyP7gnWkgXQhmrHnEhGshq6aH7k5Dks6BE8ZtTMgR6g2LeEDINVHB +JtIsGI3NW7fjyTQgbZkeUSsWKK0PfNeQNA0rFkufxMay4GK6ua5H2jRw60Kv +1tawIG2HfIvE22mQ09nUkLPIgr5irmNJIeF/lV6gqYRBDn2cPcOcBvmNpOJz +FhjOVj2+v1gxDRJPVgtv9CX4zMxB9kXNNFh5Xoj1jid4qnV3vl7zNOx2McDW +RRgkz/Eb9P+chvmb+c+/1mKwGPreGvqLkDu+jnzqxhB9NcN5259piLS2nDcY +w1D/z3uxdmIaTqiv/nj4HwahgMMP3WanoQ+t7Pq6iMFIUEpelDwDrIhPgS0E +j4VGDxcVCsyAsoZVpPU8hkop+uFTq2aAlhR8w5GLge/lvfZZyRm42RFykTuA +Yf82qyuJsjOgGEORpH7H4JevREYKM9Au8GUg6T3Bn1oLMb07ZmAm07XtPcFj +sx9qtwRrEPKfoYfuBI9pGCeVboEZUCsQNyt0wODR7GpSbTADtmjVVCRgyLOC +bhfTGQgqiOaliGFg9628tvIEEc9uQ6w0wb/Kl7spedYzcKpP06nrHQsyb/lv +m3aZgSQ6b9nNvSxIuZFx+ZrHDIyimtKSWSbE+9S9G7sxA24WdY+Hi5gQ7imt +Nhg+AyM2ruImG5kQcE3fyz6aqF+8Nj26iQE3rjrTup/OgKGUFodzmwEul0u0 +f2TMgFX2ATuNWjrYO3f7WeTMgNIZ7fSdrnSwvsj/vqF4Bi4lFfRdX04H0wsW +B6orZ6C8JmO1jFYpqFiPm9D7iPw+n1G94EYDhTOSURojRPwdrQFHJothw2lo +zOfMwKH64i8LXsUgYnH/RBb5H9wskRgddisCrvHWs4my/8ApdvbcEioAmvY5 +t9tW/6BG6e1/2yrfQs7e0Ly58//AQ6/cXMM3GzL3vONed/4HZXb+TYcUsyBe +bcHbzfcfoLVaLjtvZ8JNpaf+5+L+gZLOZNt2nlRA6xqi9Zr/wZ3f18iv1j+E +qjlUyG88C/r5B+v3xybijumoA5uPz4Ih13Hr/IlkPMHpbtG3moVL+nLzOt0v +8LqRO1P+LrOQprNyhGc4FV9tL9OYj5iF+TOp1yubXuOQVuEqqcezwB1u3rRJ +Pws/a7Y9pZk4C1aJ/pepOdm4sobk45U9CyJ+R7YVaudgKSYqZdfOAvlPwjaj +/jy8oyTKcOW3Wfj935fhq2H5WL+wu2175yzY3F6+129rAXbNvjN3aXQWdsED +y96zhfhDYpn2b6E5UJA3pe18WYxbnwrX8q6eA8a9DXltijQ8+tjWWm79HJjy +7B7PekvDkpEkv7M75kAyyELa93UJdvFD+MeROZg4d70xxo2O/X2jjsycnIMH +7PyL577TcaxXd5eE7RwEhSr2vNdk4DLXO6TjbnPg+qLkFWmc4KNL9VHu3nOg +sePq9/cHmHjYQXbDwztzkOqFitsfM4n9tWz/16g54Jp1Wv7dwsKKZ4QbR+Lm +oIa17c+XiyyMTtraLX9BxF+hU9mSxsIW5jkTWzPn4Ifeir08XSx86Qgp8FDu +HAx6hVoeEMH4tpGZqGPJHIw/FOSNRxjHHEx+Gfx+Du76JnyfvkjwjB5bNfXz +HHiYyRqcisSYBaiivGEOhhMv3C3MxrhJK+p4z485+GUsmCxI8MWgRnffUg9h +r214zpzgn0VVFU+Z4TlosMi4GPEXY1GVO5R9E3PAR/XelD+DsYJS/eMzs3Pw +hGpQ93Hxf+dVyW72Jc+Dk72s2weCf8zl3YriBOfBoITZ9WYOYyfZMoNikXnY +Fh1YcXsC41vrhL+3SM3DFMnlEerDOFrS1pErNw+/rasfsOsxThfLmRbZNg+a +umPV0TSMGcKk0J2q8/Cs+s3GbQkYN6wwkzTTmgdp9YIDLG+M+5clZ7jqzcN7 +Tk/G0aMYz/Ox99w3mofqoxZRf+QxXsWDPr8xn4e9dV4CjzgsnKN8qwTOzIPd +ddcz4u9Z2MyqNLPJbh7O8fefPBHOwmNh008dL83D4zmeaOsjLBxZrBY+d3Ue +Tl54tEtVmIWVf1/1feAzDzMDU1NdNUxcK/Lu0kb/eZje0rXjcjATr3DdamQU +NQ/ikf1SR4cZ+E2Cg1bXk3kYipfSY8YysOHnl9uuPZ8HFpXyWQ0YOExeZkXC +23lYwzo+7BVEx9SfIrXDNfNgtc7PhNFTgl8tM2P6Nc9Dp5azIfdKCdbffT9b +pH0eoi71HkifpeHAh/yRe/8Q9vzHkzCFhkmH5k3DBRaAnMnoTeQW4ueemiCz +agGuep9xiHQqxDovvXbkSS6Ag4FBYuiPAnxrkb2ybcsCFJ2bzRvKy8ezBb/r +txoswLGambUvDuTip71y75kmC5AksbdPJjUH7xG2zT1qsQA++tbaR0g5+Lpz +20Mf+wWgrXi/5YB9NuZuqDv2OWABvqa/36U7n45HI2nNTngBcoIMCkZ3PcW9 +Tvda0/cswjJ/z1TyxlhIihmX6ESLIPljzlDb9ClYlp20EDu8CIP75S1Pez6D +xtXyjXdOL4LC9UPjcZYvoLyS8eW07yIcf6R/5JlXOvhNyAlGBSxCVaB/cR43 +A/bKhB2qDF8E9DhfjO76GvI8LT7uSiD863TfZVlkwwv5UdZyxiIMH3nepO+R +C1Zmxxf2VyzCpQz8tX59HkjeLNXyrlmE5vNDA5eq8iCqKYTW174IcuHbz1oJ +F8CdgPV5zIVFWFzvG2ThXQTab4PZHMoSlJlIWbgJFMPMjz/KikJLMB9UMFIT +WwxuO2lvYmWWwGbBUYX9iga23WavrsASDD6eGQ18VArrVhT/enVwCRxM7uSY +8NGhVUNarv3IEhRobs7Od6OD2YOhpEO2SxA+9SNRSJsBK+hHOvyclkCqxfRu +bzwDqvoL1xa6LYHtOaFnwpMMQDoBcRv8l+BEwB/X/QlMmL84+O1k2BLMhJgo +bR1gAu2xqXjkQ2K9w/2r1ZVZ4PG+wLzi6RJ4zwemnXZjgcpfqejZF0vQ3/1X +MiKbBSOS/vUqr5dA2fjlrfLfLMjQHxByzFuCWOSTx5HEYO9mYpJYugStFhIO +qw9iWP8s/15TOZF/vvGazW4E33xaUy3wZQni+o/KronBEMu5vQw1LUHkmeaX +w3kYjq3vN/D6SdRzYvTF4xqCX4yMg7N+LcFmzalR8R4M1V55H3r/LEEUSWm3 +ExtDSIokeQ13CS7V6c2GzWLQ/eqHjswvQcTN2sf/+z5v6aY71iWTkM4KH63d +hNwR/arTmkpCBiv2TGGCj+gZrQvegiRUVaOVuZrgp6es5dIxQiTE51W/Erow +XG/W0X4nQkIuPOLMPdX/Oz/r6plqCRIy3hC1dlkOBlXSK9/fUiT0TSHFJTcK +wyqJ1qek9SSksLz5k6YLhrFty0vWbiShtEheqXRdDK9vDr3buIWELI9yHH4T +fONQ+ylt2zYScrfecv9ALws2yKQlqu4gITdVE9+61yxodw2K0VIlIZrmYsc9 +VxbEYbt7ehokNHXrvELQdhaYC+8PMNIioUZTemg5cT2rcxeunNEjIYcrU//2 +mTIhhNzucP4gCU08aBB/NMuA/eal1s5GJBQ+Un3aJoUBNK6X0Q1zEspRSDzy +oI8OHgcsdANPklDvzyt0kdt02BGrqnnvDAmFJGexDorTIU2DvTnhPAntTX12 +Q0C9FOxCv0q/dCTy39VhXsIqAekfWWJvnEnIzlFuzla/BGJ8L5Lp10go1WL5 +bJ8eDQKYvR1tgSRUsJv8eFG8CHSE3jf33iUhL6q/drp/Ifyzef5l+B4JSVET +UsaHCsCNZFUy+4iEFu/WaHzJyQcbvZYYqVQSYm/efsBQKhekYvLvyWWQEHVu +sqHwcg609D0MUMwiIRXlR47St96BcYip294CErKv7dz0NzcL9n7+ZGRZQULc +gVJbl4E0ED9SSo7vIyHZb2qV7ZceQ43lc7c1m3iQcc5dSb5fz7CxvsfqdgUe +5D1Y8zn8/XNcu/0wK0mJB9le767qNHmBv5I4y+XVeFDGd5/FGtlUXJ9mkK6s +x4OU4scztFIzsVnUWtNxA0LuWeBpnH+NG3zY3HxDHrTnd/jX0qNZuNE4Xlfz +GA8y6x64Wj32FjdP/O3QO8eDPIQtyqbncvHx9vIg6gUetMu7uWPVkzzc8vHJ +ts9OPMhPvcHx5Y58/C1uv4+pGw+SCpIa/3GqALfqPBY7fZsHcX+3F10IK8Kn +FC7R1wbyIC87DaaAUDH+sQrsOkN4EHvviHPYg2Lc1jf47nwkDzLhuxXfEkrD +7eHaRq6JPEjmUvWWumOl2Mpj1YTKCx500dbX+QajFHdY98dxUnkQI89sIECO +jjtVovq9s3jQx2ezF11+0bGN1IX7Wjk8SNjg6mY1HQbu4t2rtpjPg8Qyh8Lk +HjNw97df/oF0HlSlf+CSvgYT25bRFAwwDzKgpn09F8DEPZn365Z94EFBHtQs +n89MbPfIzutLJQ9aChU/FrCChXtvakhHVvOg66/kktyNWNjOYUWF2Vce1GNs +Nb8/hIV/Hem5JNrIg1zOzzkNMljYXrNo1bcWHqRXa3nVZoyF++Tu0eJ+EP03 +mFNLlMbYfoXt2TMdPOis6TWHpIMY/55Uo8r08KAdy42MrS5j7NAlkN3dx4N6 +Fz+8byD4qb+q0/zlIA+6dSNCY/YNoc/Ln70wwoNiaDYFDRUYDySEvlBgE/33 +vNdy/AfBO8HWh/5weNBXSbe6O0MEX7nuGsue5kGcXa2XzScJ/Sn+WLc5HrTg +YCj2ZR7jof3t2qpLPKg4CbH6CX66tC331ySZjKwijJZeEXw1LBYSTqOSUd7V +DbwC/zB2XrTceUOQjBYV4+4Lj2E8MrCjdZ8QofcLn2V2Y+zSwHebJEJG5woz +9ol+xfhv6Y9NH8TJyPWOWq9IMcY3N37gfFtDRrzj1kPwFGPBiKz3w9Jk9GWM +p8nKC+On3McPFjeQUd0j2d1XTAnes75tLbKZjCZb7njf2oBx8UenbZsVyShi +8+vaSKK/BsrH/mkqk5HYcqb6GxrR/yX5x+d2k1HbbZPdW7VZmOModN5zLxlJ +n+t4nzTFxAH10yphOmRkonxY72AWEz9/UV2TY0BGhpGbo84JMLGyYEF8hSEZ +/Zsw9/ybw8AM90SnVlMyKjqSdrvbnIHb9Nz4SCfJ6OGeMds9EXR8Met0o+gZ +It6iqzpzAx3PiOklbzlLRs5k6qahvFIs0S+ufcSRjLTn6lf4VZXgo6H0a0nX +yYj9XJxRXF6Mu9mp+/NukFHvub7tERrF2PV05MrK22QksafCNCOjCEconnvz +9y4ZrVXmVIreKcRVNdRf2nFklMGduGJFzccn1dk5Zs/I6I760zEh2zzcn/jD +zz6ZjByKPxfXFeVivitZUhEZZDQuwBEaOkNsIKuOHftJI6Nn3v6v1q58g4ss +Et/7/CCj5Aq50rZ/ifhlp2pykRQvStaMfU79FQNTXaIywTK8yG2NYU588xMw +7OEkmMvxIjOjHZVt5fEw8Sv/CXsrLzo+qrS783Ay6A6pPlDU5EU5hS9mfyy8 +gthh0f/+afOiKKFTjZnn02H4Dyf8E+JFy8RFPdUrMyB6ND/E/hAvMh4fCi29 +8wZ6Oap+SSd5UeTdzhLJ8zmwe1J03uUML6qwjBE7TM0lOITjo3WWFxnIGX2S +TM+FXf/yPVsdiPXSK4u1e/LAf1H1sogXL2pcds9kj3ohNC+J/un24UUeUYW5 +5A+FoMDDdXp3ixdFk0eFP5gUQT1vgb1xMC9SWh6Q3Xq6GGQF1KxCYnhRXld8 +1XHDEvAQFGs7HseLtFVPhnxmlkDVcu7Jjc940bdJhZlX20vBTajAvOwlL3La +17lwkkyHipUxDZHpvEjfNrxjpSMdJFd5HLF+w4siNvH+x/1EByyqZjSbx4tq +rDgfl/sxQERc7HNVES9SKzPu2dTEAAcJrsGTUiK/5g/XNOWZULq6ueICixcJ +bi9V1LrKBKE1Bbpq5US8gFUHZEuZYCcVU0auJOrbkRXTuciEorUeOg2feVH3 +ph+3XYAFNjJqe10beBFbWiunKZ8FeevFaNothL1+S/6zARZQN3DVl//gRSHK +qxrFVmOwlGvO/9HOi3Ydab6oTvDD240FOzO6iXzndTxnnDCQN8W88+rjRbSP +geGn7mE4sdlj+4FBXkT+l9Fulknwxpbjb0RHiHk4pKbdUY5hUUFta+8YL1rh +XLZ69jvBW4pi6TkcXlSaffNm6iCGtG1c+dvThN4qVqKNi2FWqTnFZI4X2Uzd +2/l0HoOpcoHsuiViHrdconUTPJWyIyZpmMyHqt0n1HMWMUypeKwrofIh3+g3 +zfwEXxnuOh5/V5APxYb+tBkcxZCoqiZ5QogPldo465h3Y/h6BV9eJcKHKqxk +obAWAynL8EONOB+S+PftRmMRhp2DLZKha/hQnv8Q9W0CBjv5c6560nxoHQ83 +yOgmhhjbkQ+LsnxoftVJpXenMHx8dn1NqTwfspFLr+hQIfJpJV/xVOBDQZrL +0tr5MCiIR1aoKPGhrBNetNxmFlgeXSM1soMPDfrPup9PZsG9+6lX0lX5UFtG +TduMIwtGKXQpGS0+JPP9UujfYSbI6hq4/dDhQ69ji2Ot05hw1K/hY4wuH9qz +WrSn0ZoJBVMDbssN+ZBf7Z2X3DIG9O+6VllpwodGP4RvLXJhwOori2sDjvIh +3UjMly7GAN8BsU8zp/hQ9L7pAIPTdIDW/dL9jkS+cSA0UFQCbmK17i+c+dCp +GrpA+IESSDE7VWV1hQ/NmNFyquppwPfZ9VqTFx9y83KWO9VRDNUlCZ/LgvmQ +vc+h5dH1hTA/uXn9zTA+hHzM43oOFML2XXkeGvcJ+4Uk9RO0Aoh6XbX+bQxR +X/LRxdmYfLBImPRMeEnYl7MyrXfkQvfNI3Je7/lQ9/pv0b8n02EKeG9sW+BD +ZY8iCldWnYPdcynTGjwURJL66hScbIq9inQ99CkUpNK5xybynhueVAq4bP0f +BQ0+2KZ4aiYIc9fw2D6QpqBQG3mDTokneIKzqM/ZR0Ejtafq+HA63vUu6f3S +fgpSDPjeJaqRid0v6eisMKCgqMy4dVvevMbj3bc0NplSUIziRMqVkGzMrp3f +etKGgv4WZbq99M/FKmHP0s7bUVBs5qlHcYp5+Iq+9kY3BwrqC38887Y+D4+W +3lgX5kpBhs9N/vsuWoD/ps8K0f0oSLxbV/b4tSKsdD7+3qcACnqavYkSRS7G +LjJ7lzWHUFD7dWmDrZHFeCTGh+dvJAWdkgjduy6ehpXM1vj9i6agiJeVcUZS +Jdh5ecks5QkFrf547l1gbAke9p/hyDynoKEKnq1lAaVYcV+c27aXFCR52V3z ++UQpvjSj8VcjnYKqyubttG3oeMj1er/ZOwrKvef59rICAysorj5vnU9Bj64U +dvaEMLDT76Kui8UUZNfEPNzczcCDZ6ZaAzAFbXVcmTsXwsQKq2MtHnygID9r +uCzRxMROjeqNCZ8oiCWybdBXioUz7reYZnyhoIejp9ukrVl44JDnl4I6CrIK +e8vgxrPwZj7xQ++bKIjqI1w92cTCDrigovY7IXtOkySXYZzme3x/208Kko/9 +Lm+uQfCQOpfZ30VBNl6u+Pk5jDePP9rL+UVBzAX2hukQgo+yVIuXBiho15s1 +DubphL9jk+qKEQry3LH6yrtygrfkruVIsinootqZYSrBS/KdIts3cSkoYcdh +sxPDBJ89zcvcOUNBs/If++KnME49fmyzzjwFxemmFDcuYNy3ciLFkERF6frj +qf97v3zofGjdKj4q8iwV03An9KPFMvOt/FSkeEFT1Z/wn1heqJC8nIqcljXf +V/yD8fRZIwvHlVTUE7jr25WfGM/n9/gri1KR9G/93eafMCYt8347KUFFj1WP +un9/izHFSugnQ4qKYniiB5ceEryUk8ofJENFBnU4qt4N45V8WmpGclSkaxY8 +Z2KEsdipBluRzVQklN559H+8JJnleP/HViqiZp0/bs9hYWnSYknydiqC07cs +Bd6zsNzxmH7HnVTUeD3k6LVw4npkKIruUKcirzff6ZlHWFjF7KQLU5uKjkid +//aslonVU//GBSEq0tOKvuRMXP+9M4EfjfSJelRuaShqMbFeco5MmxEVDdz9 +zz0ljoEPcQ2MXhyhol2k21ru+xnY+FDHdSdzKpKX2Dlh00/HJ9gCDVOWVBSq +wV/zXp6Oz+gnLzBtqOj7q+SHx1il2DZut2KwHRXF+tKD1Y8T84vOB4peoqKT +fUPtSp4l+FYUQ13Fh4rih5TZcfeLcUDfMbvpm1S09eoyjSvLi3HInqFI1h0q +MhXHo2tCinBUt/igcSgVCafI39ztXohTVa7EX3xCRc0+/4bTt+Tj6voNSymF +VMQ9xPt8tWoWrpOnbbtUQkVu1S27tNpf42Zv01M7mVQUV9X1Pcs/E3fI3sjF +FYR8IjxQszwNs92az7c3UZHY9JS68foXWGLV3SrxCSqSbPOJpDUH4wcaG6+a +TBHrHXJ/89jdDy+zwWuCZ6lIpSRaKGD3VTz3evoSl8yPSGGui9ei7KBb3+m/ +JlF+dOcgK2qv8API9D58LEqdH627kTtgn5EKcs9/z37S5EfGDy/kd2ikwbOP +/i+X9vEjhRSv63c/pEOkSCnX1YAfDQ5Pmpz9+hrcsxSfmJzkR7ONsdVXLXLg +T2MlBJ/hR05xBs+PCuaC/T+7QcZZftRrM5F2gJELJw0SNJWciHyeGNWxJfJB +u3t5u6APP0pWWH10fWohFFIzgnRv8aMsVXHFizpFoLxdf7uvPz/a81mzvbe5 +CDb43vQbCuNHDC798NJkMcQnS27ZEMmPJP++9XS7QwOxTwV1p6L5kfx6d/u3 +1BKgiv2VrYrnR6founvVqaVwe2/Y56Ukop7DNPNjt0thxnaTu8ZLfjScYPas +j1MKf7KtP6S94Ucn+sWerKmjg33zP+fOd/yoXz+kMFadAZ2zj8UkCvhRBZLo +3feEAfUHv14IZvAjvpdsgyojJhx2vSTELONH9ganIiKSmFAeQy3mVhD9VHRc +0h5hgjY95azSZ340M/nJtEaNBYU9Osvsa/nR6GUQVPZmgfKynzkJDfzIzuRr +6okiFmQoXz/d1EL0d1uWl9YYCzZYiJKXt/EjGcm1uFEOQ/yNd691O/nRSKxo +muhRDKIpRua+vYQ/rto35YMhompgLrefH5kq8wVdS8RAGQtMHRrmR7vjTp8P +pmPwE5c12TDGj6I+7CzY3IxhWosxeYpD1MPK2mc+gMHN7lRS1DQ/Kth0poh/ +EsNwKNegao6I7/i1Yv8Chv/3/0D0//8f+H/Wnc6h + "]]}, + {RGBColor[1, 0, 0], Thickness[0.002], Opacity[1.], Dashing[Small], + LineBox[CompressedData[" +1:eJwU2ndcTv8XAPD2U2ZLSEqlhBDSIE6ihIRUREuUtCT5ShmVkrISSoM0pC0p +Tc5tr+d5Lu2tvffe/e7vr17n9bn3nnM+dzzn/XolbnZLx5yNhYVFmpOF5f9/ +r33zHV5ephGWEtbC58XpQLzeLH1ogUbYrcm+v3CGDiL2sYb/zdAI3l7D5m/3 +6VAtl18yMEIj+A3D8mWYdNBMno6oa6URqY9Djh6yZsAXP496wWYaEf0ii770 +mgFsd/j4ztXTCD1fjkv4gwFZ+3c+KiynEe89Bd7um2HA7lTjSz/yaMSqYoEX +OY5M8Hnf/2oIacQzn4gyrTdM6L7rVLA9m0ZE5Gw4TI9nwmcFv32fU2jEnNPR ++YgWJiwKid1sSKLyi+e6zc0w4fJ0XKhQAo2Q2FSecJSXBIH0glUvv9CIYtFd +fz4dIsH+g86x4jAaobn/1akfZ0mgO/27z/6JRsQnpDmkmpGw3cAm6UgQjajE +LeGRjiQ8VZ7tuu9PIzyjYw65epLQtvHp5lQ/GvFdICzuxHsSYI5fd+QVjfgo +U3JjLoKEkPpQn53PacTIccPhgO8kzGTK5lh40Qhuc74ysd8k6AZnTIc9oRF/ +lba8fFNCwncXjd1Nj2lEdufxvwMVJKwxrLi+4QGN2Ho3T2VvEwlWKqbBF5xo +hMqw1SPjThKKRAb/vnKkESYSH7QdB0jYunifu9SeOl9I6ZbDGAmuTVzAaUsj +Nuwujbs0TULTr7d3VW/SiIrhq3XS8yQc/LQl3sWcRsy4Rlc3LpLg/yih7edV +GqFf3PTceZmEceODG8eMaITPkbq+ZSo+B0Vnd12mEYJWK4ZtqDheTPeppT6N +0KLd/5hDnc/D0podoUMjDBrzOZbmSLBosR1v1qb6VZY6LEHlzyXmtgufpvZX +wtJyN1WfaJiXqd4JGtG/c/S7BFW/i5tggO8xGhEzk6a93EFC7dUwRhnQiBZb +jYf5jSTIq+3moKnQiPqXPz0dqP15I5F1UE2JRtiwJGXwUPs3xKZ5+6E8jfh0 +wtzR5xcJp9orv6bL0Qi/z77Ck0kkfM272jwuSyMU39gLn6LuD0fkkOCe7VT9 +Evn93u9IMPVwOW0lRSPOFBauTfUgQVj9fXrLZhrxUl3Yg7xKwn9SEsObhGlE +e4w0F6FNQgXnN6mLQjRiMFv7yKeDJLwoLPZjrKERZN7fYOm1JNRvOxqetoJG +OM8dfUxOMkHGO+N7GBeNYP2kFqDcwISC07F/7i5xEYchO10vnAmCCRItJnNc +hPMhllUrPJhgtiZ4+OQUF1HId2Gbx3UmLP15vkZ0iIuQ7F5fxRRngtY+DlHu +Pi5iIMVWKHyJAcFvH+wa6+Qivhs8eqhazwAlfVutwiZqvSg8ouMlA243aPvY +MbiIqkNR56a6qPdbpSjwUgkXkd+z6qZ2Jh3WfIIYtQIuYl0eJj96QYdYU7li +oV9chN+uzOO3dtGho5OPC+O5CNuh6H+FV8tAf6TSbe0LLmK27d+z7f4lEHn+ +zJtZLy7ikYyU2PzFEhhLLvjc/oSLiNuxD4s2lMDruz8xzYWLOHJQTMcwoBiK +5wIWTay5CGX7f/eznxXBIc4r95NOcRFj/KbSRUcKwMei4lmQBhfxJDnQ2Hc0 +H2qLTn/wUOMi7OUPDbtF5IOjj0rapYNcxFFVpe99HPmQuFZ0kmUHF8HJuyNF +9ncubBFutT/Pw0V87PCuNlxNQEyb2R9XTqq/qZStJxwR9sV17Eli5SIiNLwP +ZdJ/g7pKz9CaOU5ia/3uv5bOv8DKeNiG3sdJ/BR1dXpVkgkp4YuWJ+icxCfT +sCdnVVJBc6fw1cOvOQlCy13tE0TA3/FgwuY5J1Eq6H1GPD8MLmdv3hLixUmM +K3PWc2h+Btsz4v/mHnMSIxVGIeohQeB3S8Yo3Z6TOOJ8WCxX9yU0/lAw2K/D +SfRwfuT65e+O9ioXzm9fx0nslc1wv3Y1HkVKt9dZ83ESP/j0n/qQCVh8keVq +4moq3wM8m6TyDcXuJNjv5+IkrGV43Np5viMzhuZ7eJqD6Lwdc6az7gfKrs9m +nq/jIL49/9N15lIG1kb66b+r4iAuHX3q5cqRiR77bjZX/+UgFocqosu/ZWLD +GaGhK6UchNXF1iu/2bPRx8N+tUUWByHk2lIk8Pk39oxu1XL+yEGc4795v688 +B989nq/IDuQgBN3XuSVuyUXV1eVXlt9zEByncjZX2+ZigMxja49XHITDP6cU +da481DCp83n1mIPwkxNqMt6Tj5H0lyXhVzmIKbfhledMC/Hc5evnO404CNWU +sijxiEJc6D5Yt+0yB7Hj47HBPZ2FeIG9pydeh4Po2FoSPGtRhGwH1bjTjnEQ +WUbuJMfVYjT9OqVRJkX1Qwsd2LmrFJdS079mi3MQln2SJ8/cKMXgfGfuxM0c +hPN7EV+zz6VY3bpU4ruOg9CwKaszWVuGWiK0M/qcHMRfZenPli1l2LejJOEE +KwfhnXL71AAfHb2Un69RXmQnVky9GtdRo2Ou/to/mybZiQW1ztCcUDoqvll/ +obWDnVA8OXp7VIuBlaF1P8pb2Ime87xVBncZ6JAYLJjfyE6cDFYSDQhhYHyZ +WHVUJTuh7zQg79PNwFP1rQof/rATXnXOPIdXMrG7JyLAm85OOB9XKP+9i4kS +XDIGNvnUukVv+fZbTCQE+zKMCHaiYzLWgfcVE40k44XPZrMTuQEnqok4Jn5Q +lWvcm8JObLkSBc7tTFQ4O6YimcROBJZ+Wuu2yMQKo5SPgvHsxH6DScUzQiSu +cVEymY5gJyyuSX3be5zEeO857AllJzYGc8tqGpB48kP2lvpgdkKu85bRFlsS +u6IeuZUFsBPXTzbfz3hMokeqalv2W3bi5utH+fxvSJTIZzuW+JqdOJW94+XO +MBKxPD8i9Dk7Ub7mjhx7EomGrU853nixE1POkesDf5E4N6xp7v6EnViMYKYP +lJD4YWlF4Z3H7MRKvRL/xUoSD6xmSJu7sBMt95SPljWTWL7ptZf+PXYiyPu9 +rl43ifY7zvecuMNOmL/c7hw8ROJqZYGTyrfYiYIHwpYfJ0iMPVEVs8OanXh8 +4Gbr5VkSNfUDVojcYCe6OiZSKxZI7LxuYL36GjvhMfIgl7ZMovudTfQlYyq/ +YfjIFBVvcW+SHbnMTtyP71EIo+JfvqEvW/Wp/dL8+YFricTLoVeHynXYCXc9 +Xelt8yTOJEiezdemngeBoQW2aRLfZ3d+Sz1FXT/5tUbQKIn7yr7yftVgJ1bF +bT042Efin7qbtz+osRP3Xt7dtNBGol3PznLvI+zEkQtSh4rqSFw5PbjP5SB1 +v3cmTmmTJEZzJr21UWAnuouM0t/mkagh6DBhtI+dsBQ/P/3+J4kdEvJ6Z3ez +Exm5txT1o0l02zuVqrqDnRB9bsFT9YHEbG3ne5IS7MSa4hOdvP+R+C5fXeay +KDuRpNanJHGdRNuDfHW+wuxEwq700c3nSRSVjj64xM9OPFHecLhmG4lTwXf6 +5deyE9V8SSr+fCQy+SDEeiWVf5eDi9ocEx8vVi3WsrMTN54JzZoXM/HSnbDE +tSzsRM3bvpHmBCbK9dqYaCywERvhV6CmHxNbKtlzfkywEc+4/WpGLzJRLX6v +x6tONuJx363F9GoGCkssyhe0shHCg2XylT8YOB5Q3DnfxEYkF5oQPa8ZGPnE +5MTNajZCMqaigk2dgZxXXq44XsRGdD6JbhGLoGPzn0tZznlsRNv1MLsdTnT8 +qbHV5juyUftlqKSsRUeLfVkM0XQ2wrRKPOjmaBkW8/T6zkazES8bTx1QkyvD +z49Tjsp9YSPIV9fYghdL8f7k4zGLMDbCOJRVjLO0FHe0CulWBrIROadzbgma +luLz9OPrv/mwESZB6boX3EpQ+8bnj9dt2IjvootaK4OKULrJWjvYko04eiPc +wNSgCJd0FJf/Xmcj1tW09XatL8JvR5imYMRGyJ/QjX7jV4i8QguSwtpshFCR +fcynRwVYkX8xltzDRjzNvSCTuj8PP2WtkU/dyUbMwTe78pZctEwu+BW0jY3w +fBYYvvNlLi6E7v9rLsZGmBnstQttz8GtLmtn5tewEfR1LK6DXgQ67i1Slxli +JfZ//3fI0ywLBT8ptLrGsxLLG5qunPdIxOZ3g1YW0azECdGcaqHxeIx+Hjlx +OpKVGFroi/xmGocq9/m514ewEopsJ9+FKEXjdd2h3QnPWQnhPE/fPU1hmLIi +6kGdFSsxYHsvv1LUA/XurduwbzsrUao+fGEmOhLU9ouX7pBiJZpPrB9QUYqC +3cOyDyTFWYnXyx6CEYVfgfvG8RbBjayE5rrLzPctsZCpfyd6mpuVsPkl+vL7 +kyQQVfir9KuHhdjkVloS5P0TVow19qV2sBDc9no7vmmkwXRCT0hiCwvxejzf +q54tHf5IsbB+rmUhdLUqKi45ZYD7uj0l7sUsxEi6P7fMxWzomnhhoBnNQuj0 +ce3tHyKgPOnDyqORLMQkNy//4+M5gDaRv5Q/sxAs7+4KWQTmwIeOLPGdH1gI +x/P3NLcczYVTlX29q5+xECsYhwX7vPLg2w9N54obLISfgGYW30gBhNzSlaVf +YyFEs5ZMDZQL4dlO0+Z8ExbC6G7D81y3QjCLuKf28yIL8VhTU3pobREIvo1a +EXiChXhxUl7fSLwYnBw4go23sRCetv+Onxcqhc/vN34MkWQhepMtP7/RKoWi +9N2h9WIshOWdjz0DbqUgtHwpQn8DCyEe0sQ+2FsKKc8T4rR5WIhVL6vc2xLL +oDExN+EFJwuREhu3o6SpDNjLa76VsrIQ9SrWG36tpEOkHIfly4lldCjseFF4 +nQ4tJxOcHlYvYzALuUVhJQP2+NY8mGUu494ZN06jfQx4VM3qdrdoGWNLXgZ6 +XmKAyDV9b9v0ZQwrbY2qDmOAdYzry96kZbQRfxG2kM+AzOHYN+Yxy2h+5aa2 +WDcDLj1YDjQKWsaxpWMS+jJM+Jq7/VOd3zJKtSjwWZ5gwhS3brje82VM6L6s +5mDOhHfvo2PPPFjG8j3+RtafmNDeUJ5Y4riMnDetL17KYMI+icVkddtl3B+y +lKxcwQQy8XzWYeNllMwp469mp3wy6YIZ+svofCro1mthEmwOReUdOLuM8ubG +/5TlSFhRPFe2S3UZS5el15hcIsFgjdSfGKVlnN/98FatFQnRumcrpfYu49J+ +JxnVByRotEY0bpZYRu6d6lq1wSS838ZsCRRexnjljghaLAkdtjMd6wSW8UFK +maxkGgn7UyR636xcRtu3pOOOPBLc57QGV3Ms46l1OwQ2M0n4q3pv1HthCc+e +exw9V0PCFq+wSc7JJSy1b2nObSHhFqNs1m1wCYO/MG/e7SHht8DU4mLnEj7K +PMzFP0zC6stb2Jybl3Cjqb/zhwkSDD+f4pqqXsJ34tQDP0tCXJfjCgdyCWtp +8/vNFkiYkw1dM1S0hMp9cge+LJFw8k4JvxWxhIk2UU//Uh78kDEu1JW+hCZx +kqLdVNy9vHmT2fclTH47MNdJHa+goSnWHLOE0X2EFJO6nucLB8nL4UuYwNKY +FErlqywP2VYdtIRF/BNplydJkNxYtFPn7RIeMFA2XabqdTAZ3cN8voTuebq1 +L3tJyPmySf6UxxJuNrO4xNVGAu+AulLhgyV0eMgucbOOBJN99ipqd5cw9rK8 +60+ShESnINXftksolni7aCifhBYieCrAfAn5zi54c6aTwM/zMf620RIOLL69 +VRNDwvHzn8xO6y2h5CZHHvMgEu4Fhm6QOrOEQ3f+TiZ6kxDb+pm5dHwJWwcr +/qXeI6Fxe7hHrcoSsiS+fux8nQTVzMiR57JLKCA6waJK+dCBLSrKfOsSGtzf +/FZNkoQvp74agsgSpkiOHOJaST1PDTHFYyup/VGQxcpqJqhIxj2isy8h739S +Sa2ZTLCzjpePml9EnbPlHT8+MqFiPvGzQf8iSv5W/BtvwgSu40n6+9sXsVRR +maP6CBOUXnxftbphETujLW6XiDAhRCTFiShdRG4rr/uCVQywOJxxblvsIibp +2ltfV2TAB89MLtbwRcy4ueMY92oGlDKysusDF/HM1g1v3FvpsMf4t8wr70Ws +Mbjhx+pFh5lHeSyTlos4dNfqr2F+Gewoyv/JNF3ER3vvJHT7loHh2kKb6EuL +2Ht+WP6SYRnkhBbXXtFcRPmHOZljw6XgQzCScrctYveN46qnV5TCZrZaU9+u +BUxR6PkRtLoYzp2qE7JqXsDFqdOu70qKwN2vnn6segHfrb4dF+RRBF0STUrT +BQvI+cJ2b810ISQda+M1/rKAE+teBJpWFICa5wCx8/oCvs2RZJ69mgd9wSzr +fQ0XMGtfWEmnYB74JQvaTugu4Lql/tt/i3Kh/Z/Kxl/qC9imXvMqZWcueBx8 +eVt72wJuv+L1ZaqfgILhXRK3++Zx+9cdc7lh2aB5+daTn/bz+HHIW4LP/Tto +7xlTP/pwDrlmj9U8DfuAh/58Gyi7O4e/X01st34ejDK3bd/q281hwqv6fdcc +PyH7j54Wa5M5HOHMOfVePBzTFf65+B+dwzgr28XEnq8ofoT+vZ9zDg2dZQIS +o77jhFbUZv9XsyjU7yu78DKbeu6u5W/xmsXKOrU2tQO/kPlK3Dru8SxKHBPj +ed3wC2P+hKQT9rOoejLOUlwK0Vj37YV+nVlsypE9UVpFYPEVV2/V9bOoM1a/ +xl01D1MXDsuVrZ3FE05x4aue52H4x/lqPe5Z7Nln7jtcmYcP//231Xp2BiVs +ZwNSLPJx3zVbfN8wg8vmKvbTbgUYbHV5si90BjmMiXrd90Vos3r4TEXADDrf +4XkZWFeEKklPorJez2DAriPXB0WKsXky/uKLxzM4rKDTn/a5GLe4LWfsMpnB +sJLtV31DSnBE8h2/0MUZFLi2tMhZV4I5hTLWS9ozeFRyye8/wVI0W6UjQh6Z +QUNXUhuelWJkQOQje9EZVF9fNrvnWhk6HlSuuSQ0gwd4fRYOB5ShehNjz9E1 +M/hpSs7oQGkZdklMt/AtTWPI20dKtbJ0lEk8eexH0zQOXdAvSe+g48y55uDg +qmm8HC3S2rCWgSXjDhNPGNM4lWTjUqfMQCvlkC+6v6ZRRn59hJEPAxPyh2hT +IdN4dMOGI8abmfjoxhPT5nfTyBbIEbgdmKi9YkNG4YtpfLvtweM8EyaOnD1q +FfBgGnWilaqNPlJ+G6vKfew4jT6PTWuvZDLxzXurTZY20yiWMeotWc3EfQ1v +6UqG08j90frLyhUksj2SkRLXncbUOAn2HRIkVmz59ZBHaxqPvJ2YXq1MYmTe ++erRY9TxYz9DfmqT6GjRtbv+ELUe/01I8hqJx3lcvHL3T+P7Fx8DdKh5f138 +2pbYndNoeoMwOv6MxJ+jSm9cNk3j/T79UWvKC0/fMXqvCUxjfBaf82fKExcV +zdS0Vk6jVXTI73eUN2Tqp4Lk2afxu4OUiiblkZkHz8dF5qew47zbg0zKK8Vi +W7Q4x6dQJmSvUD/lmcDclMjBvilMGb4RX0d5x8r85GJV2xSKNfIMe1IeOsjd +rPe7fgo1VqYEDU+RuCLOITGqfArrerOdhChPNZyh0V6XTqEJqWAyt0j5dCTY +5F7uFEZ8GZULpjz24K1cuknmFLqsfdA0Q8VnFAp4NZOn8M+arVcFqFi0zuCm +XOwUjm2fzu+jvDfkMpSzIXwKd/Dmij6mPIiiT4RZg6Yw+NfaN38oL3L57hBw +9JvCcl2B7WeHSdRiLV/Z7TOFq43/TKf0kOjncJ/j8pMp/FF9QZGtlcTa9i2L +dJcpzH1xZqdiLZVPr3gSHKcwpGy1uC6TRPPCW0PJNlN4MsX9lgG1f/GK67ul +zKdQ4uiBeyfSSByL/v3vg9EUsk2qh4vGkqgkbFG7Un8KlRRuXv8XTOLj56v/ +PtKewk167Qd9XpC4ys4w9zpMoUFD+MnPViTq/GPPqlGcws8bN8SvukTt97m4 +H6fkpjD5i/I9c8rz0vvnIuXEp/DqWmmOfxtJanwN+xixcQr7G2oOsbKT+GPd +SX8h/in0XZgq4u9noupMgNcC2xQ+NH8kR0tn4tOb4HprfhKF1NMY/SFMpNd3 +ObWNT+K2w8Oqea5MNPh1wKq4YxLFy7t8tdWZ+Hl3k9mhpkmUErJy4pBmYleo +x5XEqkk0pl89/Z2TiQ7uFVrvCifRqT9k10QOA1+cuL3HNHoSB1fCPtXdDCxP +3yBT8XkSv4XpezC5GLhxB7FFI3ASi+x2hxo10zFq1Vp+WZ9JfCoiVfjEh47E +3/iJaetJ1Plb8m9DTRlyHdMdtLo+iacuEKrVX8vwTMp8Z5PhJKrfN3T6fK8M +6/1P1eSdmcSv1YYCZoJlOH6lJ+P1nkmcXx9oWKpWigcZr5PZZCbR7chIsOiq +UnQ9ohh3d8sk1qWNVr2sLMFV4k9DrvBNYln7Qnu+WQlKd0k+3jY+gUcUPJDu +WIyX7U2O488JVBO/USl0uxA92puGXidS8RDt4PlthZiobxhoGjWBHB7uOVGN +Bch62GCI1X8CV4R91Pp2vACjeS58OH53Ao9d4O99sSIfp8I1Bkr2T2BtTLLA +afsc9Kva9a4yaRx/9v8xbLuXhmUHF9p7Y8fQWGez1vi4MxxU2vqvJXwMRzw+ +LyYVP4HoA1r1NUFjKOO56XKEkA88lQv5U+AzhjmnRVeGXnwLatIqv8KsxnBn +8HEPpa5QSOd74G+wYwx1ftVlrzGNh8ieec2SmFFsXr3/AevWTBDokjxOhI2i ++O2/oRUNmeDefhrSAkdxZ0jQxSC/LDBpDj7wxXsUGbd5xHoXskG48pCE281R +tOfamlyUh/AGXeaVto/ieu13Vho+ucDyK2Jqj/go0gYGDik05oJdZtmo9MZR +zIv5edxqVx5opW7qEeQZRZnLbGZ+jDzgjsuqHOkZwRyJDsUXHAXwyH8+ITp6 +BKXOxP58fqoIzMwUTu4IG8EYLq30DJ8iOLH7dkdc4AiSYSYNm0qLgLewS/ib +zwhiyvHZOxrFEDH51yvVZgSrzohqKB8ogWc5qyQVzUdw1fcPVQy7ErB5eeJ3 +utEIPjZ1kn76tQQUpH5NZGmP4E8D2RuXKX8V60ZfzZUbwd5de54ZUb5K2NK+ +cGz7CIqNN/M3bioDv4HNHwrERzCfx7zh1pkyuOLxllnMP4JB+aFOfxLKoOHG +4n+feodxbtK5V/Ma5a1lh4Sw+mFU36u19/grOtgF9LRHlg1jRZXmHs10OrAU +VZyLSxhG5d7iqOs8DJCWjt2RfnsY14fk0EtCGTDyS+xqltkwLml4VXbkMiBD +733A7wvDKCHHEF/qYICWpytHwYFhvPr79oy0NBPWbZ46WCw9jAnFPmfk1ZnQ +nGJ9u2z9MK4ai3t86BoTbnfoN/+dHcLGVwV39ocw4eADumBV3xA6id7QlEhj +Aoeg2unahiH8lnpHjPaXCf7HdqU3/xrCwfZWw2+sJJg2hA+1Jg5hpkbX5tsb +SNh+Z4NUZ+gQJnrH+EvtJiE7nN2v320Ihdf9LL6mT3nh4P3iIYchfNv8WGrA +kgTt8qGl0WtDKKa7zu26MwkbrK4fmNQdwo2ussfpPiS0stZbz6gP4UnelBYJ +an6PDTwbPq8whPu31v69EU2C496C2qVtQ3ihjCskKJWEwyUH17JtHEK1/RP0 +zBwSuK4mqXOuGMI7np/mi+gk/JmResA9P4j+jueLc6pJCPQNTl45MIhG92Ma +v/4jwUyGr3dN0yB++O3ff7+bBFniqRg/cxBfZZt8VxwiYfLigt46HMQHTyLG +W8Ypjw3ffrEhaRBFU6+43Z0h4ZlXd+6msEE8vKt53+Q8CefFjGZF/QZxj0Fz +rwnlp7ZM17dNboOYOf4ut4DylYN+5K6Q24PYbe38uZOK2caKii5fHcRFsVPu +SB3v97L/6sbzg7jvZPqdC5S3JLavXahRHUQ7j9svw6h8yfn7/P3lBnGoeuNk +DFWPmqm+nN6WQSzffbrJZpCE8vn7pQK8g/jR5K1nXyfVX8DH6+XLA8gMun1Q +somEsX05S77DA+h7/YLe+grKp8yOD2f/DWAGxxuVoiLKU1bc+9eQA7jb8ea1 +/VkkhHPKMui/B7ClcPGkYQIJ+8LO3nieOICu/FoP1T6RoFPrH8z9agAfFB0+ +cpLyctudzANFDwfQ6tKslPVNqt+1zaSn7QCmWr9Zc0aP6k9DioP9zABq/mVI +6G6n+mvT/JSjMoDX1lmsceGj+ntoo+QqO4BSA0nO5jNMKE/5YbO4cgAHwvhb +nuUywexcDVf2fD+ar2tczPvChLH+uc/O/f2Idl87C72YwC+pVjVd2o/v+CI6 +ZTSZoPPmz+Ex7360k1wl7J7JgDbZiZqk+/0odeVqhNg7BjgUr3e4dbMfvc5f +rn9twwC/ZeOoAc1+pIkfjBnayIBy28E13bR+3LrMV1ZpQQczHr6YL9N9eNTb +wVZBkQ5jkfLHrnf3Id/Nf6FOXHTgb3S511rYh6v9TdyjwspA59SKlgbPPnTY +qKbbWloKbZ27nIPu9mH3nVAVV79ScHA7L2hg3ocC3u0OvAal4Jf+QbP6eB+y +savPrG4vgXLpbd//sPdhk9YlVqKvGC6wH3cvcOtFHn/+jwplhcA89NIw0KEX +n7Eu/+vxKoRTjtUKttd6sbZ0UrbiWCGodVr2C6r3Ymxgg6FBRgHsK3qpe527 +F59I2FXfCs4H3uc10uyve9D5jfnrmcO5QOe3LlMN6Uadqy8TA0Qz4biEn2D2 +z04c/di8zvLNM3hq7K1zOqoTubh/7hQUdYeSIFff+vedKJtsNMSlew+0BW6t +mnXsxMdaa+cdJ47hJQ4tDoX9nfivfJKUXvscrbs4J75968D9G19lnw+KQL/Y ++xUR0e24mtSPS9H4iZVd9nz7P7TjAdPrcwO0NFwvaXk216sd92u2nj5QnIYh +wfplLRbt+NQ26nu1egZGvdift1mqHW8Hmw0/kc/GTLvB5ICwNnSLkrB2HCBw +IbZjRPpNGwp1gVzRsRyE7obdP13b0H1/3mqLoBzMNymNrTRpw38hC0v31XOR +ee5rOJ9oG1aRZ/4F+uVh676rfs+DWlFL45ksg5P6vX8Sd/uGTyumPfDwHtMu +ROfKyXPHnFtR+mBOhWJAIQr857N23qAVn9APtwpJFaF6xo8XVhtbUbUq63vd +gWLkX7FkrcHTiuYfzFZ/v0d56rLmaYnZFrx0TC/KL70Y7y008tTXtuAPLmFr +K8USjAEur5MfWlBm9drr27aX4n++5yyknrWg2Vrp5yuvlaJaa5A6q1MLzr09 +EN0VXIoN7ns4Mi624OhWyzanFWW4uvCSm8z6FmR3Ou78t56al4QiTDloLWjH +yiO7dxUdtcj6x8TgP+Qdc5C6p0LHR/wci3sS/qG9d61FYiAd2z7oT6+R/Yf3 +ZtwaAzQY6HKwP7Vw5T+UmNmkOG3HQMHGx46P+ptRT6h9cLc/AzXEYkYHY5uR +Y/3MBfFWBv4jDid98WnGX+td+Os4mOhkVm5nZNWM+QvJp69tY2Lsl/l++vZm +PCRhxey1ZOKxE76xHjzNeNeA8Gz3YmJjz9abKr1NaHTg7dvYL0xcI6vdFRfd +hDNXTPlDmpj4ldEWee1ZE9q8sj+fP03Nu7fuXdtk2YSiR+FJKi+JDsmfW3y2 +NeEhUrl16AiJK3UPhKrRmnDD/k2HD+hS3posMZrrakR/E6V+VUsSDwcYiyQX +NuLaMSUJPhcSq5XG629GNaKvrJTUF2pev1XvFSj+tBHbTWyPLYSQyP1A5FKd +eSOy143UrosnMWzzd6E36o0Ye55DezSD8hCqV2lKNeKv9nvrXxVS3jOtf8vC +2Yi6j0N+9v+l5ne2WzrpHQ0o366ZwdNIImckO599fgPeXd+c0d1B4if1D+S2 +yAY8YnXaxHOARMVu2Vf/njSg6RCfUdsYiX+e5WgFXGvAOJcTd5amKY/t0F95 +9lgDDssF2tVR3mKn95VwSTbg/XtnZO4sUZ78Wsrdy9GAbLonnX9Tnupwjz1R +1lWP/wTv8Y9Rsa6xz9OE4noUSBEYXk3FBcpWBa9j6zHfvXc9P+U1hXWnOBxe +1OP2zrOflihvRY1sP6ZrV499mTs+VkySKETncVc4V4/rHHuV3oyQ6PW1l9iw +rx6Dyz1DFSkvzriXLM8J1KP5JXfuIsqTlsYxR5om61DYrCcF6il/KXs/xJo6 +9BtSHw77Q+LJdTezwzLqcJNA3MqhAhIzRzTnnwTXYZjI1xtbM0ncQZc5aPGw +DulG6lbqCdT9fdKTtuNoHfY/Gth90pfypHHx1CrJOqTV6g/JupI4oBx9YJij +DkVSNp9dtCORMXLjx4/iWgxgCly0OEniEfqJsfextai9v1GD5QCJiV+37XV6 +UYuie2RueouR+Nq4O1HlXC12qoodthllIsvBokHRfbXYHNPtVlTLRPt1X2VZ +BWuR9sJUbB0y8TzdIragpgZTnYVHfJ4xUeBg1xdtkxp0pzdlzq9hose6wg65 +ozUYbximzzHEwImRL5ICkjVY9kb7LI3OwKqv5mE1XdVYKZ/LwerJwIB1nSGm +dtV4QenKrq4+OnKP5jeonatGS9YG0Y4cOjrRI4Wl9lWj8GxLfFcAHQ2eXP/Q +O1mF201PXVtWpeOm0fa3Dg+rMKhR7b8YrzJ8Qc8r1zWpwnDe7VpT+mW48DWC +T/FoFY5E75fUlSrDJuNrr+c5qjDFSj/yJJZiKL3Nx+NFJW7a89XsTE8JSka3 +uvkHV6D8QPYqI95i3PJ887Nh5wr8T9qg+hi9CEXtDF5pXq7A/OZrggpeRSgs +/zdobkMFbrpVtVpzrhD5CeKHsX85NiZmDt+uovxUG9op/eYvsr/jc3Exy0Nc +m+1nt5rErZ7y0pKNWZhZtT90C52JjzadimiVyMKfwXFx5T5MXMlTq+FtmYmJ +24LzFbiZyG+TPv19JB0/gfPUEhsD7x1dv+bwZCo+uKV0+fVMKSqvjOCYiPuG +SmSKeFJ7IcbVK3vy2HpjO3fe7rSoQgyPsesVcXiCr9T+Hvp9sxDPnFRU5hh0 +xvbUQT36cAEazw4oeLaewFch0j498/n4sIpJJN5+Cu03P4xtEczDE4msx597 +hcFmnpmnkt6/MWC32712ixRweCAYtnftb9w2wR2/TiQVioflsuD9L9QZyiny ++ZMKDtU3h6+EZeOdwg/3tyqmQXFEw8V3GZl4tKXoh8VcBjgeQRnOvp94OKnJ +oOgCwrvuVe8Z7xMxqARmbN/lQ4vQveYfUQno0Pvix3xDPuzUaN0WlBaPk6YP +a6skCiA3MjXToi4WP362bDJPLIDRq8YtyyJfsWilddiP7EJQeVO8vWtXFPpd +Xqd9bakQnhH77tCPfEHJm5IcZ6AItojRuAJNI3DdzLeagt9F8DHd5OJ1zVA0 +lb0ZzZdSDPLr5fvkrD5io/Lwot5wMdDvcj9cfB6Me/nMo/K2l8Dcvu/h/mQA +do8f2yQQUgKXEtiGivV98c2um8Zn/iuFLeKXT9Xq6OOPwVdGn5bLIL7qsbjz +0SOg8Xr+XogsHeY5XyaUZpgB75ss1uhLdDj2SpJw1XaCqfTAR60JdLhRblfS +sOE5WH5uiPupxQCldYURalWv4LOlpP/MbQZwxq/BSs038NjXb0nFnwHVQ+aB +hzjfQ+5Ot9vFDQy47yiozfMoBLTnCqpLLjOhbZ1qlorhJ7jiv2S7fI8JXxoO +CCpt/gy1Av/92P2OCWseXnWzng+DDfNGXv+VMCH3zLSiZ184bG0WOv2yjQn/ +ib4c+lQXAe5s37YFzTHhH6ZfKU/7And0lWb8tpHwzlebfyAqCgJvzlk+VCFB +82pHMaf/V4h6d2rg8jkSFvY6PxbzjIZKHfGaHddISGLjVVB2jAFy/zOvAUcS +rld8GdC5FgtbtEKvh3qSsDHyUISNThzoGYQ3q72n5nv1G7yf5RIg4yTbB4Pv +JNDrRF6wyyeCx279JMZvEtbZldNuKH6D/AOjYixlJOxhzT9qvjkJQvQOW49U +kaBb9mlZKDQJtn+8LvmJ8pLT+/u/ird8B+8AvS7uHhI+mui6OId/B99dRcZy +wyTkbt+jLLs1Gbo5VY4LTpLQNc4z3fQlGXyvcV5JmSVhxe+OlNfbfkC4u7oj +7yKV7xk6HI35ATJ3Rm1lKA/p6gTJje9IgTUO5fsWqNhJ5O5QZHwKCBNPM59T +cUjX2Xj93alQPuXGU0Odn5O0w4o7KRVuNqza2zxH5XPmlMnc+xMCvh0/GzZF +5VNv6bT+8ROcWYRfbxklYffarIjNB9LAbVxbxrCPhAt176+SP9PgFt9dE902 +Kl+EvZibUjoEv+7z5Kmj8tmebtqXmQ5O62tmXZhUPkXp4I5DGfBqlYx0fC6V +j5XVwP9XBqw5/8L9/x5dQW8Q0oRMEPa+9fbEV6o//5+Vs0QmrG6a6P0RQPVn ++sYvTi0Lmg6OSrY8pfLtsDlnlJ8F7UKd/XTqfub+FqcTRdnA/6tzTb8Wdf1n +C94OJ3/BhorVS5sVSVh5oebE1rJfYMeiGyG4hbpe94s8L+ZvcAm9mntuiAlO +32+4KZ9DeJ96Q/5DBRM+uqhB/1+EJwqTWl8p34/THhh9tSKgdtSqb8sDJnDZ +3lRxjSOgr+Nu6UtDJmwo199kMEBAd+UBWtEhJqiE7K1bYZcDrxlXKyKmGKDN +KpbenpgD/3L0xU6VM+CqxaqA7OEcUPozpZobz4Cnct26drdzQeDIYbbdxgwg +80P+/HXMg6Zw2rLYDzq0bff5FpuaB2drjku7edJh4tW9V0+m8mAtsflsjj4d +NhjoaB1wygeptcT6rskyMBukFX9wKYDjl4s2zUiXwcS6O2jiXgTifUMNQvrU +94NW+rGd+g79FzHBHbCpBLJmtjy4MV8EJl5nYpRbisG9gal0y7EYBEIanYcs +imFt2I7kRxYlUCBzwfO8VRHskG2L/HiqDBQ375AeOlUApmrnfRr4Sci6XqBg +40FA/v5oS5Oz1Ht4PdE9Yx8B26SWNdqfk3DQXIMYJhCmn1S73WX7Ay/uRlyM +cvwNvy08jjx0+QNRsxIyMWQWnJZtSXth+xeq/zsgutPgJ1ikBcTGna+AL11S +saklX8BH5kb5fw4V0BJXartvfyQkBirMHX1bAZuPff/bFBwO0y5VJ2srKyCm +R3aCo/oTPFMV6OW4VAmXPJPTvnD4QVzJq23GxlVwv0pbRbj9EY40eEbyWteA +WPKmvsDLCSh4Ro/e8LwGzsyu3i7Sn4hKv7dORMXXwCfdjOndh5PQ7XPescND +NbD93H9Zt0q/I785a/vN27XQt/vm11WNKSg/9EA8714dnCjZYFhamYn3WRw/ +3fVoAK6dW2Nfjueij+bHJ18jG0Av9OdswvE8DPIttKzLb4BF0ftlq9/nYeaW +jfsPczZCkOjN24/35+Oc6u8ijqeN4PvmQGOlRQE+cOMefevVBCvb05/+iCzC +FyV7qwu+NkHHARMJ854iDOG7kjVd1ATNZnVd23YWY3ZYgucV7mbQ9Br0qk4o +xsUcHWFJ72ZQuKP5+s3XEnzE9vFYss8/8LMy32hlVYavThXKdMT+AxU1hcEV +n8ow1G94tVDZP7BXIOsD/pShKZ/4QDZnC9he2L3Dbh8dXcPu/Nyi0QL2ck2r +anvo+EydO0ZZvwUkWNVrIgUY6NsbEqxj0QKuL7dtO3uYgZ/3Frp6PG2B8b3M +1gMvGUjkbDjdU9gC0wYuq8XFmFhsnnCYtaYFGs99WE5UZeIfHjU54e4WqMku +SltzlYkt563XadFa4Yyaj9ORT0zsmVymma9vBUvThs2rspg4Evhu7uE2ar2m +PDeqmomsbb/+fTvRCoV3Y4qPrCBxxVOd8uKLrXD4xSbpgxIk8u/ozm+90Qo2 +U7YPlpRIFGa6pM3da4WaA3t6fLRJlHDgjRV41gqZjRv9ms2o+VnoS4jsh1YI +mRD5NnOXxH2Zyq/Vo1thrO+aa60XiWps1xzvFbeC27kCt66vJBrzlEu71LQC +6+Xgg9tTSXThPVr3qKsVpHpCTC/lkPhhfdJz98lW+KTS6X2HTmKKqNiRpxxt +sKQ0pOdcTXlF6tWIt0AbfPny1tbmHzWPyy6Gv5RoA+FtQk9OdlOekrfRe7O3 +DX63btbhGyJR6lAD7b1qG+SXZYfmjVP1qJ3K/HC2DUwT7A+azlD1nMywCTFu +gzXk1rkuyjvO52TEPtu2QbfefuIi5R3/iwF/Ix60AYe2xb1kyjPJxlweX5+3 +wR+zGYFpKibN7yrEBbWBgfr7t1JUPGDT0ZMY0wavCIPFw5R3uB0vBCent4Gt +S8VV1TlqDnXJPfOzqA2kbrI0yE6ReNR9L0tmdRvId595wT5K1eP9OflXZxs4 +eweE51PecfZda54z0QZm76R07dupegIerS9gbwcRqbgWrgaqnk+DJcX87TBP +O/7mGeVB5hfDB3TxduA/7JA+SXmxP75s9x+5dtiyc1OydhZVT8rB1gpohx5X +j/a3iVQ9WTFva7TbYSn/XFbBZxJVczdoNBi1g+o7l+8db0g0LPGaabZph3Wv +9U6MupHo9Gcqts2lHTwmH9MG7El8X2Nu1OXTDoZj3Z5VxlT+zmO5g9HtsOKR ++6F7iiT2DSQ7jqa1Q86+xmI56vmiTYhvmyxsh/GdP4mGlVQ+NpYXCx3tUPPM +npWnkYmGPLeOsEy0w6jHeO+LXMr7vM0j7OwdwFm/6wFnNBO/i2brrRTvgC2G +64/W3mIiU2on91q5DgipZTOU12Fin2xQJj90QE7G6tFn+5kocchJTNioA642 +hGaLjTPw3UX5XpnADij74SwnacHAJOOIYNnoDnC4clDeTJWBdHN+bbm0Duhw +71wM38hATseRZMWqDqBn+e/eU0LH/3zjH2jwdcLwxrKJDyKUj0q28l737oR3 +H1n5Of1LMZHeaRwf2An3bxtdfmlYihx/ohImYjohMS5tL7dEKSZVy5z2LO0E +Hf/gkeaYEuTqkH0atbILArMsUnWp71HKkvxCz8sucG6Z2xPhWYgr2KZO7f3U +BautgiyfqBSiCWda4P3ELmi5xXLZdawAV6xSVlxBdoFHzcLRxisFeHXjYYed +vN0g4fGe7/bWfFwjr95j69cNV7SFM/++zsHrilyKP8O74dbPtD9jyjmYebDI +cym5GwTeK1RdayfQ/OhJydcV3fDUN9DtmDyB2dpnjJMEeyBZOyU+LeQX3ryp +Vznm3wO7ZR027WWmYf4nc+JecC801UtpOgl+xd2crGRsbC/Y0W3D9EK+4Afr +kKamjF5QU/7s6iAZiTZKFXPHanvho4zQqdA9YShYrnqAd10f5GQlq1i7++M1 +TpHY6Fd9UFF+1XTBTA/YbMrf1rn1g6nImsD069FgU24bvupNP/juSb17qiEG +qpV4vsPnfphRPESbOhcHsZyqzC+/++HJ6fZzFsqJoBOawO0w3w9SGYOVn5e+ +Q1j5s4cr7g7AzTpe04bwNFBVhhuHLAchAWJL0rfkwJbnXpXi9wbhRoto8pNb +OcDSRB7lfjoIBl5Wxhm/coBwNRWpihiEnpzxN5cv5QIUu/21+zcIIgNDt2Wf +5sGRi/mHwvWHIM1+s25LTgGIxqyKeWY+BJ62dy22cxXC0pyu0C3HIThO+E+l +niyE3586Rw75DYHVvf6XvsxCONzFFVXFGIJx5q6x1WQRqNw9ycujPgz5EkdO +6cSUgEjRm4fDF4ZBM3xjQnlLCSxsqO+rMqPWO3/43l1fCtnZVgXhrsOQcYLn +7Sb3UjjE8cJZJXsYel6OKKZplYGwfmW3RNkwpABNXPhhGcx9FdHjqR+GSD7B +3DfxZZB5OmFP9fQwrFtXX5/OTYePJ2+MpW0cgTliaSArlQ4vHFZu3yk+AlUZ +Ix2BzXR4EPzN5JPMCHx3l81z5WKA4eA03UNxBBzW/+i4doEBWkIh7DNHRmBP +Red7IycGqIDqQWuNETADTZ4rIQwQefPs63m9Eeha6LQzbGXAqkzZ5nzDERi9 +85jfmI0JC21/BJWuj8ChqA0NxhJMaJTf6C56ZwQSqg6GGJgwqfc+xrDflzp/ +IIpnA4MJ0cv/tbIEjsCre+xm3D1MSJU+biEUNgLbx7cdzWElgenYfOvo9xEg +7Xe9fbaXhIbguAn9jBGweP986/sTJPTkOt23yRmB+I7f9y0MSWDlE3gS8HcE +jjLa5HXdSVij1EJLqBuBf9zvRW69JUHYJOFFbusILGJi2ekIErY9dear7R0B +fVfd8F7KS/IJJ/wHR0fgrIzSak0kQbVScBP73Ag8+/HJ04Ly0pn51tANbKMQ +/8z8zfFqEi5LfNu6e8UonNOk5bVSXrI4+SDmGD+1LvI54zDlJQf7k7sNhEdB +xGd0yyXKS48DhH7YSYzCRsL8uxzlpRe/2xU9doxCjBW/XBHlpQ+dSdmB+0ZB +jCPLbhPlnchVj45+OzgK67+Wn95Feej7/tOF+Wqj4Gv6MPn/Xvp9ecPp+lOj +IMn2JsibikvdOslhnVE47/ieu5I6vzo6WZfzyihUP8tf3Uh5qZ18XCd8bRRW +n+Ep/r+XRqa0jOWsR+F249JVKcpLC5uF29XvjMLBH0P8Nygv8ah337jiMgo7 +3ZiiNygvCdmkDNg/GYXkB4erpSgvSbx1u/30+ShcV3Dzj6C8tCdTeyr47Sgs +DriVtFBeUmnd5PI9eBT4zQo7mygvaXL3LhdGjMKrPbfsgikv6e356dEYNwrS +n/aOb/xAgpn+E56xH6OwY/E872UvEuwenntFy6b6dfloZ3iXBJfIzQKb80eh +xv1anrgZ5emxNBHNylG4+mXh2gzlpc8bPcOMGkfBnivt0kpxEhJUdaTvdIxC +bU7M+w5uEgpfDez5NDEKWrxiuYOVTChPzUj5sTAKGpsu/BLLoLze+FS5hGMM +EstXbxAJYcLMDvFjE4JjsPFxvbeTMRM4dIaKeDaPgayO6JqGw0zgu5+lJSY1 +Bpc2ytNXiTBhR5Ge/qkDY/Bk4oVueyUDjK753PysNwbLgdWFHkoMsPK5OJRq +NAbumaJTz9Yw4L/vW++UmY9BKE3wnGU7HXyXfz+YujsGvx15LqM3HXKDx19r ++Y/BpiIpUdaSMjCYSHCs+TgGV717W9wDy2BEy9LA7MsY8Gc5uPHfLIPNS40S +TiljkOPaQzPjLAMn08LUiPIxEEPRmLF9pbBbKrBhbs04hOkdtnS6VgwFDy8Q +nkLj0H5sRUWSVDEYVq/+wis6DiNudubruovA28vdTnrXOLDH7/9ofaMIOnqt +WXVOj8O4oK2sj3EhBCYe2RbjNQ6HcOvQO5l8kKPNrpR/PQ5NrmN3PzfnQaHJ +j5Hf/uOwUcMqfvFtHkzwymRWfhkHsYcmFmkLuaB9h+8MS/44eHaqCN8uzAEO +pQ6HiywT4HfKq+ub82+wz/H+zXl/AoZ7/Qb8An/A1g22o/vcJiD8UvuG11XJ +UGN3bqup9wQoPNdfX8KbDEdE1vtkBk6ApzWHupBnEqy8F6l3K3MC5M2MRfrK +YiFKFgdq5ydA77GM6UUIgcaACeH4R5MQ5KH2qpknAH2Has7UPZ2E2Icb01eq +BOEx9SxXrteTwBUtYLnD9iPGjrl1mYZOwkrZu2aNnWF478za5HXEJNiE1UUf +PRSN/Ow7Tj5mnYKOzgeH/Q2SUdPO5J6OxxQceFBMSsv/xqdTe1ZMPp+Cncrf +Ncsaf2PeI5aPAW+nYOlR07nLHohHXoflNoZPga9A3wleSwLlk9pX38iZgnY7 +7byq+BzcMnYj0mVpCsqS3ht2rc9HY2clRVGuacoD8RGKZvkYzMZTSqyehlsB +Kgl/4/JRSCB2mHPzNKR6pqVVqRTgKvmBg76HpuF4PO9AtV4hzty1/xvpNA1P +b11x+3S1GBWWVK+fcJ2GxM65b7qhxXjnKd90r9c0rIowebqrsRiH/JNF9gRM +w6dUo6gjF0qwI23iRkbqNGydYy2PVChFCdWCuSu/pqnfyR/bFGxL0aT4/cul +/GnYErdmsC68FOtrFX4cq5wGu2/GGudXluGfWaclxtg0dJzY85xO+WyN+8k3 +9nPTQOuadfm9XIanVwhvFWCbgcvlVRkpu+hYKJx18hLfDOjOjSR9fUrH7EOL +79r2zEDGIfnXD2QZOJfH2OapOAO9Se4J5hcYqKj1KXMbzEB13IudJ+4zMNkQ +Wmy0Z2DDwPLiYA4DYx667Zy2mYHfc1IrojWYGO4SbXvHkVqP2nwx6DoTg+6T +34ZdZuBKrAjtqRsTfe5ulu/xmYHXrp7f1dOZ6H7n+H/X/WbgK/GvfH05E11u +W6e3BM6A6659X/71MdHGNkOlLnoGHj48tfrMRhKvW7c80kuagfRH3Xyju0k0 +uknL+Zs2A1vvKH3xOkai/o3d7No4AzMPL63jvUiitrmeemnhDFR0u2Z43yRR +49oDLw3mDKz+u2Zs3JlEuBpRkls1Q82Dz2S0n5MoZzR6JqtjBuxt1K/9iSZR +5soGX8WBGeh/+tpymvKbuAGU/xifge9SjbarcikvXrQQlJun6i0oWLGWQXlS +76V+PNss2Axtb1mi/LbiQsoHmRWzUHBT9kMD5Tf28w31kXyzQJM52BVJ+W1B +m22z+MZZcKpe6XWZ8tuE1naTj1tmwW1rtOoC5beBU+fCNsrMQnC6eZs35bdO +zXvt7/fMQk7lwHH2BRKbNT5J8SvOgmWs0ilLym/VxwtuvDoyC41GH5rSKZ8x +1QZiVmjMwsqMb+MTVFykKjDw9MwsxL685yNCxcSRg7vZ9WaBKDwcs4fyW7rK +VfvHhrPwZPsX092U35IOPkuevzYLnwsiSzdQfotR+jZxz3oW6gW9VgyPkBiu +UK0w4TALYqU9Wt8pvwXJLzrZO88C77m0IhPKb377tmYNuM0C+/TuzLl6Ep/L +nV609J6FqPJaG3fKbx67HaDTdxYOn3i2d5ry2wPZQLerH2YhSOPSNQPKb447 +iLym0FnoU4m2iKH8ZivTzXn56yzcTtgQ0035zUJ6jWZ14iyoPfYKE/SjPLn1 +gI/OTyqeW/lHzp16HiQM6cxfs6DhOPZL5TaJZ7c8WXO6YBbSEtMWlUwoj4n8 +9TtWOQuPnn/p41D6//8fzlRiwyxcxOd9VZTf9m4QW6/SPgvkDaI1cBWJEoK2 +wfJjs1Cn/hEXKb8J879rSpqdhYaNUUdD85gowJsltot1Dv5kJ40qxDCRYxVP +pBTvHLBU2t/Vus3EBR65rrD1c6BeeVqWfoGJk7SLMqJic1Bnc61G/QATu9i/ +xAvtngPCcOO+nZMMLJ5XTaVpzUFu05f5RksGNk37qkvrzsH93fVVvJTfxsZb +qo4bzkGWyQOdTUIMFBlwnXKzmQPyzKrezN90vN1IKC68mINfH7cK6LPR8Wkt +b7Hw+zmo8TY+YE99L0IqTS8pf5yDEyLWb299LMNCOsv9/xLm4JaltIy0fBkK +/1LNHGHMQbr3vGSibinuyfA9tbZ6DjpOXVPfJVyKx1Nb6nc1z8G6P+tXRDSX +oF2C67zVENXf1RWLLtdLMO8jodK5Zh6OxHOdkrlejDaPVLHu7DxoHJ6/9f1A +Ibo5+56duTgPU/VzX+j9Bej/X8s/IdN5UPdhZeUJK0DCzpVF134eGm5sXzvK +XYDrTIijzP+1cObhVG5fHH/POe85p9BkqJAxjVQKSam9UBQNIiRDmrhNqJQh +VKJJiXLLFcqsUogy22bHmV6holSiTFfIGOH8zn2e35/72etZa+211x/fz7OH +8D8owNVS0CCswCUIKsvf/kFnKrIa0/TK8Dwa1D63nkRPpR0gYHYuzlwdkI8c +JpH7RLO0u+MbbOlY8LTh8CQ6Yfdva9TT1zgsV/fWnzOTKMVySve1UQ6Wcl9h +YRE+ibbnDdzIPZ6FWZ+kBT38SXQ5NlW2yTAVT+T8qFthOoUEa182FyvvRP+0 +qZcV75pC3255zmt/5442zHXJ2mszhTQugTBo70XkffJjhO/RKTTdeUwl+85N +NKxGWdUGTSHbE/PXPk+OQn1heY1/4SkUo7hT2Cufhtr+Cm1K3TCNrtH9+ky9 +c1Fc5K/5X2BarBP0VlLr89CBUjsb2R3TaM2tzQ8dRvJQ/QKN+sv200j1U4j8 +YY8CVF5dxLP3m0Y/Y1e82GNbjOI1+koki8T2Mw1eRniVIUfLfVNGldOowIV9 +K5tbhhb6F2zy4U+j5avvuCxSLUfhDdfyvrdMo7eHEjVec8rR5SCVV8VT08hP +mStInFuJXFotkz2QCDEfhAoe+FSjRVK57clmIhTSdezNP2XVqElfSb1ljwgF +1z4ez5hZgyzvdsdtdxGhWXzbNomHNQi2BEWpXRGh7R/tnq1M4aDJ413v7W6K +0HfX1RE+nRyU9/duubAIEboh0PKvWFaLtH8q3JuIFyFeSdvotuRapBKTHdpQ +LkIRR1tpufe56GONPHcmT4TKlj8zSeFz0YOhSzOgQYSO/VFvDCR5aLbFzpD0 +dhFqr7/e3ObJQyL/s9iYTsDKlllVBoZ89Ple8hcnFgGDnyL815/io8K0pikf +CQLe7dscL/mIj7wbtxhmSBNw//PMBP0RPurXlMxXXEyAX6vVxqOPBOiZf3fG +4mUElFx8nABlAuQqqEnR1CSgcSqRO/hDgFrcgyM36RDASjVJqdcUoih8ONRE +n4DRhX6xUzuFyHquUZDFJgI8zhV8+n1KiLhZUx4OJgRMb2XoOzwVivugxfWI +GQHuB2tGcZUQGVkXOJ20IGDcQcNkoFWI8oYvWFy0JiAx8JlFhgyFvLbZGF+1 +I8CueKWkoeZ/5yk6BqEOBChNMJ3DjSiUoj+w9NERcfxttea3T4h54YZQKdGN +gLkBbTvWBVBIqTld9vlJAqYW1KbEhFGoaUWoZLYHAUmo9xU3TswLfsfphecI +uF2oxC98QSFLntl4uTcBthZRjh6FFJJctHSAe5GAZcHMT99rxLxwiuysv0TA +2rVXuYr/3Z8rbvv88SoBV/XTCmQ+U2jL7LLGtusEFE/eMOP/oNC482NeTygB +ry0L5bf9pFBORkD54F0CYprtOwKGKORJOOZP3CegnM72uPCbQlp7N2bSowjI +PN1/ZfUkhTrjF6ZKxBAQ9YM3/t/7rYTB0VjpJwSQ79qKW8R852zyLlIhiYCE +zTPL68VjhcjsUPU0ArauS2TdENu/+x4RtDKdgP76xKjJPxQK1/P0XZdJwDze +7Qhtcbyd13Z7bswh4O3e0ws0xPnM+KDlZpwnzi+91fFDL4Uqlkk6mxeJ+0dH +Kt5cvJ5An+59VqUE9DbHrAlsodDG2hqLA5UECHUrXc7WU2hUPsX4MIeALzP1 +/lkmrlfWiWCDE3wCXjiqmMcVUOhU4WHts3UEbCe0fr1Pp9ByKaNlfo0E1Dz3 +XlgfK+ZRRxXloCYCfkXcsQ2/Q6G4F1Oyt1oIWOp/aLe0P4Xk9hTQo78T0Ply +VPeoDYXqHkeNx3cRUJ3gnqoHYn4euDDwtJeAD+X0T4IVFKLf0/mSPyzux+E5 +srbjQlTSNu9d2W8CWv9xEJl9FSJfnQFe7SQBHXdsvMlKIRpoTM9vJmngdu+6 +87ebQpS+JDTz2wwaeDYEyJInhcjtwvHUbikaLBq6/n3EXIi+LFj697gsDW5e +HW+3YAsR/8BjT/klNIh7oeLReUaAdm71WtCynAbvrhv+OLZTgASrdpTEadHg +rKKp8PsSARISQ5IaujRY26hl1P2Oj+pSTFNXm9Ag11gjRGclH1mGK+7+ZUoD +pqaOdsskD731HRjONhf7P9lSFC7kofqd0cYGVjTYf+Bc/WIPHmoc/PnZ5BAN +rOwilVWTuWhfS3kw6xgNZji+4tl4ctG7qoeatX/RQBAt+TlpIxe9jzLy3e1J +g5rbF0Me8GtR05a/Ze0v0UDocn/W1A8OarllaOEeSwNneY2nUQPVyNFr3qB2 +PA28+K05li+r0WenjqihJBrsner51/hkNfqiHd7hk06DJL2ZrK9tVaj1ffuV +q4U0MLlID9KvrUTf1UPzopppMM37IhfqVY5+FjQvqZCjw0daaNKvjALkv7hi +6L08HXZr9XxTG8lHErfTy3qU6FD3+vdPM4N8tNzpkpP0Ujq0uik+uF+Si46K +NP4+tJ4OX4P9bKaLc9BHE0+SsKPDIY7Uk7erXiAOn9VuGEUH23saviq3A5Gd +3kCmZQwdHjnQZZuLz6CO2ObAo0/okLXFcuJsoTUiPdIVbqfRQXRk1T7tDC+M +5llZfcqjAzumpXDPWAR+YxNb5ttMh3OaP6m6rGSc+EXnyRsFBiypW3gwRzMX +j36VUQ5RZkB6cIRq2udcbP5t6JG1OgPGBeHh1WF5eLA9++HACgYcfLuj5kRf +Pjbu1rm70oAB2r1ttskJRbhtSCcwzo4BeW8Gkut7S/H6EZnJUw4MqOxbJp23 +uQzfGh3y3XSQAQoqEUcYYWV43Xj2+SZXBkg3ZgeXapXjK9M6p6UvMMDM/ebj +64crsOpMXcdrkQzIKH7gP5Rehb0kZD/ui2LAfYnXfkODVZgjOWy3OIYB8duP +7FizoRp7zs6xLk1kgMeheTmWpdUYy+haTLxiwMP0+bW/q2uwtJxsLecNA7Bx +1tK/WRzsOn/Y9GEBA5heZNWBbRw8Wz7HWLecAYXOqmz7Ug52Vtbd6P6WATNw +rEbH81r8SkU2z/AdA56bun8I/16LWWrDepLNDLh2IVlh3yIufrk4Z21aKwNC +e3D4optcPL1cd0VbPwMWzRwtumzHw1YrZVMzhxhwc/5Kw8IbPJyiOaxxaUxc +Dw3DJ6I8Ht69Okd1kYgBNgcGDj2ez8exOroLbWeTcD2CUTqrmo+FHvj0PGkS +Vp5wPxfTx8dEunkFX46E94RB3Dqx3jysccjdRImEf7GMtOdhAY506a2YViUh +b+kGvux1Aa6K8ZYv0CBBqXzia+EzAV4uF1aprUWCt0OTtVS/AB/YK6/Qu4aE +NF2l49lzhDj0TpJHqg4J3566Ge9fI8R9zEIF5U0kPHriIfHwpBDnjHZ6SpqT +kNqr6iD4INbL685VV+8iwXn7UInpgBAv8JhWDNorjnc6wekNm8J+nbI1v/eT +EDyG1pzXofDzxU8W5TiS0F54rKfcjMItBzXPeriQ8DqhfYDhIObBJiOlDjcS +1M44WDsFUthTVnA2/iQJV9vTL3mFiXnHcj/H0YOE0JI5Uf6xFG643a608BwJ +d3uOKJ5/TmGy1v1cwwUSjm5LiXDKo/B65gQnzI8Eq6fDoXqVFHYzClE2DyTh +WnJE0qSQwlEBc72YQSTIdHUGvmqiMDf/UW1pCAm77e/U2H4T8+HIUhX/mySY +dW3T7e6i8Kp1r7z075AQMoMVfLxfzDvum7mD4SRwWocDPwxTOPwZR+VlJAnV +K91H141TuKzD+vzxKBKoCkbVRTEvDqp/5WrEkODYFyjMEvOixsETqq2PSTi1 +9ZuoUcyDNo9Gzj9KJOHpgWN7fojH1z5c5tmmiu1lLxW1ie3zZKTUpJ+L65v2 +aY9A7K97z8MLgpck7LE5pJgsjqdwW51/4xUJ9tzVG0+MUHgn54Xa1jckvNwU +XbdIzIsBpIG3KJ+ETE1tqeJuCr+ESn5BsXj/2rMWW7RRuNV/j/qFMhIYMTJ2 +//3/IZ3/0XttFQkCe7/+tXUUNhk5JujlkHDJ2wCFVon5cO0v9TQ+CZvaqfiG +fAqnnPb3OVInnpf6cVHyBYU/PGULlRtJiL66bZPOYwrP6Li3+OMHEuzMv9pa +hFP4pPNToeVXcb2qmOm7PSgcE62rIdVOAs9kgNjkJObn99i3poOECbXqLnlz +Cmvvea+xpY8ENBAi+UqVEqu5Q37jv0h4aKvy7JQEhe/X9FI5I+L9UhhLWDQk +xKOIcVFzioTEvv2Cg2VCvP5Pwpg+jQlaDhX0Z0lCfOGNsddWJhP2ReU5lVwT +86BW0GmnWUzYq5Jobm4mxLpdaj3H5zHhWP5658olQuyVWOZ6QY4JwlM+0bMY +QjwsT3O5q8QE0/55cjIFAqz77knLIzUmuFbs16u/L8Be4WCftoQJuZGzjV1P +CfAQ67JV2SomFHoTbjIK//Hj9NahzUyghUvZZ7rx8bqMuDKRERN0hlMZ2zbw +8dkTW7ZImTIh+QXDpojNx79aA/SX7GaC2qRewoFEHh4QTK6wc2bCgQ0plmEC +Lv6ZOjG7MJAJDtY3e/P6OVjrSHRoTRATnMfYY+czxPynvHFG4zUmBHw6dMzA +nYN7I31pP8OYsHQdvfpzVw3uufJ7SPkxEzy9Zih31lfjLofRpiDMhJAHoX3u +/pX4+5zBBHOCBUZVT3zsz5fg7iM3qHkkCzbv8jlCCYpxX67yZBObBU792T+2 +LCnGYwctbNzmsEAo+axb7W0hlshMYgcrs+DoSe6RGKV8rG1pd6rYkAUFimP/ +PgnLxgHhRXraviz4fct/unHgMQ76bnV4zJ8FSQPL7OOmY/C1Dd1hJZdZ4N/l +fvIvyWgc3irXtfMGC87tyEh0VY/ESdoe0ccfsiCfb1zLibiMuXVqooTXLLiq +lR1yqy0MzZ93nSM3yILWV3ZKHUsy0F39xWd2jbKAjM46uNElE81wxvIhEyxg +z4llCrWy0J9nYyeG6Wy4nLfUNLfiFWrd+tesBhk29BdsXhXX+Ro99dlhFa7H +hj2DPlwjogipP/4xUWPABmspxj+mJUUopupKomgzG0Yq5aXmXixGYdIFw+6m +bJijkx5eN1CCzqavfLjLjg0JX+cEyXaUIsNWyRYJXza8j3aNz4utQK9ZacHG +AWxoSC2Tk/xVgVav2rrK7wobkk5KlAaZVCI1P//A7ptscNtbGtPwoxKxZH+q +cqLZMNW24lu0SjW6tPFmrSiODfG8/NVvxHrnt8uSs/qJbCDn/Ar89KYa/fvC +qSLlORtWcVdY6pvXoDoz4bGQIjZ0KxqtbTnKQTvcT8wuLmVD1L0n1f1pHFQe +ycodrmSD4t0rguF/Oej1ty0zjgrY8OvOtpIa91oUfTHjmfEXNiwz25hm4sZF +MgkW1n5tbJDvTBmJTOCi25zOP1kdbOgcbZtR3sJFgXKqu9T62SDhujMyeRcP +jW0qGtk/xIalPd16dsE85Hl4f1z4GBu8DU8NfMznoZ4bw6acP2zou5Pps7qP +h/7/nyQ43YkN36PGR/8DO6tb2A== + "]]}, + {RGBColor[0, 0, 1], Thickness[0.002], Opacity[1.], Dashing[Small], + LineBox[CompressedData[" +1:eJwU2nc8Vf8bAPCLa5Vvi1LSMCppaUvqQRSJ0iaFlopKZYRCi5Jd2QqhbNn7 +Ofa69x47e2fvvf3O76/7el7Pcz7n83zOued83heR208v3mOn0WjbOWm0/3/e +iXYZWlriJm46+rmcF2EA4bxp+/F5biJJ0DMhcqwEhI3CtE2nuQm5Jf6pdXkl +UC2VW9Q/zE34HXaRXn2vBJRjp37WtnITKq/S7lR4FcPehFvX43K4icu50hqb +awrB/luf0yByE+AoqrPkUwhdJi/zdqZzE9WTJ8t5dArB/4jbAf94boI0LTjj +11YA/Ml5fI7B3MSThBM/eVryYTp1d9Z9O25iw1Hj360JuXDZJ2Uq4B038fgw +T93Fx7nwx/L03kZrbmLdvjVrV4vnwiNZXZ9LL7kJPi0y3so5BxozvpjIPeQm +AiT3Kd2/lQ3ZxOxOIVUq7/905+MMBIf8QjfmCm6i7kDLS+ZMPNTtkA9MWsZN +NB/c85/20XiQ+JTyJ4CLm5gfPmImZBwHeaphpSaLXMScVcLJ031/YLH084rN +g1yE7MPHNU8CI+FZvbr9EyYX8Tblhz8vZwBcHa58s9KBi3in4HfprpQrBmmo +uc7YcRE3ws/ohNz5iqOxef7t77iIWJ6Al+vcPdDZJBGTLLmI7DR3qYUpPyyc +9VjQMeAiaJHLK7dfDcbjnDfMY85yEbVgvNVvMAa3CrUaafByERtM11Zot6dj +aNvtUhtOLmL49bzmlGMGHgjv2BfDxkXIf+hz/Hg0E5VkuwdXzHISa1LOnDCz +Q3x0a8iQ0ctJfAM71jBfFsYHLjw4w+Akbn+yIybe5OAJA+tC00JOYtopLvc7 +MwfzD7JJhORyEpqyMTT39blYm0vvomdwEu0TTwLvRuTiYufye9mR1HjJ4e9l +SvJQeZeQ3glnTuKS2THr7+0FWDbmQxh+5iS2TvuxLYoWolb6pq2+dpwEn/nb +yvd6hfhYTaR51pqTuPxlR9RSfSG6PZW4mWzESUi+NY57kl+EG6XD0rsMOQmz +7GRu5mIRBtF2Cws+pPq5Ozovf6QYk1z31ZvocRKTimuXPwgsxoa4I5oHL3IS +K//zUzN6WoL3XiUn31bnJLgvHeI571+Cg4oy693OchL0PG88XFqCbNUn/g4r +UP2Xm5kI7GHg9mnFK1EHOYnnG59t6a1jYDSRH9+4jzpebi64noOJ0p+UBf7b +zUm49Dz4U7iLiapC5yoMxDmJ8Zzb+c4vmWgke0lj51pOIuF070wEJwuFi3fW +GqzmJOqcHqyJ38bCwms0vaj/qP4DjvMmKbJwy4tIo4NcnET3hYuGEdYsLKa9 +nzZh5yQy8mvrfX1YaOqkZZO8SCcaGtSlPiSykBXK7XJiik5kfjk+fKyHhRZH +mwRtxuiE37XdIXQ2Erfnxf/IHqITF7KWV+cIkvi6RS/6TDedmPhu5yOsQKLE +E+mj9h104pVBZk78FRIr51Ygo4VOVDeLfz75gMTdguksjVo6IZ5eYiNuT2JN +kNvVr1V04mCyg721F4nvDzxsqi6jE4d1P/YW/SJRioD7G1h04nvy020cCSTW +q60bvFFMJ3J/SRRJZpFoW99v8j2fTiizygzlGCQeeJiz0JJNJyRX5cecqiax +adLrgxjSCX7Wj5OHmkm0f2/03/00OsFiHS9a3UXikTVnvv1OohPNNWl8DQMk +tv3YtKkvjk6Izn9kuY2R6LRnPGhPDJ249vlK4+FpEo+lFe82iqATLnmbV+fN +kdihHBAf+5tOPNu3V1VukUSXajPZiSA6sdNXyPTXEomyd9VzjwbQCegs/DBL +xd0j4ucs/OjEwjVDs2NU/NV6riLdi078yLHVuLtAotx/5TeWvtGJHardYpaz +JPZ7/26Xd6MTw3+juK0mSfSQsDZ470QnxuSVtjweIVEh8cpYvj2dKNp+2125 +j8TBU7stee3oxHsjrsBVHSR6l7FznHtHJ1QdLG3y6kk8rVNr72RNJ3ovaJjr +l5M42h+9psySTlz9dqNxsoDE7xa23vwvqfmaRXMZp5N4luem6FVjOpGt4X+9 +OZrEiW8HwzyN6MSNu+lwLJBEf7FlB+oNqeslWbT/7RcSz/1pSdn0kE6w3cbI +1HckBjEciwL16ISt6f7H87okXtC6q/HvJp2wWG3WwKVO4nyXTO0OLTqxzGbf +Hg4ZEi9xdHdHXKQTpfY1eytXkLjokmk0pE4ndp3Svxw2xcKwzd+m96vSCbWX +noomzSxkl1HgSTpFXe+VOmX94SyMKljvMgN0Qpb2XdLHhYVaV4YEZWWp9XHO +KZA3ZuEfI98dWYfoxLdegVBLaRbq/po8XbKNTrwR2jWRGc/ExYTkX+kidMJz +ucUhcGKiT64FT9QmOnFWcvnNL/eZWN26WOSylk7orZolMviZeE6YW+0qJ50Y +//ClUEWXgb2SRZFn2OjEhm2hox5SDLQ79nnFsQUO4u3gjo6CpRLMvrqydOME +B8GVLNRV6V2CR10FL7V2cBD/WprvNOQUY+WP2rjyFg4ixPeI0bPPxfg8ykcg +t4GD+MDgm57WKMaIki3VIZUcRMfhjsDu+iIU5ZLQNMzlIFqWa7Ac2gtxhaW0 +ztRPDsL+96LMptx8jPg0i90/OIirkXZc7K/yUcUzfWudDwdh53Pejv1gPr5P +kGtL/8JBPH8Ip29/z8PZIeV7b99xEA/ld0wNPcrFf3c1Df67w0FU3DLKnmnM +wnR1CzMxUQ4iQcErYLltMn7NVZLQ2sxBbDuVfqqyKgkfy6yudRHiIO4LdwgX +iyfh5u2/ZRbXcBCJfY0jV4gEtF6oWqjh4CAmg4m1PoOxqBCx/73TP3ai5ozA +YqRWGBby9rjM/GYnZCfb/Je4TNHfOl5eKpidqFDpsn+ieBfNJ6xH7wewE61/ +9h8P3ysLkq3rLld6sRPVXPKp7g7m8DlZUTDanp2I6On79U7RDdT1/f3uGrIT +XzKcUw+PBEFF7rUwch87cXNnc8/5iQT4nrbiUMIudmJiL9PEKzERHsTmZXjv +YCe44J7QlGkSzP84WHZvCzsxQouzJseTQdxy5fTcCnbCW38gXrgjDYz3FyhJ +DLIRnc6h4afzCDgpYUX+18tG2NmONuYIZwHPlsOaY//YiI8G/ZedX2SBL99P +w8xGNmKr7HN2ji3ZkNtl9eUyk43YGTbuNW+YAwLfj7TaRLARB69MJZ1ry4Om +rwOP7v9mI5LLdySv35MPvz8HjasGsRFH00TvLZrmg6z5Gh5BXzbC0rCrdBlP +Ady9PLg38jMbMW3+7nr15kLYqxqc7GbHRvV/smvT7UKYltdWePmOjWBn1zvy +IKgQHPYVXzllyUY8Czt+a3ZbEcQvC3lV+4iNSCq8J8QQLgYrtptceJ+N4Fxz +PLzlWjEoT/O7BN1mIxxjNwS0uxZDw783P59qsRFn3fhvhrOXAD3rZjHnWTaC +YzPvJPvfEmAlCVzuU2IjrDWFFVR5GeAZVdJYKs9GeCr9uWkkw4DdvsdGfI6x +EUZ1zmtVvBhwxWzt+gM72Qgx9a7gJWUmKBwUKZbcxkZw/RL5LfuMCXuHdr8S +E2EjTC/F9V/0ZAKPvmKLwAY2wn2H8i7OdiaMi15w+28tG/E2wPbYdy4WtDbd +UORazUas0oiJXbaTBalXX/ye4mEjDmeJO19/xIKQNdZaw3Q2ItUj5u7RTyz4 +wrLn66GxEdt0cz51hLDA8HSgUd00jSjik5AMbmLBdfYo0YpxGhGZqWmWOM0C +pcyUypJhGnGmrCvJdTUJm4+USWd004jqVYPHA4GEZaMNvQkdNCK+Uz626jIJ +U5HdvlEtNMLZLO0N+YCEjofj6r8aaITrG702J0sSSrfR2PxraMR5S9v1/I4k +pLcuj/OspBHveknjG34khPoJ3nMtpRHecOKyfgQJ7ppigvYMGnHn8N6tR1JJ +eLt2X9HbQhqxFP9AvSCfhCdlMpaWudT4JzbrCZWTcMPx9B5jgkZkk8OdextI +UFa52GyYTiM8tacs6P9IOMR5y/VeMo0IT8rK9e4nYWvWw1O34mmECZ/2y5FR +Ev57bTJxNYZGJFRrXOWZJmFW+s2v8xE0IvBmzK7mORI6xx00lX/TiOk/POUm +iySUx3gulw+i6vc+28dYIgENgzKO+dMIm1e2R9qoOEIi5ukBX2p9BA07k6h6 +z440kV2eNGL2OuOs2jwJ7/0LKsS+0ghbWo1lIHW+Z9oVH4RdaETPKaXvSWMk +3FrffHStA41wu6Xe7jBAwtnK3p7/PtKImaDoj6KdJBxxmfThek8jfIWCa142 +kiB2jl19yZpGdNh37XSpIGEVzwratCWNGBAPbX5QSMJ8zobYYTMaYeft+pAj +nYQe6213e17QCOPslFO6USRUH9+/ru0pjdiQGTJp/YOE6Dhliwp9GiHyq+X0 +MisSfJ9e3s24QyNaKkQPmhqQ8HGXblOuDo2oP8bt/usaCbd/mikkXqMR9xc3 +/7u5mwR1nXfjUZdoxMHisLcdAiQc3+gc8us8jWAkvZw5OM8CgS8hy7zO0Ijg +M4E39hewgHY+Nt31FI24ZhSm2RrGgoFlmU/sgUZc5T529ZYjC/LfVpVbHqUR +jwv8xnPUWfDyOd3n1g4asZzjM6deDhP8v23w8xWjEUIP7izf58+EguS9P+q2 +0AgrQxp9zpIJ65au/7y6nuqPPyTHVYoJ8Z8jw9V5aUTvs6ubmx0Z0BCVHenA +SSPY82U3Z91mAEf53+hiNur+2/G3MfwIA4Kk6A8cx5dQPcAoKKC+BFpUIl++ +rl7CgkFrLRmhEtjn8vfVDGsJh05xSjh1Uc+XarY3JgVLOF531HcqrhiE71z9 +9Dh5CTtjpj6sOVsM118ted30XkK7Z50vfAyKgIzSSDtxawk9THZYhn8ogM0T +lphydQnXJ9gdOKFUAIbHQ3IOn1/CnxvYpOn0AlhWOFuyR24Jb3+3FThunQ+n +W382bBJdwjglq5bPhnmQyT+5sPBvEV/yxZoyxXMg6qW3XObjRWwyFO4+fzwd +WgifSY97i5gyW/196G0arOH1i3h2cxE5c9e5mBSlgpnXj/Xb1BaRyymhXuNS +CsilBg1/3r2Igf8p2Gy+kQgVc1H+mn0LmJfosCVNPgamrXJoEw8W0FR2vZbP +akeQLMhNZOku4KnMiwnikbagvTLf8Pf1BXQVtS7NO2MDWT8Ka24oLyBPv9Sv +sLobYE8wY7J3LGC0ZbHYrk22uIm9Rtelcx6v6pV++qsYiAof+oldd+excuy0 +DuNTAvb60ARdtOfx8TRLyOJEIrrFCjwevzyPVomhGnrDidjeLLshQ2keba5U +KeZcSsb3Mo7P1HfM46qqm/ckVqVh3tAe0We9c7hs2ftPa/cQ+IRL4WVV2xwS +vH0OZ60JXLfpKutY/RzO9sap95cSeP+slQU7Yw7XX+OOefQ8C7mCWeVfIufw +yDJnW3pUNiprPX2XaDSHo70n+lU583DY6F2t0MM53BY4/ZBDLQ897Tz2WevN +Yb3dk7z5L3nYE4/1Zy7O4fanu46Eb8lH+5WrDtUenMObyZt04/YU4IHt4vYn +ds+hlsWKpcNPC7BOVrolQHwO929WM+qKLkDJR7oOj9bOoe2TEyXMvYVYkhvT +MTc5i5YtVSsMRIvQuD5XRndoFpdpfEvZfrMIhUdrXHK7ZtEiIXRhyb0IDbew +nXCsmcWW7ovKHDzFyGeh8W1z6iy6mvDpr2suxniXe31vY2dxz2rebR/XlKD2 +L3P5rrBZnC8+IcujVIKRlQED0T6z+N+DhBe7f5Wg+r5RJfnXVH5aqaJKh4HH +S6P7S0xm0dSnV+GPPQMlnj3+cvXJLHKcHazziGcgR1x3i4HOLLamOw/acDIx ++Uizpbs8df6l07f8fJgY/NdXVERmFnceKHaNyGSi20utovADs3hRKMYnvYWJ +hqlV67LEZnFS2SCsToSFIicZf/o4Z9E4ir9x2IOFK5o/XTddnMHTl6z/dMey +cN76zBJtagZdvXfuqWWwsDor+9y67hn02MAe6r/AwpzbNmP+LTOo0JDBZSpA +YgzHSe9dtTM4oN2aLydJ+UoppUuueAYPqbh9jrtIolmnqVNJ9gwavxE/rHWP +xLt2hw5fTZtBmz8HP4+ZknhRYrS+JW4Gx68UTFrZkQhF0W8NImZwTHu0Z86d +8uKjxzsng2bQtutv88NgEoWW7yq18ZvBJxnR2oWxJHJHdJsud5/BxefFA+uQ +xPFzIZvcnWawX+7bzivFJLYO3MndajeDvY5+0W8rSWQ5iRiEW8/gGsmvEj8a +SUzf17z6yMsZ/Hv8wumwfySGlvomE0YzaN9UlvOzn0T3Z1o6qg9n8PBzxXuf +RymfrlnPVa03gx2+tGndKRKfxVVF6GrN4PYFx4vilAdvXf5yqe/iDFY7Bl2u +ojynOnFh1kR1BudT93S9oLwn7b4igKY4g807lOaXqHj7UcaZz7IzeHT7MWdz +Kuav+TS49vAMGjTZB7VQx9PMz3zz3zODQxKDKoep8Qc3cMru2j6DyetV3M2o +89enZrclbJ5B5pG40F/U/Apv2HySE6TO98Q4Mo+af8L8CamSlVR9JEdlGdVf +oN9c9RWeGTy4j1OTQfXvcjLldQttBrOtld8kUOvzutlU3GBmGt/vyfd2pNbv +kc2hkomRafTa5Td/mVrf6yKjz2x6pxE7V3LzxVHevvMYv9VPo8bi09yzHiRu +oe+6v7VyGqU4Te5VUNeTL7ibL5wxjXZiJz6rmZHY2XlHi8iYRktDweD1l0is +sBNhU02cxurCLPIRkEhINP+qippG5tEr/THU/eTzSGui98c0Hg/VLtm4yELD +/4bUKjymUbv1ZPHeDhbKxrwLSXOexijjXeW8RSxsmoi45mA9jYb+XRrCzpQH +PeVjjM2mMZyetOaqEQutj1fz3Hw6jauVzZ9oX2Dh1jdLKXt0plGIdFxRycfC +YbGva9Zdm8Yrls3zZ3qYmJUvYbCoPo1mw9x1jrlMvM13UZg8OY1yGhrS38yY +GOQRZGW0eRp1dv5ZyCAZaCxz7O/1ddMoW0PY9QcyUKmRuU9+xTRanTNtmTFm +YKfoVMvqxSncf0ZGJXkt9X2PUjkV1ziFdn9jrGZUqOdF7iD3pO8UmvBzlN20 +LkIr/Xe6TV+nUD9dhttAvgjVl61PyXeYwk+ZQVLm7EU4fF7+kcerKRSzj7oS ++KYQD9R/YUhrT+F0oVLjU+MCTByRdrXcOIX35XJZV/fmoe1XZs8d/im8UZMC +sa25eO3obYVzy6dQWCuOlPmai9OvPo8Jz03i2oKdTs2TOSjD03Qls24SQyVC ++cnYbMTN74TYvCfxcuevjo08BHK5SPIbu03i1Ie1K54YIJ5jK1/eZT+JbeFb +V7vkZWJN+9YFhuUkPvtcLx5lmoGjvzObPW9OouQBuuI4IxW3H5wNkhKZxAuW +IFGunoAOZ57t0/09gbW5GreOBv/E8uT1EhX+E7jfw4Oo2hOIGySJrae9JjBY +f/25ygR/DOFbuWa3/QT+l9MkqPrRB4myiPEpgwn0eOoY+98TZxy70Z3ivG8C +zw61BXvMWYOWkY4iJo6jT95RWPUmHN63Nw46R43jnbMbTqiviYSoq9peuiHj +WHmzvEMnMArYTmgOsrmP4wi/YNWt5hj4zXvJU9FkHJ333RXTGIuDycDT/UUH +x1HBbHr/99EU2Louz9171zgmtM+tFI1KhbOfTskbiI3jsWu7zrk9SAO/p3Lu +fPzjuCtTpHxDXTooysrInR8dw0+qCWcnohDcqvZ8rYwZw++1Bb65DtmQrhxx +Mvj3GHpI1fodbMmGzjTJHhP/MbzP+dOv+UAOHAvccVLQZQwl7FeqtFblQMsT +kW7Np2OY/DWrY9+aPNjLs1a2ec8YVovK9cnoFcB1yy+d0dvGUFXQeWAupADe +Dq52tdk0Rq3nGvfCvgKoqlzRKfLfGCZ89C80f14IrwJ4XO72j2KjWbvR8Isi +KJGZb+8JG0Xj3ew9k4olICMt3twSOIp5F5jtiuYl8Pvwubq/3qPYPrnr0puI +ErCV8i3Nsx9FnzlWQMZKBihsl80IeDSKQaZ76lYUMeCP2N1kz9uj+Oz5uuU+ +4wzYKuIQ56w1isrqEUNcW5iwsLEh9PXZUWyBX0pmRkxIXv3KXVNyFA0eqKY7 +cbJgx8og1wuio/hnaKiifwcL3PkYDmeERtHuwP3wzSoseMEt/O7wslHU7rO0 +nLZjQRtd0Wo3+yjqe19i/x7MggvshuZisyNIMj/cW5PNgr0LaU9X947gAcEg +nTtTLPCbbX/E0zaCUmWJ7SdWkcA3vfz+Uu0ILsx/2Ny+gwSLiYN6k2UjaMwb +JH7xJOWF0RvaA0Uj6LIQt87+EgnXh99d68gaQX2J5yL2+iTkD4RfrE8Zwe/X +019rWJAQ1D2nXBQ6gjY28qoHfUng7xRTJAJGMLdH1OBcOOW5dlVI8hpBA63e +Y5IpJAy3vJCJch1B8zK7PYw8EnSafA4HfxpBNolDhfvLSGDV50j5vhnB9xMm +nlr1JMjW9u36Yj6CqTPbjp3uICG8mn+H/bMRTFz+QmO8jwShyuOibx6OoKzT +v693Kd99Kruz6aXeCK57eDvHfYqEadbn9U81R1DHbk+oPeU7fUYc/32NEfSu +69ssR3mtuqh+xU2VEXRoC+JNojynVMCx7LL8CBak5GgNUXF87i5O1WMjWB0i +uKqHqhfNvkRT2D+CKw9UHgyifOeKlnPSO0dwEV0ats6QQMv4OblPZAQtYs7s +0Rmn/JpaMrJ9wwhqs1+5ojNIQmPSWP+m1dT6Wxq7iHSRcC5hY7cA7wgaXcft +IU0kpMWeal/ONoJR5qGGA5UkSMYYNLHPDGPclsXsqSISvCK/1M4MD2OeeIN7 +XgYJPOFplcPdw7iQ+UfvWgwJZr/bya6WYZQpOBoaGUB5Nnh5SVPNMKZ8MFwq +dCXh8s+D+VWlw2hJd2IPsyEhx/9GFqNwGNO7+G9qPCHhwPd36TnEMP5k/M5D +LRL8fcKTUpOH0XGv2NKEEglW7nORv38Po1UGuTtjPeXB20dUJAOofAY/fYmN +hDN7n3WEew3jJM3syqFeFqzK7xSKth/Gnhslv14lsWDCVSRR6t0wJu4f0XH1 +ZUHdTW2NWMth7OxzofnZsODnRJldguEw9vO9ZfgqseBjFp/Y0XvDKBiQM+m2 +nQWGjmcyk28Oo/cude73XCw4si1jPE19GA3hg8wNyoeFl3/rZUsNo6d11ZNF +yn+RW9vnT+0cRm4BjzX9vExw69/kmScyjGJkxImmVgbceP+FVbhmGMduZ/hV +OTGgXn/B9HvPEC5bGLeTbiyB7dvDJJOfDeGO4PY9kmrFMJyxRS/t9hAWsLZz +rRUshpQr3zwyLw3hxsrPg5taiuDcBxt63uEhfKl0Wt/1aRE867jaVDYziLon +JNoOvS+E9EAOt743g7iF/YL8Ydt8atbmhYPPB/H+t5Krwwr5oF4+uDhyZxDF +XdSDehfzoJWtzmBaaRD/WAiLhhjnAZdejBLnskEM6Nv42+JaLmhsuTmz2W0A +14UatGTMZ0Fbqs2XxjcD+GeZol/Pryx4fjVoj++zATSRXvta72IWuDn26W3Q +GMC7AuMqp4IJKJ8zL+ZfNYClbS1SuraZcLHG3YfHqR8v9Vw+75GXDBddS0+M +furDQWaypdbuUGjbPf43xrwPhaL7Np3z+QXPCwWfP33YhzFnxBXVeEPAbelW +SL9yH66KuSqa2RYI5Y8HVnRx92GF9hZZaSEvuHh2WUv9h14kfHZtusZ7DC9x +KL7Ne9ODlffFHr9zCkXWcUdtr+c9aGeh6JTAEY5njauPPL7Tg5qfcwanzCJQ +4d+DPgGlHmzRMf9rfjMaDxQ4Xr7L04PaQkoeHxxjcdXnv9s5nLvx7oIX2y/J +ZHTI2cr217obMw29WvPrkpFn/mF9mFE3hhw7unuZfQouGc47X7zYjTobtNPa +/qXioLrITMDabjThMvQ56JaBjDUGJXK+XTifYd0nqJ2FyqrxwQKOXRhTyZpo +Ds/C3HcL1t2vu/CIdK/k8rksTBt3PuSi04VNAV+22nhkY1h1vF+zaBfKeohm +exbm4EfvxadWoZ34orTbWZY3H+kVZ85e9O7ExNZl0bNq+Wiz3FV8++dO5Aq5 +Xjfqmo9mr8RqmYadGNP+ZshOsADv31JW2CTViU1yCRX0DYWoKOomkJ74D8UV +w3R0xorQ9tani6oh/9D27EZz5X3FWORt41L37R+q1y5L3vqoGNX5n/LNGP/D +29ebhb81FON1+jn6kYP/MO4/Q2m1+BL0ljulkCf6D6010jufdJVg4ysZm8tr +/uEZNe7SxxsYeHtCYv75SAc63v16fM6cgQadnOPR0R0oZR38ZPMeJkaJLuyH +Hx346pGD99hVJg7fGn/KcurA/cdzlntYM9H4b1tf/+MO/NiYt1uBycRE/rqd +r252YHy4bNzpUSbOnC/TX67Wgc0qFrv517HQqhDbd+6mjqf37FvUZCFBTxJJ +2diBja91JjdYsJBDPkpHeXkHamooSkx7svBjim/9/d523CSUUDlZzsLiiS8b +JmvbsTtwYFRgkIX/Hfh87UNRO7KUuHKHuUl0CzOv+Pm7HfNO773aeJTEyk6j +1Qc927FysE6sX41EQbEH57Pt2pHwTMyIv02ilo6Oo4ZZOxoV7lU9QvnP1+dq +Scv9dvw2SWMz+khi0181XqOr7ZherSCi50WiiIDSmSWldjyx5tEcTyjlxwuy +H5wOU/Mxu9R/P4nEEIeDOZu2tWP/D5VbFrkkdhdKskUKtGMDx/IihVISd3GK +giy9He3syT9YR+IT+Q2vS8ba8L6dWvhwO+XX16vStNrb8PGezCtVfSSOpnDP +9JS3IZ9J663HlKcOTy4eMc9uwzMmbG+TKW+9PDBpzBPbhvH7JuwSKY+lPhmI +9QhoQ3lS9Iz+IonzYR3D212pvOabn8WU56Crfm+iTRsyK7ycWqj4rViFoZJR +G3LU2HGHUvW5OsVhlTptyPoxIyQ+TyKXb1b3nfNt+M56X7vGNIkqNcnbx062 +YUnlrN2BMRIdBGLuvt1Lja+ffjKf8h3rwq/A1Zvb0Obk7bP/Ub5b5fi9xf+/ +NpTquDvH3UDipaJvm6UWWpEmmhudWEZ5ltNRG/tbsW0XR8WGfBJr5N97qze0 +opSceNP+FMrXVpY1jSWtmJT689pSGInaqc/XPU5rxSs+zyve+lCePqDn9tm7 +FbnW/rsb9ZLEqHfhz/TtW/GAwLmJeMr3FpUTF05ZtOKrRUkJGw3Ks6b2K+c0 +W/HY8OtI/W0ktuRXDlartOLAnfrUD/+RGCG4hRV7rBWtZJ63GIyzUCklzuHR +hlZM2bBg9DWThWuWLRqc5m3FF7mZ0zUBlO+0lFVFZ1pwaxOU97xjodl8A29d +TQuufX7omIkiC0OBy07FswWHRRwiriYx0dTlwv1tH1uQr5zrlIgrExVavZXY +XrYgh4ptU/ZDJta/3UdPudaC2q6dN10Fmfhf/vU3EoItSFjwfPt0j4F1637q +0rlb8HuX8XqZIww8R9ZZEwPNaHrqwgmSk4FWa+gL+yKbkXvx18rogBJs87w6 +tWJ3MxodPpv2ilGMljJ9CfnLm5F+a3/Lp6/FKNBgbWzV14QPGUO8DjeK8fSW +0JGBsCZcurDxwcvOIgwLnutj7GxCWsiI8YHhQnwe699iv6MR704qMK9U5ePy +y4d/KHA3oh5DP6jKMR+DJopuznY2oK2o+MhzpXyslh6rexjSgM/fPL6wOjYP +ZVCpSnlbA67kiGftfZOLHIzeIi6xepRmOSt8m8lC41/FPD30etzyodaURj2P +O96GnSnprENn+7vSZTeyMO/YozznsDrc3yl/LCqNQLtfPcT6A3WoUnf64ume +TFz+rjtJUr4Wv4jqa7X4pCC/TGewus5f7Pq7sTKhOALfr83vkJL/ize9g06Y +a4bj+HCwGL/YXzS7ctNNrSsUq37dC/jbWY3TW4q/3qD9Qo+1/3x1n1Sj+RmF +VKOdAbhxpP3L89dVuFq6TjbH/gOK/W594+5Tgaa71PefPhQIWz9v+jhkUYH8 +PHJ7+Yp/wuYnmk7KWhXYVzJSyqUTDEKHyrxn11dgaLzyMk3b37CGIOJuuZfj +Axt8FlFI+a7mx7/trmX4ktdrGbddAiym1vdZG5WhWKQVo+RMIsz7CY7WnC9D +v4E/3uHcSTB9x3nRfkUZJkO+u9/7ZBgeshIc+lyKDYr7WCbP0wBXprs9oe7r +BEMrteTPBKRWHfyxlcHCkNWShlLtBCT6hIeX27PwsL0I+9yxLIja4ZN7hIeF +Goe+h5v/y4LvYDG5yM7En2UbpTIO5sCrp9JaztPF2O/BXPYyLA9eHo65L59U +jNXbjVfbTuSB8dyOF2Mmxfg3v/JZLOSDgZ2gwzXqPSYmuV1XqywftH5MZmwZ +LMSc4kNN33oKQJqMF4lpz8cPfsYGF/uKoJ0nZ29SSD76Pv4txStWDE4KZccz +H+aj8nx+ZZVmMbQnDFxhDOWhRZrVutBcKu+73b57LhePr9hWz+FcAtLVhzyG +MnPRVWhF6mEsgfaVp4ImqfuMPhq3/OkglX+nk0nnycUBn+YXIyoMaH/oObpV +IAd91+Wd4J1ggNPPkKUdf7OxcHGj9tlNTJBujOfb552Na7RlIm0VmeB0oWz7 +ia3ZWHZh04s+ZyYcs28+qNiehV8FPyiujmdCR86AnGpIFpZeWsO+5y+VP7rs +hubuLHQ0X9CVF2JBh9H6B7pDBBo8fBl6VIYFTmHbTfRjCdzcpr97iyaV33TK +2USaQJ1NpR4ZX1iwKTpQemYSMX+91Ivn0Sx4LooXuV8j3n/y74lAMZXnnbYV ++5SJrVmR64TnqfwrgYD9KzMxY4Mnuw0/CYVDUmnwLQO197o7MXeS8Lz64dCN +gHRUrHn8TJTyYKGKLe+jHem4PZ/3qsR9EjZlBIq9jExD+3WqkwIvqfzP+mtf +U1KRlaQ18sOThM2C088CIRV9fgRLnPhFwgt7AYeYvBRcq+pVmRlP1S9IhWSq +pqD1R+lX4llU/TM1glGWjEIXTWMeM0gw7nhYV3ctGYdijvF5V5NQdM12vLsx +Ce+f1jsU2kzVlwSumLqThIGv8v96U54yPokSnL2J+PCmXPQTylvFf+oV+I0S +0WNlyGtxymNbtk1ri0wm4Pxs6cr0aareU8Bs36sEtHf7LnuY8lzx8v2uJ9gT +sCJ3pMOZ8t4Wa7Vw1Y/xmLEmfqyE8qDx6MM8zRXx+PBc9c0eKi6+Z9us/zUO +T49fEO3+f31t4IyJUBwqK4ufLaTGMz6H/O/9Y/H0yLXuT5QPi7F+j9v2WHx3 +fXbDngmq/uD0Gf+IP/jo5xau2CGqPkTgdtSBP/jySkvj+h6qfsP+V+nJMWji +ea1Br5Wqd1RzLz4Zg0uSAacdayiv0yp1/3yKRouJagMfFglfu/i+Mb9FobnS +imCHHBJa1pk1xYVEornXRghIImHX6dYd3kkRWNPwuSAojARTE9VnNoXhGNu3 +O8qD8nt2UELq/dow5K6dMrBwJGFF5Ra6Wm8oHmjke6f2mgQtDnu1g3O/MWAi +ymq1IQkjerdaloR/4UjRUasnpymvuxbu7NwTgr1h2/N5DpDwkTjwgnEyGH3o +vy3chUnYuoWby0v3J+asmRRwHmSBX7LOtbvKP/BpdLHpclsWHBI81Cv1yA+v +S3eqXnvIAoYJz+uFzz644aWRmp8qC2YP/Al0Jz3w9231po3/seB6JPtg4VUX +DNOtu8H2nglNglFsu0Yc0OukpKWsDhP+q7q6I/fQJ7TRGkixOMaER+d/P59M +e4P52+xiOfv+/3uN1tmai1eRTf21lKUCAyKqrEUs5E+CPOdc9PhaBsxxOkYW +p9yGNetq9V51l8ApJzHCRv0lKBREvk23LwH98idF9es/Q7MU7/vd1PPF3FhA +ndfKF4K8fANV+Yqgba1cmqz2d0i1yV79rKwQgusPC0hv8oeWhKNVxLdCWPFa +743BXADEuSXrd20shGZMvlGeFAw5oiYR9psL4K2S/ip/qUjgeDkYuHIpFxi1 +wg4ch6JAh/gkV/AnF9Y+KefWPxoNCV0WeyPv5MLlku9L637EQEocu96qvBzo +HOOdagyOBWOF9eEOVtmwTKnln0FcItTrPHll/B3hcpdDjh0rEz6GHWswWYqD +8bUvUOdtAWgO/F7UfPUVr3MX+7VnFsBoX4HN0jMPTJve+kp/rgCsZn+IVN/3 +xrf1LOmnxoXwXnbn0b/b/XFlgGSs1f0i8FxbbObFFYKSu9uC/M6WgFpMDbcs +GYO6Chr29WtIePfvmKdFXxrmHvz9QOc8CdJGO4+tck/HHduWTrd/JiFnxbBP +KGTg1LvqNybspfBtTb5aqXMmZt5/f/K1ZSkcuhs0FexKoOruliSHx2XwychE +loc3B+eDlv9ifS6DZ530YuErORi16aj7qrAyyNzWRdj65+CalU7GXzvLqPdS +mf2Fw7lYM3J8v69OOVyxSzllfDUP7yd5hIVrVICsrkBStXEB2kvol5s+rwCn +2xUFRqkFGOV1ZFb+SwXoV/zuFFgqwCnLKpWaygo4saxIxuhDIX6U4++hX6+E +/Rxa/TtsizDiT9uq0peVMKqtWpOfU4RlorHSPl6VMGganKhFK0YhTo2P++sr +YU/cwIdrpsUYXuS049atKmgfyDC9c6UES2Vund9pXQVsCxWx+vYlOB6+x2z8 +RxXUaPKbq2eWoKwTI9++tQpoM7Vn0kQZyLq47H7S3WrYP5Y0U9vIwNGcWse3 +H6rB+mGnfCovE9cdDk1QC6kGszdrnR8fYqKOoDJnR1c1sNg0tU7bUl6r/xC0 +yuAvPLAovPRlIwsF1K4w6j//hc7ehyuaTrBQOlN8PCTiL7zg23l56BYL3/jn +nDox+BeUpXIO6Pr9f5/wxYBnZQ30ij1SzEil/PX29peKfTXws7mlvL6a2g/f +Y2t/+KwG/MU0/11fTuKR6tJlh91qoD5CXSVBjPLVGf8DtLga2Mm9ppclQ6JV +8lOtkooayNl0qCboAok/d8Jb9/EaWMGmt/8ItV8v9F4Rpre2FlxXPdz6ltrP +9y9vKtt9pBa++6o0UmbCQ4OvRHLMauHCHu+2DMoD13XOqTh51kJt2q7G/mQS +X5VufKaZUgvHdTp5K/JI9Jfv8xSvq4UjTevan1LeyItNJYZma6HMUmc4u57E +XjH77tSNdcD5Nz2/pIPEFd80V9nK1kEr2PPYU545wLVTWuNmHRx+++HeAuWv +q2bTOsJWdfBoW7n3NspDFt0Fdl3f68BZZP45O+WlH5oe0bFYBzq8s3lf/u+p +4vt/X7fUgXzoXvPa//+/5fEjS8ps9bB14yPrCirmi+TcISBaD5vO99a8oeql +NlepNyvUAx/vjS8dlOcuOweZht2pB+JiVdEc5T1zmvF3k/f1sOdOU1ABNR97 +Zb93v4LqIax3VfRDar7eLvkPanPrIffRWRaD6iesZkht+b96KLvgqT5C9Zu6 +dcPBE5wNcGut2ce/1HoUP1BY/3RbA+wvZLVYU/6qizFY8FdqAJmtQ4W9lL96 +p7+2ld9rAPeVnzPXR5A4K5dZQLdtgNL6ONVlfiQu+9QVcSSkAb6lVnARDpTX +yla5PchvAL6xX24yliQe17ujzeBqhBfn6ztsLpN4LtRBfnF7I4wVr9+rDpTn +RhK2S51phIdHktXaJajr94Zn5ItdIzwiVvs+mGahQ9H+6rxfjSDiujFaq4mF +vqtvpE0VNEIzya+3PoeF6QGRH27wNIFcrMDQ7EcWMnqqHzlKNME3vpiVoo9Y +2LCfdgGVm+C+t/L1DWdZuJB1UUjsUxNISlx7/JqLhSuWvVq6HNoEribSjf1t +TNx8MbjDtqgJWg5XpO3PZOLJtqmoXt5mYEl8c5B/xkQrdr9TsfbNcOzbjElQ +EQOdzuZLdIQ1g9Sm8xy9vgz84Tb037qSZlhTcSJ59VMG6q4W6U/nbIGC1ZMl +K1Yx0CbgReLW0y3QrD7yYFyxBD8q8YQeu9oCP5Q/x1qvLEGXHl+fi/dbYFFl +LHi+phj99+fbvLdtAY2X4+sqHxQjkbVetTu/BdRH3ssdfVWEhfciT7D9bYEN +K+oiHE8WYSmvgpRQVwuMGVV0dS0VYouGwdpz3K1Qllfv/ce6ENnaMpqjz7TC +p1sxRS0vClCB/Y6xWWErZCeiHcf+PLzFW77d8m8ruAwjc6onFy1XyddadbbC +qWTuC0cCczF+85aTtvQ2KMldwfJZlYvbjtdzf5NrgweNvrrq/7KRx/iST2xy +G+UehQNuRgSy/p3KHvjdDg1fFUPVTiWiZpH4qruf/oH2kdYh+bUGEMX4dyvC +6x+IcT6PyL1kAfTSkMjx0H9QyGwIGnB8BzHVEqofiv/BVJBXdMJOF+Dq2G0b +srwTtroJGhp1+kL84qH5bsdOuCnn43V0VTisOKTU/ditC5J2rOSLj0yBu0e5 +jiYGdoHq4ui894NUSJUp+LAY2wVrBwPZjEXT4J68iphzRRf0mCr9bHJLh3R1 +tVsxAt2wOfegetE9hIcPr1SOunfDl7/C+nX3syHTcJ3Y8V/d8G7Dhcd7U7NB +wOjvs3dJ3fDVYduyHL4cIEw1VwrUdENcyKlm/+gcWPf+5tnDG3rgUzDhXtmX +C7nf7xFmPj2gasZuefd4AezlZCPDwnpg/6dDzqGvCsDTwLexMaUH+LbBi00Z +BWAoXTF7qqYHxms5Uj8eLwSBcrnDq9b2wreyz+ek9haBlXTDqVPivcAdp5EU +9aAIur+bXTQ92AvbWKkVZwOLIN0g6mmDRi/8k5sXr1xTDHc4hcN+O/XCXZkP +7BPdxcAwSEqu9+uFYDq7n6RwCRwpv1iwIrIXTBPNsp+ol8CyH586jEt6oU50 +OmljTAnESk9tlufpg4//CT+p1WeA8A+3PcaCfWCdkHX68hcG2HLulf21vQ/6 +dk/5lmYwQKv8ruZ/Sn3w48Gt1oKVTGA3LP9S+6YPHv3M8P70iwmG5Y8D+Vz7 +wDSncrS7mAnV0rx/wL8PtgffGjk5wIQwTjlWcCaVF2GJFe9lgYBhfUMNsw/i +cgZXLqixwKrctG95Yx/ssuXjFzVkwcUfkTzP5/qg40P64ZPBLEjnVBEMXtYP +DT6/rh8kWLDdsGNbzYZ+YBy+5LWujtp/Sm88dVK6H07uPdj+cxkJd38kajw7 +Q+XPzxw/J0ICi/OibtDVfhi1jdVoPkJCQPnH18tM+uG+/fKM7FskLDsm7nDi +fT8c/HM/evUzar//A72NvvRD6eJRT+W3JDRx3gj9GdgPfTx7mu67kaBsOJlU +/acftnUmjhgEkBBb7prPm9UPkbtXql2LJkH42J4q2dJ+SPKSNZZIJ8H2R2H7 +0+Z+iNATnGgqIGGY8+5o4GA/9Eqo6VuUU/t3wyVa9UI/tAbdNZytJyG33Hsl +738D8OEfEX2rg4S9x45slhUegInTQZ0hfSR4/ijb/XTXAKxffrC0fIQEdq7H +xwNlBuCqj8nhtkkSDA15zlapDID4c62eylkSqst/XufRHACDiKTCsAUS5I6B +/vEHA5CqcC71DuWlrZ/tKkXMBsB8plh7iYppjaQ8j+0AvLWVF/pExS1710cP +fh2AqS1BkzTKU4SNrnDVzwH4unvl0v05EvzLf39Kix0As4p8lbQpEmzERyYD +sgbA4cSRSep9C7qmx+5+LB0Av4+Du/cNkACFb8qeNA+AiGHwlvOdlBeFik9e +GaTm43yQ91YTCYsGayKOLwyA0xe3PdpV1PpnaG0Q5RsE4+K6WpUSEjJX/rTl +2TgI/CFyd3cQJHzX6xsb3DkIK6tW756II8Eq7qBelfQgnOWP9YoLIeHktdzj +gVcH4XfMmcP0T9T5QvlCP94bBLkGDT0PyseLs5fXPTUeBKX95/Zt0qfG//5v ++LjbIGjIGq7ikKfGH95zSzRgEPre/3l4dzc1voJpCU/MIIQf2jiSuo6EE51c +IVXMQejI63h5tpsFwtLn+dMbBsHDleD6QLJg/pOHTWDfIPxUD29MSqDu5z0S +N57yDsEX+Yo2XmsWyJqorOJVGgLmu3Yvc07q+ALX10OXhuAFV8Iblw4mzK+v +6626PQTal/wcf2UzIT39UV6gzRAMz+79WWfJhON0BwvZ9CGorTTxNm1jgNDV +yi7RkiFwftN3PCaFAbO/hK/w1g3BSn/fpTFnBqSqRu6rnhqCVZKE/Y9jDPBT +0R9N2jAMd068yo5+UwIOz5fv3CUyDD7nL6nf0SiBVz7ROt8lhsF0swrPnq0l +oD0wxXh/dBjMlff/5E0rBmHXj780rgwDd3iLoWBnEfjWhGr3uQzDeM+H1E38 +hfB7ybSV5jUMF16tuZpMFkDCdsX76wKGQUJg28ztzwXAMm56Kv9nGL501oqM +LeUD22r+dx5lw7Bc8bX7uaY8uK/yKvTUmhFY/yh54vHzHNiXqj7p82UEtH/U +jRYLp4Ns60bLPz4jMDmI55PvpYEyT89S/s8RkJfxdHGNTIXbV9/xjsaNgF3t +wUJxmRT4OpokrFw5Ajv19rn7nEmEaUmRU+MCoyD6n5//FZkYyPYZcz7nPgqH +n0i9GwhxBM3xSOO/fqMg1KJub5FuB8PnHmjeDh6FxiW+y0fL3sCmxQbRl/Gj +oLNLPBw69OGlbn7Cz/JRMKusHOVPfoN7t3nVz64YA8mHpztWyvqjV9TJHaF2 +Y3C95kV4b2gcSnHPLD/kPAYDtKH46ZvxmK8TN5zpPkbtB5tXXl6dgOOrJFIr +g6m457FknUkiqr9YrUbLHQOe8vjn5odTkC7d8fwabRw+xnyYKfiUiUZZnzI5 +zceh68XkRtiXi+LrH48ceDMOtZPCP1ytcvHvkwviup/GQcHoW/UqZi6eFBa0 +T/UaB6k7Q3kf9fNwuVnQlaep47AuSUiFxy0fM5l2H32zx8H9S3f1w7p8fC5u +kFZUPE69154XNIsUYE3ZfhHx+nH4UHH+2kJkAYbsxv6auXEoZ7rQ/qQWota7 +wC1c9AkYedMvpT9XiP/Vfbh4kG8CnAaOlm08XoTGdueSHYUnoMfnn4RpUhHK +t9W+UzgxAbWX26ZCfxbjuHRG4lOlCbBt4BNb0VCMv539e3zVJiDfLvz2Tf4S +XHFC//zUzQlgD3ORj7cqwQaPcaEIqwl4zG7eza3MQJfBv2q1thPwegwqP5ox +8JRSmg2X8wT8XS6p0BHMwLDRN526Pybg9woHabElBt5UubfB6dcEnE79J8Eh +ycRV/srn0qIngLFJ1SDxEhPN1FbGriUmIEExVsblJxMlg0Y7FAonICzuuUtc +ERObZqsEjUonwFmzsejnIBMVf/u+Lm6ZAI/HJbR/hyhvcUiqWLNNwo7zAz05 +sSzM1/zvVQTvJLxXDnq2g2ShecxwVO3qSfhhZnZFrZeFLTeTBA6JTgKXRUJT +vTCJX+K9z+hJToJkXbuFwiESTy+3snA6MAn+dsW6+mdJjExWbOlWmIQbunYf +up+TqLtSgn+d6iQIOuWKnvpAosD95adPXZoE82bP/OvuJBakD740ujEJAuYt +hEQI5SH+8nC/O5NgzPftSWw8iXsfJTQVG0zC5IPKYxNZJLYSnqunX0xC9/tO +r2EmiV8FXyluezUJ55cU+INqSFR+omN28f0kXNngfnRlG4m2k/uWTXyeBJnU +sa4/PSTmWNH8PL5MwsDFM4mHh0mkcZftk/GhxuemPfCeIPGkc0B2QyDVDy2Q +0TxDeULw+RXrsEloFCrM4FwgMeWHQrdI7CTcV9y2hY/y1+QOfsvcFGo9zD80 +jVLxoZj2//SzqPHvs8ZSqPi5dLw/b9EkiCcu6epRPosm3h+MKJ2EuakDB3oo +n/UrX8lXr5kEp2M+r///9zHJsm2aI83U+sm+v+M9RuIDzcm+L13UeJc0VuQO +kBjcmm91ZGgSyrotY1mdJLY99FhdOzkJDf6uTqlNJG4d1Q+yXJyEv7sP9NlV +kXjLQvroZq4pCErj23i0hEQfdt5i4r8pGFvTaFGIJNbY12rfWTsF/moPnsnG +kbiOP2yIc9MUVIL50y/BlB99LN7+Fp+CtW8ahpjU9XIVU12runsK9IS1zfpt +KX8e6pdxOT4FWy2iW/7eIfFsejrzwKkpkG9oWgimfG6n6KhbdXYKinOrPbVk +SWS/stdWSGsKHlZn7LJYRaJc4+L6DL0pWArfGNVJee31PTJc5+EUHLZbnSPb +wsJpE6OyoJdTwL329rbQcBYeWZS7e8ZmCk4P6qpmObPwhe3qqR67Kfj+Zl9C +/nMWDrrHCu/zmIIo3panfodZ2JE0rp+SMAXn9u6/4RXFRFG5vNkbGVNgQLM4 +LGPPRJ3Cb46LuVT/Mx5vy+4ysa7mSNypyimI1srF7nVMLJ15ucgcnQJNx7aK +licMXPFWxdVodgryovev1lZgoOoyIXF+9mlIy05RrBVgYL5Qmsr11dNQFF86 +15xYgunHF7627ZuGzJtFX9WGijH09ZtdU4bTwD6ssOzEwSIMtPz9+IXxNJjX +ddn+nS5Eb3MyeshyGqLjgk94ZxSivcmmQ93203Bnn6Cuv2IhGj5Oka39PQ1H +PP4c7VEuQKmbI2ppHdOQGrG7UWN3HibL6hlZa8/Av2sp9KknBMbIfIyduzMD +H7uDZmc2ERgqHT1uZjAD5V6PbrR7InofWnhpZDEDKVa/fn49n4mvdnu90fOc +AeKyoXljTBrKCZe5naqcge0PT37gUk7Ewjm5BO5zs/Cp1f6HUkcwNk65KG2/ +PAsxQdf00zWCcHSspUpRexZ2fZr1vZsZiML9NpNvDGdBN/Vz9ZpdP/BZA3F0 +3mEWLDbu+sY0d0OhDLnUYeYslKwadXi88hUYWslh7fk5mJT/Y+WeGwFvLFzO +T1+bA5u52OgYjShwN21pXqc7B70P7ge7N0YD8cSGdtloDh7JKL3PefkH1uoQ +8iyXOci+ce626Pt4yAS53OyyOTjumZnV/CwVVrPJFYVfmgeT1ABVpPwVs/d1 +CtyYh/CNIqsDuXPggnZqaMXtefijLXSx4VIOOCUdsp97Ng8SpWeIc705wPdk +p6qqyzycs84erVyRB1z1a5i9jHlg78m0vnyoAIJ5LmRYVc5D1ea4bTYmBaB4 +xDFyTcM89BYcXdGQUADvXLmdZPrm4aSUdf7GQ4VAU55Xt+ddgPdElarV9iKY +jf9XuvP0Ajw5FCNPby0GrzbRrAy1BUjPcLx4TKAEpFfp/tG4sgAHNB97WJ0u +ATODOlfzuwuwr7il9MDvEhgXIS8WvV2AC57v7vDrMuDLeb5TN+0XYD42/LjP +ZwYceK1ycMR1ARykf6luT2TAs5oc/g0BC6BeMSgtx8OEQafkyge4ACaabXLa +/kxwTJ/Inc9fAIn0FrfqHCbs7j2Q4MJaoPafmedVOplgoBT5LblxAVL0uM/z +S7Bg2YveD+f+LQDNsf7sgzMsCPPfYdrST9W3vRD/c48F3XMBV3nmF+BGxnsV +oR8ssNvZfNqXYxG8b3p4SqdSvromfFRq+SIUjscxTley4F6su+B1oUXI+ed4 +cR8nCfT/tXDn4VS07wPAzzlzzhlRiii82SXZJSnL+9yhDYUoKtp4QwqVeuOl +IhRKspQoKSVbylJkaezrOWcUSSWJIpUsh6yd85vvdf3+vK+ZeZb7mXnm/vwx +09uO/1QWoEwnfT6+gkQPFklMn18tQFOfni3jGpCozyum69F6ATJ9++an7F6q +fk4cW9YDAlSXutddyZfyTpXzLqltVPztMq33AomW/axMsHYQoOFrXnQXylev +l6u9vrBHgDo32z+9dJ9EsZbRS0oOCdAqkWEP3wISWfuN7hj2FiDG963hYgSJ +2Km7r6qeFKBz3q8u7Kd8UNNQ0bonSID6Nd3eH+mk6vVxFdG4MAEK0DVQUOsl +kYlC1NaGaAGKDGQNJn0j0e9tI5Hz8QJUY7jgY/kI5bnTu+rXpArQ3vUDz5Im +SeR7rxzzzhCgpX/VrVWlPKXJVba4mytA+D1rTQ/KUwPTly68KRKg6byMABfK +S/fUfr0UqxCgdXeDhf/zlKu905+NdQI0ooHX7aVimeAy07McAZqNn2nyoq7v +eKQUlN8hQAvPxqpoUu3HtUeWfukWIMfxi+NpVP+2wp+/5b4KUKqZnFcjNT4R +LUcjh2EB+togUZVBjb9u94tTlyYFKOtlltVaan4XwhQLK/8I0EvR5O2B1PzN +8iNG+SwhUi9fDKeo/Ey/+6GrKS5EFT8LY1Wo/BWzdh4/uEyIlJUTXlyi8utv +UJp7Q0GIPohq7cig8q/tpvCdoy5EcjyXwdPU+ny7HK6B6QnRuufOOrRQyne9 +9g/9kBCl7t2f8Te13isWlvQ/3CJEn018j0xYkajLWF6l206IWjTs5j10SWR/ +bSht60Eh8tRQdAn6w0MLy+0+nvMSom31hJxyPw81DTz765k/Nd7u89mRjTwE +f4clK4cK0f6sxOL4K5SnvL91OkcJ0YuqmSTT4zxUmrRDOva6ED01iFyUZctD ++sNy8bP3hGjRCH/ZK5yHFG8XxbTXCJFR9+vaGD8uet8o27KgVYjyoou0Azdz +0Q3+eRFoFyI7U6HauhVcJG5jG5HXL0QhS2TzV9ZxkDD4JGHBoMFB16J14mwO ++hj/sMeNTYMDySu7ctpbUXlW15+zojTYfFxWVj2d2g86/jZ7IkmDTj/DL1VG +rWhES+zFX6o0CGuPlqx3bEE5wUNPVFdR7Q2I+ebItqAj3MZMLS0auIsZa0X3 +NKNu3/BEU0MaOPx0WG7xTzNqKfjjt8+SBuERh7G3R5pQpvGoeqo7DVbc7Isj +zRrQ4cs8+QxPGuR2/3CN5Ncj+Xd5Urk+NGBFySgfyq5HiUHejPJTNPgUq2Mc +K1mPwir7Pr6/SIPuW/KTsh9q0X7LN4lyD2iQZTzTkbelGsklFsWoZNFg0Yf+ +TRLjVejNl+thmnk0WOlZ86E1tQrZRu7wNymmQWlYmfDeewKZNDfa7K2jgYBr +lfFbohJJ25UxUr7QwGNhWl2zTQni7L3rL7uSDk0PRG+M/52JbK0Clndr0IEr +Na9u2/IAcXW2vUzTpsNdX9qhUacMxKPxxdTW0kElGEptvNJRW+bmR7qWdNjg +OzZ0RCIJdYwPf7Q8RIefnQu2Crd4EN3RZja+d+igNn9r+c+KLMI1QGJc/x4d +wifzO/7RyyE+ug0k8x/QwUDDU3suPZfo0Y8bOJtHh0vhx3dtDs0nejv7Qy+W +04GOZ4hekCskvqjElCa/o0PoZK7m8iclxHDZu5W10gwIkAp51C1TTQSr1vI7 +ZRmQ57+1S9WvmhC9klf9XZ4BphE/UWldNaHhdt5NUp0B48E3meXHawgPoVrS +oXUMuKr+ckPL81rivaU/k+bMAI2Xum3GKg2Ed96e10v3McBxQmqq0aeBmJay +TF91gAGiwmn9k8UNxLIBaTM7TwZE17laLLBsJBwul59K+5cBC0fL8sadmogm +DrvfLJkB1crJO/ZsayGcjUaf2t9mQHdndrTFxRZi4M67cx7pDFgkOdT/V0UL +wfTLk7uSxYABzp/uJM1WAkns3PmhlAEcg+4e79lWghdoqjRSwYCc5AX5N7Q4 +hGuf2i9GNQNYx0ZS7u/jEEFFU1GazQy4FvBE3b6UQzzfdac68B0DFktJM0l3 +LrHpZeS1qx8ZYDYe61sdwyU61P3d7n1mgPpmuw/hhVxibMpipmmIAc03Gq6f +necSFw5qN3YPM0Bkt8LXh4o8QrxZOml0jAGD/it2pG3kEdop3/RlZhlQe4U1 +/z2UR5QzXgu0BAwIu371sVk6j7D2KecgBgYJ7kt2OFXyCC+zWC9PUQxMGmyI +Nj6PmHrw77r/xDFQU7c6ZLiI8siiQ8xrkhiIOHETnVeSREaPYfpzOQx64pd/ +6nWgPPFpqUKEAgYlsYuu8z2oevozP9VRBQN3HX7m8BmSSOtrl1VRx8B5SvYC +7xJJjPcX3RxdjYHS+ocRSTcpj31NkCZ0MLhrcU3TgvJUysCphKsGGNx2y//R +TtX3vwYdJVyNMNB2eWFnXUUSFkOG1zQ3YJBfbzP4gPLBje9LF82YYRDyeci2 +n/LD9x/86EbAYKEccyXrE+Wj4XaRG1YYbLGclRcdJIn4X0WRHlsxkPRXGB2j +fDIwksA0tMVA8VSJWwXlF5OxU2F0ewyi2JihN+Wb2HFHWpsjBoEpxpunKf/0 +8Q3PpTlj8Kgl4l9vykfrJpfOH9uHwfMg2YIKyk/Rv/mBpgcwsLglNzhGxT1T +7VML3DFoiXq8fAEVr5kpOt11BANLI741g/JZ5GwCP/MoBierRRI+Un57P3fq +xGlfDBaMsBemUr7T/eM4YnkSg3MK9G4Tyn+hAsPjkmcwKJ3DDCspH3YIl/7o +DcQgtW2pjQrlRw36hNeTEAy8z2l6HX1HeZDRMRASisFGBaOuJJIk2rBiD9sI +DGK2SvAf1JGEGiuxTy4Kg0QsWi65lCTOsgMODl3B4MoepzK/XMpnC9a6RiZi +4L9ax5J3lSQCRKXeOyVjoLFeymh3CEk0iU04q97GwJ4z8bTOhyT8xYsdqzIw +WE2Pq3PeRBJ1ixNfxT7CABBRFKJPEjISAXZuuRjkofoPV+RIgli61ma2EINr +H4NHvX9Q3peWam56joG1zfmwDa95xJFlE5tvlmFA/vPj5mQJdb/LFlusrcGg +FmXSjS/wiP0Ka018X2GwYUqxaxbjEYWKUqVmbzBgOG3fZt3HJdjKE0Zi7zAw +fROUFktwiXzVYoOsXgzw8uG3s2e4hEBj7eq+EQwq9DbWRLzjEDs1pR495VPr +Lfhgm/6EQ2RqTaidn8Kgkn/OvyycQ+zQLVZaIcTAUxAcxaee9zuGa2V2izNh +R5y00kNfaj/wI45LSDLBfY3K/BfzVoKWZ13LkWbCCuuiDpOFrcRhtUO+lvJM ++K/kmY5eZguhIR1bp6/NBJNj/Ut8yGai+Pegv5g1E3pjy4c5043EwJpTDQ3b +mfCpd1RvU1kjsdxP8FeYAxMOHMpOGwtqJIIGpRqnXajjSvsvj8w0EKhro/yA +JxPSfnwurPhVT7S8SG2uimBCp15FXcqzWmJ+Ul0xOIoJu9umpdx9agmdNYUB +xleZcGu8JiFcqZaIy2lSzE9kwvYty/U+Xq4hdqVOnk7NYEIU3zVGe2c10Rts +p3KmmgkVJTFH1RIqid8I+0/rDxMeB26wLKssJNbN3Z8yprPAiosvr58tIM48 +twiwYrHgF24pL2dcQExqhx13W8SCdJFx94v7nhATsvSD1+RZ8FRJhl2zKpvy +mMCKb84CnTB1VbHVt4jhR7Pi5edYUOn3UNzz/i2k7Z4S0xjGAmwfr6Kz9TY6 +pmAi0hHJgrCCK+aqE3fRz8RA+nAsC15o2l/yVspA30On+Qp3WeBacb0oyj0b +fdv3uyuMYIHzmMOZT+8L0ZfF4/etaWz4sD9gr/y1l2jI/TIpwWSDtqev2wkj +Av0qUZjvwtnQaHv0ViH1/p46YLPLczEb3pqIs/hxVUj06QM8XIENUdWPRU1e +VSN9e+djlWZsKFf/k11sWIeMHgwnhwMb7NhTOYLgOmQyfbHexooNh7/7bE2s +r0OW6U8V3tuwoVOz5XCyUz3aPbrg1e+9bBjr8qoivBtQSFyFkX4gG6bSQuCc +bxMK+7Lz8FQwG+bHpF975DahyPVDsS8vsKFe763eycEmFNcr/c32MhsK9QOk +Zlyb0QN9vxTvm2xQOp195bx5C8oOZzXqp7LBUtpqt8epFpTflcqfSmND/601 +5gezWlDJhSbbyEw23H+spHxjcStqaVMW3n/GhpQ0W9Pm162IVCvVOvqCDW7B +XwuM6BzUcXaHi0ElFZeb3czVpeo9pf8KiDo2mI89Ov04koNG/Tvcu9vZ8Kqt +tfOTJhdN1h2Ny3jLhviR7I/HHbhoVoZeefQDG3h3RGpnznARVq2zbKaPDX8s +vuBsgouWSVxqkh6n5mPlEcmz4KFrxqontv9mQ3GSQdldDx4S2U/IRsyywSfn +5VnVCB6ay5k6OsHA4V5kqIR5DQ8FvEpYqo3jwNi4b3tbDw/9mtKrcBfDYfHB +PW+XzPJQr5XXovalOJiU7V6fpE2iPT7M56IyOESpLvvaaUn56nr6fosVOFwR +j4+p3kMim1IzPEgJBxeVXaZOlM/qerqeFKjh0ND+SDKWqu/NWaddhjRwkJNM ++ds3gUTPtSToyjo4bHFYOMfPIJH+zsfZLgY4FI+VxCsUkSj77LadcUY4yLKM +DwxXkUjl7tfZxg04rPQXaz7AJdHt+tAMoTkOaV4Pt5zuIpH0T3lbYwscou28 +D+n0Ud6TLJvw3YxDzmBx7qXvJMI37L6TaY2DxmB/y8UxyjcHxjf17MBB+6vj +SeUpEs1ExP6SdsTh9n1Pj4NzJDqZp3lzuzMOqvlRJ//3PdmP1w0oYh8Om9x1 +Q6opf3nMHP5WcQCHIKs3p/qpuEdRGDfhjoP50wW7MqnznTenbtD2woE2dlhX +dJ5EbceM+9yP4SCVdXHF4mnKnwnt0an+OJxNkLF5Nk6i2hd+hu0BOBTkd07M +/6C81SvWLRqIQ3b+WfeBfhI9Y2eFW4Tg0NhVPnLiPYl0dax0gkJx2GnkSk8n +SZTl2PumIAIHJ/kli0/Ukkg5KPjcUBQOymoX074+I1FKuswq5VgcWl3trQSZ +JJJqLCZd4qn+5uYyym9Q/pUaVmpKwaFm7WHvVSdJdN4kqlmYhsPbVP+Db90o +7x1cedI4A4d2km+ot5XKx2O32sxcHBw0zhm9l6Hy0THj0/MEh60r2o/qCXmo +ZzZJalkxDidMVGL0v/BQ2xbePxEVONjFj5qa5vDQNt+j4pVVOCgmO27dEsND +NYnskok6HOYU3YyZPjz07PPfIh5cHLLWxTjeUOchXZEPT1Nf4cBMPe3ny+Ch +LN1/97S/wcFeeMLmTzcXpfz3JMeiBwfvwncVm2K5aOl9G8egPhxSVn8vYPzD +RVeaBucKBqh8/zJQDzHhonPSStuVR3AourrxS8FnDpoyrZh04ePg02o+71fE +Qf6HXdLipqj+3J7q8S9y0PfLE5ub5nCoaEm9ZO7IQf//P0nwUvGRc1DmoP8D +642UvQ== + "]]}, + {RGBColor[1, 0.5, 0], Thickness[0.005], Opacity[1.], + LineBox[CompressedData[" +1:eJwU2nc8ld8fAHCbZERSXxFSRqlESUanbNqSUEgqUVmpiOxS9srO3q69Rz6P +de+1N5nZe+/td39/3dd5nfOc53PGcz7v83pd3hemaq8oyMjIqGnJyP7/a5Dh +s3BwQItZxPDKmxYTEebNxS+1S4uNpF0a1igiIk6zlGefNmkxE9WONcZ8IrJ+ +cM0/a5UWY2C7tByQSUSdIlU1s4u0WA4FddBsEhGJsjwkE5yjxTKEMhePRRKR +91K/uMEULba6s/aE1Z+IZluM30eM0WJsHN3mIy5EpJy9Eds9RIvNZ+pdcrck +ong/lx62AVpMyux+w+EXRETxgYXlQQ+p/vS/NsO7RKT7KELJvZMWs17RYY8R +J6ISsfN2+FZajMuoOfsPFxGdYCvMJW+ixWLOObOUURCR5ar8jHQdLYYC/UcT +xgjoYp6uZk4lLTahJ3dKNp6A3H7NeM0DLUb1zPzxniMBTXy0qhYqpcXitcai +sp8RUJS4n2hULi32e4uTn4eBgPbYuY16M2kxnWR9w5FBPNLeSI1kT6PFbq+9 +rc3PwaOjhdUMnvG0WMvg4bWER3hkFqwmR4ymxS4cXxpu5sGjeqt/1pQRtFi2 +sonM2dlq9P361rh1IC2mSTC/Z/y1Gm0WC5e/dqXFJCyTOJB7FVIPK9qIdqbF +aM8d7/dXrUJZNooX++1psciP5caP6KqQsfTzsEdWtFiwbtbLa/aVqP+P/8eb +RrRYwjn21t9PK1AFti3EcZsWe/bk58PCDECnol2fP1aixfhS6pjZqQHZOLIF ++cjRYsrjwQ7BmmXoiuxFKlppWqwZx3HOeLsUJVbqD6wI02L3blvJjJ4vRh54 +ol8DEy0m+/iy5dzTXNQjcCumgJ4WE+WMkrrsnYMEfxZlRdPQYlPDCYanKrJR +9e2U5o/7NNh1i/p5K4EstN/sznRqngZrThbfDJxIRea999xMGmgwcddiRfuy +CIRJE0I0a2iwv71clVY5YYgpAiXLVtNg2a/Fxa9nBKOU5yJE9j80WPK1gfr9 +Uj80OsZCAzgaTND856PAHVuksdjuyOxBg+38lGVasHWHuId3fbdcaTCb69KT +k2d9YDm7OmrEmQYL6Xyu9c3eD7w/5kOBDQ0Wts7kWUYbBAOdF5uiP9NgzEXe +CVFXQ0BYInHA/QMN9t7oSLiEehgQt4P29N7SYJKjSeaXXkQC+7MjjKqGNNi6 +GEPKh6QoePXnB+cVAxos154+xDkoGigcrKXontJgwoa8q/zPYuHB0JLqsgYN +9szqr6f55TiIkDXW7lOjwfpuqHoM7MWBFPVT60xVGsxxuz3st00CuL1u+xGq +SIMZiN2VzRZOhL+E28EusjTYHwEeJ5P2ROAXqko0uUGDHTu+rFtgkQSWbtIF +mpKkerk4/Q+0yVAxk4uXFafBWKreh7v5JQPL3QudwqI0GBzKSx8/mgLP0+PH +2C/SYJ6uyUQL9xRIZz61RnaOBivpCE8/uZUCu2aBVDNnabCyTo7SpmepoNrK +xNbBS4O1PcbG7fJTIVjMlQ+4aLCTaU0YBw0OJgIORJP/o8G0aZ1tAm/jQHz9 +s6z/MRrs29DJqfHvOHB5svjwKwsNNmiWYUdRiIPWwjf6how0GEdKxuOhARzw +cAyZPTxEg/EmiFz4uoOD5OEXzQ7UNJjCx/zVGYY0EE0dvZRJToMVKAWN6x9L +g9IPr73/7VFjWXKUbf1saaAgPTnPtE2N+bI51usdToNGKuN7N9apsYSHMwJT +mzjQbJhJe79Mjc2m37S17cfB0K/3jL/nqTGVPcUYriIcGOsuvKufpsYsDpHn +trjjYIXfvH5nnBrLMN44HPkYB7YLy+fPj1BjOs/U5T3ZcUBTaOmu/Y8am69o +vRrfmAreDuvTP3upMQZ7h/XFr6lwQsVKtaiLGku7pf7X5kwqxLBsJ0+2UWOh +jEGGahUpkBuz90apnlTPZvKXYzQZZN7aEz8RqTEDwtex82+SAS9GLphQRY21 +XAxYxo8kQXcV1QTVH2rs8nV9p/HyRHjh+V3xShE1Vqx4Ot3/TCLMPqZLMMij +xlpbVfk57RNgf/zwq4o0akx4NXmFkzMeXDM8q5aSqTHtYypsBN04OGLFfIY3 +gRqzws6wZIbEAt+hoyP2EdTY/V9riumb0aB8nkNfxpsao2gVq1D+Ew4tK2HY +O3dSfCUmeIaGUNAu5eIJd6XGmqL/Msk1BcP7u7z/tu2pMY+emvv8uADwMxXU +KTSjxuJc9X3/i3KFvhxxLTE1asxlrl+s6589emVbWPjiHjXGz1OT9/3aNzQv +L3nCT5Ua49Q8mVjm7YbIO2W6FmWpsZj5UT/HAj/Evyn/OF2MtJ5spU/Tpn4j +M+lHD4WOUWMSX8RnHkelIM5aoe63LNTYHZ20wKxjOER8QqafzkiNZbo5zG26 +pyHuD2lmYjTUGG1prsZNmUzUmEzrI7NBhR1Z9f+8JpyDhI+XNj7spsJ4YydE +1rYL0d84P42ADiqsaf1xqVBWEXIRNRrobKHCZqin6GVfF6Peu+zzT2upsFBD +XovS+hLk5mLG+LqEChMLYCy79qMMTS6dufPlNxV2Iur2qE1rOQqw32krDaHC +OusPKVzhrkA3GVufHvyiwuajrcySjCtQkKD9WxcvKoy4hsWG7VUgRb1uNy97 +KmyRt/BQOGsVWp7NYG2xocIodx6e4VGvQhFfvocetaLCrubzDB4NqEJrv8RS +gs2oMHkUvSbAXI3i6j1rYvSpMLNul/1TS9XogfbLh2M6VFjdpgC71Fk82p2Q +7BbQpsIyHvzg+PEEjx5RTk7i1KgwCeYgutB8PNr3KTNbuEeFpT1k5lUbwaOU +U782L98m1Q/7feNlIiAKSVm6AjkqbCheXm9Bh4DSCSd8thAVlpt5inXEiYC0 +Hy8cl5amwhiYmzz/kvItzUh1pJ0EFUaRgj9ZhyegLLNwgfIrVNj452HVfFJ+ +frZvkUF5mQqbq6Va/EXK33QeKtcUL1Bhlpfi+V+T8nvufzzwQ4gKi6zWeMhH +yv/PE9cV685SYe+oFThq7xDRfl5hYikvFUZonwraJfkhrOoLXToXFfbcfO1c +zicikmiTNor8jwr7ptSSPe1K8svQfo3PMSrsrp2SZVQgyQuL2DknFirMd2Tp +v9YYImI5cHL/wEiF8WUF537FEVE6o8Lsy0NU2E1Ox5LoHCK6w0l7V4OaCmOO +S2WQKSSi6XM1aUrkpPVkoZi7R/KU63V3put7lNi6wEe6LpKnzijfNT23RYmJ +rh+y6CB5qkKDufnkGiUm29UZq5pFRHqvWkQYlyixcyyLdteSiWj3g7/v/iwl +9o1H/vbvCCIKdXq8vDBJiYXlGBZ89SWia77HHw2NUmJ3tB/+7XEkovbI7pzW +QUrMbJtKqMCUiCzSw9iq+igxAuslt2NPiYj5j87HvL+UmH5fxq0tOSLC1XF3 +JrRTYng99u1X54hItWdIPLiZEnP3OVyhx0REE5OxQT/rKTGL72mHZxYI6DSN +oNa7KkpMbMikuyaVgDC26SIdjBKzoXwvLPidgHT4cBz3Sykxxk+nfl/QJaDg +myJ9l3MpMXNBnQAlWgISv78szZdJiX3RoRk1+otHbTq5v9lwlJjhkvHQvUQ8 +YrKR0NuIpcToZ8+/cbiBR7if2zAZSYlV50/79tPgkUpwKU9PGCn+d98TTzVU +I5e8m8Ol/pSYfaSot/mjarS9oPzKyZkSC1xSvWqqXIWC9+nxH+wpsSH2hhv7 +ZFXoKmMD/ysbSuyl/dTTyoJKZHbu4aTSB0rs4flK71M8lWjspdZbRgNKzMiY +KGDaX46cPpys39elxGyTCxgof5YjHqd+4UVtSuxirZDSZbFypB2pP9+qRok9 +2b3zxt8ZQ83dRubBspRY2sdQqqXzZaj03pfPfKcpsXhLYScNzkIUUKUgqH2K +EttV+KFRol+A3kuydPtwUGLFnuB/LyEfneJPktxnpcT473duGl7IQ/Z7HXt/ +KUn90Z6huCWejWRxl128xiiwa/9tfKDyT0Icp/euVA9RYCWKKlKnOBPRShBx +bKefAiOeKXLpTohHcc56SkadFNikSkMKRUUMon7qSS9PoMBqBm8RDYRCEfHQ +lM9WEgVWeOF+BXeBBYqyz70lEk+B9U81014/oY+s1+yXX0dTYPrqQVKdQdfg +3BC7ensIBbbQEOaxyPQR3Avlj2e4UWBvpg9Q3ilPeHnxCHHsOwVm2RznN1bt +A9JxvVaczhTYn1PSd6wX/WDW26Lnpw0F9i/npJwbTxDcM4z6/fIdBWaiMJuq +MxoB/P1v74W9ocBy5Ds+B2lFwb7atYOWlxRYwQW9hunr0ZBxo/E50qHADlKc +AjtHY+BHbgjLJy3SeE8MMFzJiIXn515V4B5TYOeCvORpLEj5jX2Xj+MeaTwT +qloRg/Ew6U5of6BKga1KUXhf9kiAcnL/b66KFJjoy1c32i8lQuhnXfEyWVJ/ +MvJ1pnWJYDEnNLF6gwI73/Aqb143CVQN1oLOS1Fg2niHMOnpJDjdjSm/uEaK +35LhhuL7ZGirepLSdIkCUy4atlDQToGIEqYreecpMHPd/Ar/+hR4k139J1SA +AltUsdIZuJIKosm2Sg58FJjveoAGm38q7EaKtbzipsA+7qGX/BOpgA+c1r59 +kvT85YUhmss48PGMHhU5ToE5v/JtTTbDgbaLpgn7UQps28JhmCoBB2dsmDd3 +mEjP37hoxNyCg3lzvOMQPWm9X3sYVyzhoPDN18MEGgosw/Ri8Am6NHDSu/IL +R0GB7YvxqzGR/HRHY+aU3z45Fv45NDGa5Cv2uzFJn7fJMVv3409aSf4alNMS +1VknxzSnQhqjt3CQInmkVHaZHPNsVTt/tA8HlpcJCoLz5Bj3Iv/187k4uCFo +18Q4TY4dZZ0wX3TEAR33Va2VMXKslV9u11iB5L9js8N/h8gxx4jPKXH7qRDO +EPuurJ8cszHM20xKS4XXlNrrsd3kWHyz/OFvaqkgsn3E4WcHOdYTYIBTmkuB +7UXCIdMWcuyK2YAKuV0KVE3Y+as3kGNvIl8vV1KlgNfAVS7JGnLMOC9WLdYx +GTQ7ZhO4q8mxXSWK7NzVJJit0C6eLiXHvEXybGv/JEJ+EYt8cyE59n1c5xk5 +WyI4ZBIb8nJJ8bREnWx6ngBsEeJDDjhybDvVnyF+IA4GAuaMXyeRYzEZaZMz +zHGQ5B63ejuOHKsoo19QlIgFaWtWuuPh5FhWxM8hvEk0vFSfv5jmTo6d4RIw +uDofChdvxxf6uZLmh6CGqdQGw+atZ7JWzuRYZtcta8qgQPC4VPtYzoYcq/3Q +ydhF6Qe59Am23cbkWPaL5YuCbx3AjlyHBl6TY03ztXva3z6B8uZRn7gX5JiS +L31dB80b6BtzjDXVJseev6U1Pf6fAaIq16mlViXHgmPoXkU9dkePPx87ISpE +Wq+zr5RlJ2OQrBhv7bmz5FhjrNJMkHkcurggbMvHS47VHeWYF9mLR3SG8oNs +/5Fj5jf4bl3lSEbFGh+SNuhI639okZj5MgOdEm+R+DNJhpFZMHFzU+Qj+uW+ +6bxRMuzx6ibuYm0+2kibDE8fJMNiOjzT3vgWoOazZORRf8mwz8cDXP9xFiGn +Y5dqnIhk2F1Va/8vZ0rR+KqHlnISGWanSBXGMY+h1szgw7fiyDC16085DeTL +EbyL+3M9igxjyI7JfRxSjoJHS3jPB5NhDlxNUlSoAqm2T08x/iDDzkwMF/FY +VSJxn/UwGhcyLCG8MEKtohLx3aG4d2BPhhlOf2+tpa9Cu5X/ZS9+JsW/VMiu +H1iFMnKUv7QZkmGnV3rttgKrUbipunC9ARl2XaHZVKS1Gv04/3ygSo8Mu/GR +i/vpYTx6EftZNv8JGWbMvaH05jMe3dNzXk1/RIaJX13vuZ6CR1InvRMS75Nh +5zj+6vf34BGbfwJ9iBIZZq1oftX2KgGR3c8u9ZUjw/aE/B4b6RHQHH2ZiRsi +w2jiolgZXAmoB1/D4yxFhi0v/7iuiyMgvFNHq8010ng+TKxoNRFQ9o0hF0sx +MuxAd5m4RcrXkduz4u8vkWGCo+oREqR87pG/OfnqPBlGsNkpZCHleysLqjBd +ATIs6XHLHweSB6J+/fc7nI+MdP9TszmkRUSEwouRPdxkWHd8F63FOyKa75WL +PsFJhl02vwAFX4mI/UAzVuMEGaZS7an014OIbpw2iQ9gI8NcNxZ8W0KI6JWC +c2LrETLs+78HPdFxpPe/CU4+wkiGcTxdTFRKI3nOPS313iEyjO6XS0M5yVN9 +6RVpHtRk2CNqAyNmkqcoW7syasnJMFrByLFLJE89nu42YNk9gNDRU5unSeU4 +Eao3nqsHYBgbFzNZQEQrny6+OzR3ADFHmkQdSf3J/tE0+zZ2AHXuTLJzJL/5 +Ujpbkg8cAIeiT94FUjyDKmlWXzsPIIKFu0yOFO8lny7brcYDMB/f6hIhjceu +k9zxI+EAPp2Oql23JaIGTuFvS3AA3e7+SUFviYjTQOPn+8IDqOc60nRMk4je +Jjt4TmUewOmUorEPskRUvJDi+yr5APi00UAuab41bQ9CdEIPYIPeIHV2lYAS +K4Qiuv0OADdQ2zLdSUDrdOoxj91J77OKte3JJ6CAX0kpd20PgLNP+GSUGQGN +9Lam11gegOdO7G97VQISPb2XrfD+AIo86zCD0wTUlP6wREaXND/OXJQP6vHo +1JoNFGkcgIDejW6DCDx6J5VQefX+AUhZvSz1N8EjeuJ23YWbB/D4MfWy/iE8 +UhyK7eM6Tep/r5zdTqga/RJoHAzhOIDUjp+24nNVaPT95uixowfAJWk8opBR +hZy278wxUh1A5RmRePeLVajs6Pre3tg+jL3czsJxVCJGbR6KLwP7UHbRXepY +awV6FqVKs965Dy/CCs6e+lGBtoUjmeYJ+7Acoex1fbEciSsqcw8k70Ofj1Fa +SRaG0q1Cb5a934eh5OdPxWhL0SAWth70ah+aXIh4RoUSxHroN85cZx9og99e +0nAsRp9DIk+cvbsPonfGvqSvFaKbxXGL7sL7IENuZrzRnIfadtKjtGb2gLCr +X2TZl45o5DM1xEb2IOaWWxqZfBqS8MhiYOzdAyYXlt0PuFQUzplrhdXuQZj1 +8JNjjknotUzRA4GUPbDjzBB5cjMGbdpVkq292QP/iNfSUtd/onOEqvzG53vg +a76piv/hjJ4x498lae6BGf/wLbYuG1QeSfz7VHkPlM1jOFwtniA3rCGzQmAP +Ct9qnG/ed4RSuqbX4dx7cBrnf/nY3ndYeNDM+en4HijW5Zk+GnIH9aHWH0K0 +e0D7yFfgPs4PuCj+PvcZ3wWC0cBQ3acweKDazW48sAtvaDF+beff4OTXUy/X +uQuyn+gHKBwiYfx0v8RG9S7EfNBSE4mLhhNvB+ab/+yC9Vq/7p+fMXA7519c +St4uFO8nFpe+joVMueEjuvG7UFjy7N53mngYdh/BX/u9C0o42j3Gmnhgax+1 +Zfm1C+Tap1acnBJAkXNcdMZjF6ZmBJwJoolg/XJissplF4K+cFpBdyLgcJMR +Eba7cCF48r8Hn5NgYHVK3cpyF1omci4/P5wMst9msfMvd8EEUX+PZk+B6TCy +4z7PdsFWOfIm4/cU8Mtme7+qTnpfv+/XidkUkKwRrNS8uws4saxR3tupMPJP ++r8/CrtQZFX6MCMqFTzWH5jy3tiFkj3RTue5VLjC+Kr6m/guFEjvFweQPNXH +Z31y+uIuUL5edPz7Dgcukp7m9wR2oevB8QnFSBwIP4wmZHPvwnX/kaG/RBy0 +G+ZxHT+xC9xRfAk/pnBga1fzwebILuAJrXEPydPgzK/+mn90uyCwWeIhciQN +6lOXuOXJd8FNeFGVjz0NLCuoPyVt7cA7myOHhY6mAWf3f/UMyzuwkf32mixt +GlQvXDhtPr0DH78tWJkt48CERtaqY3gHRpXm8vPbccDOpdF4vXcHBuWz2f9L +x0GZmPGZiLYd4C9e2Q63w8FrVbsvFPU7UOjFRKmiiAMmfb/m11U7QDnCQX+W +Ggf5nxP460p3wC6g7axkSSroehXbXsrbgcdDD+P93qQCTXxjq3/aDshq/WaW +ZEyF9JJhwc34Hfh3+8hpmeQU0Ghdt3sWsQNk8z6NydIpsD9J34EF7kDyl8jr +3oRkSDw4df6s9w4MeV0v3FNJhgfsYo4/XXfgJKN/A01VEmwKK3XN2e8A1h8n ++OdqEihrmzrnm+3AmMGwuBNZIiyaOXdzGO1ATnQgfalWAgS7Bl2y198Bos0R +va2UeJjKhV4lNVJ9AP/poatx4FfXdhmnugM+BZ9CwDQWJIcnXI/I7UDBx+yw +QzEx4MZ85Eq32A701VUyqi9GgSj/GTcZ4R2YfWS27cMQBT3SEoPRZ3bgk40n +/qVcBJwzfu5hfGwHlK4LqN01CYW6qszRnfVtMMqyXL1z1g8se6skny9sg/uw +62/FCW/gXP7rUzWxDZpCb6/TvHOHd9zkMp5/t2F21sbologTMHx5+OtU8TYw +bQQv00XLo3uXlhVufd2GEPIPHBxdv5BUc8Zs3cdtWBf6HaTnG4wEzd/7a5hs +AyMTI1n+wzBEmTM5+FZvGyj2/YI9zaNQofg/m8BbpHL9w+t83AmI90Z91gz1 +NugkRbAcHcxETP9+an7a34KXHp84XMKy0K690gHZxhb8YLqxtqCRjTrLK+6w +T25BeYxA8qOGHOSmUDRxs3YL0n1WX3nm5aPVOwlcgV5bwJqo6HtCtxQNzRlU +8bhuQeHP9Xkfxj+o0Yv3bar9FlRnWL2yKfmDkpvDCzGzLWDwcwpSYQWkq+7/ +aEZtC3LkiZ8T2jF0e+3B9sfbW5B6y0pl5kw5kghkiiaT3wI91oDHzJbl6Ojf +n/PHrm5B75fTXbVMFYj41OHnzeOk9jyMqYtXKlHeroxIHfMWDIkkfWS2qUQx +v3c6H9Ntgdcc+f0/UIm+/vt05u3WJlg/MveKlq9Cxg5X6taWNknnSdYZvEsV +0uRdNneY3oRXQsbCGpVVSNTgPfzq3YS0uAnpIKlqxE11/jVP+yYwVX4SkPhY +jRjiJxlS6zch9qWkypm0ajQ+bqCN/dmE5PFAC+w4HrW58pLfzt+El1F8Ii9U +8QgT/JfYkb4JYn35fqI2eBRmrL02HbkJayM22gpdpHzLuHC3LWgTLi41Xmeh +ISDpTOeEEu9NuKAakhgmSkCMj04cxLpuQrhxdnj/MwIaWMM98bDfBMr0cybN +LgSUHnwr0/LzJiTFaTa+TyEge6lOOh3TTZDP6mrIaCAgHseDogt6m3CF+1Tt +YUYiWuQLYGV/sgmV9YGEk0JEVI4XfLt/bxMsdzUMS0ke8TP6UzmuuAnprZci +pki+e8Ggxtl0YxN2y5cqI02ISDRj3LJAfBPcZMkCeh1I/lKzaYi8uAkm7R0X +Qn2IqH2Vmf8H/yb0XrU61v2b5K+gODuzU5vQXNonFphERJaS17s02Tdhp0K6 +qymTiBT6Gy7dYtoEmhPaOS75JC86vPghRLMJHu9zhnKKiGj89MYgy/4G3M9P +GnpG8lx+tfv17bUNcDP3DrYn+c/1DY/f8NwGhAzmP+TMJfnpcN507dgGmJ95 +ViZG8qNguopcTv8GhCl6reFjiWjzwUBYWMcGlItQWHYFEVHNisWqc8MG/BfW +edLwJxGFBtLefVe9AY+2lK5YWRGR8fXwePU/GzD/Qd2I8RURSfWJ7EvnbQDX +zv06oftExGBfrXE2bQPQtzeNzeIkn/JqZzDGb4CtO4cqDScRpVXN066Hb0Bg +7y+rxn0CsjN0fj4QsAGCnazrF/4R0D36E0V4jw1IunoCE/pDQIv3bxkH2W6A +AmcgC4MFAWHLHRX2lhsgG3vrw74yAfn+Mj755t0G0DbstsVxkXzX618v8WwD +Oj8GqgpheERhJ3iWV30DWt09eNi9SPuR58/XQ3c2YCvq/Yd2LTyyfD1+sUdq +A1jpjw6PT1ej/CUJX5uTGxDzvrRVd7UKfQ9omDI4ShpfZfLhlqwq9OTaC9k7 +hzdgUrl0Qu99Fdq0dV/h3FkHTvSY5mCgEknSDTwu61mHmCdtV5zTKhCccuYg +D12HCvaAJ44UGKLxOXfU0m8dFHTO5dE/BXSHvPXwhNs6WDilTgtllKG/Izx7 +9TbrYJpMG8Sg9gctJ5X9C9ZZB3m/0JO034oRv9h2nAjvOrimSqT+ystF7+Ki +f8f+tw6qBUU8gZs5KOeYSiA76zqcUrIXuCGVg25uBrnuUqyDrsaTvVnIQlp/ +rhoTR9dAuvlg+IZ/GvJQMr/0PGkNJpS02Lmno1Fr4QnBtihSuaE3yvBrFPrv +HMajGLIGUvMzF8z4I1ACAzOrsNsaHHYR7DbxCkZYC2514+0aSBrTGHFruiMa +OfU545dr0JWgb590+Du6m7sz1v9sDQQvjCVrNTmgnkDVrsq7a3BNYD9fRdAY +rTydLPK+tAYaZ5WfC6MvINngnU0huEbKQ3QfLnc5gsONa6kfedZgkal1WMj6 +OzDwfg9/yrIGfcvrscnW3sA/zmcvsLIKj/INeWcvBMO7J3WfQ2dW4dfZaO6I +c6GQQ7QwYxxdhXRLhws8HOFwM7Vcf6Wd1D6hgPZ7cyRom+nJQ/4q7JnyeMyr +xILLSP+8d/oqNCgaj97liYN0jWchzxNWQX2GbKx2Lg7IZbTmyQNXYflFVELo ++wQ4l9kV3Oq5Ci/lCz9kcCeCOp+GXOy3VVA7LnX4NTERkg49Cpb/uAp1n4JE +7+4lQatti+yx96tgmDQydvtnMuwu3J8be7kKUVYe2T8OpwC/QWNQ/rNV+O/N +gN+8cwrc77wj66q+Cp2mf44bL6eAlUrd7JM7q2ByhPh2SiMVYkpVggTlV0FT +RkLjWVYq1F8i3tqSWoXzGY4yueQ4WI9RnK0RW4WYi2lCo0o44GGvDgw9vwo/ +rM3wg844UP0pd+st3yq0v6F4FZWHI5175TNSJ1chgTF1j6MfB79NbwYyHCXF +48J8WXUbB/jhspv99KT4Fa+rCDGmweJjmZk0ilU43KkpmXcsDThqSn7Zba/A +tTC52FmS1+SlJW/eX16BD+O4hiaS10wyCqe5p1fgzGGO9OdLOAg+fe3X4tAK +TAf4jsQ046DiVx4q716ByTjqgrB4HMzQXZn2bVmBbS9rDjUzHLDZZge8qFkB +057hxEYRHNxYEEFi5SvA214deXIiFd68yJiiLFoBhxnPCXn/VPDruBDQnrkC +X7hjaDWvpkKpMu5GfNIKHKu5KvSyIQXGS85NfYxaAQuezqNfnqbAkUvJ/orB +K2BNun3i/iXD9RiBG8d9VuDV+0wjJu1keHEsYXLCdQVWeDle5NcmgcePM/6F +9itwiULqWsnlJBg04Z3UMl2Bz5MrpMtnAtAPR/qdM1wBqyJ2x7ULCXDl8SmZ +Hd0VwKneP2RpGg+uUif9wu+tQE6y2oFSVyxcpDsm/e/CCkSgt92UN6JA08Z/ +POPsCgRKxYc8/RYBTvMsvg5cKxDtcGjJ1i4cOtqZxnkZV4B5D1ysbwWDbTSd +z8vZZeBniFKUE/SCBDZXyaujy/DjU7fx+ds/odmVeoy6bxmEaDRjPjxygTMm +FJKJdcvwkHyFq+SiJdRJ7o5MpSzD6bmeuJmNT0hS4sy/wZhlkBDyrL2364CS +rt7p6QpdhrEIzqVS7+/ou0h4c7XbMtjRhPReXPdBsvzSf6KNlyFSbkl9ICsc +FbLYBmqdW4YOGb+XOxEpSIA5zvfB6WUoeH8u+agIDgUy1HsocSwDd0thxbWK +NPSBltP5Kj2p/et1d3XLTHRxr8SUZXoJNqxjPySH5aC4yR3lmuQl6L38duBL +axE6Os4nj0UvQeVQTndJQDFyGrmNCkKWYGvQ+oPv4xKkNxB2Nf7nEqRXypc7 +tZYijnap045GSyD21WBYIR/QzxYDLiv9JRjIybm5dQVDm43uJ0y1lmBdbqEo +3hNDnTW9TDoqSyA6qiesKlWOfMFmR0JoCZqnZK7e/l6ByP7Erl/iXYI1fVrs +aUcFMimuW+L/bwkeH53o6T5die7knZxkO7QECSf7iPOFlagkW27kMPkSBFWt +ypqQV6FzmW8HKLYWweJkfYSwchWiSy1pX5xcBHLBQRnJ5ir0OWmkaWJwET4E +NGlYspB8FX+4buDvIthRXiSrfFCNKqOeltcTF+HC5xdzn2qqkV3gTlpS0iL4 +9sctS8Tg0YsX4irnohfhi2RTX28THildNB9NDVmEWiP1pcAdPDqCH+fIcFuE +i7JXL9+4S0Brvrz5Is6LIBgo/YD7AwH16Dx7mG2zCKMVlk4UQQQUu9bimvdu +EVK867dK/hLQj3IGvmuvFsFE7In2z3UCeuepVFaoswi6GCeNEisRPdRy0pLU +WAS/2GvSS+eJSPzsn9WSe4tgypvq7CJHRBxLG94ySotgFtGbuqdJRAeloucB +LcJprr16rXdENPrjPf6mxCLsDH1WDvxKRET1JP0KkUX4ekmuJtOD5AmekV05 +IdLzTOLyiSEkr81yBVfzLoLY8Xubn+OI6FOhppgSxyIQRGdNeEn+eeri30hk +XYRhVVrbmBwiuvmg0Uj18CLUDavf2C4gojOch6jrKReh18+QW5DkK9Zm15th +mwuADCrbzpPKvYZ7nyKmFsCSYlKbmuStuAOLtOieBcjufHCQS+rPJGhyJK5u +AeinjTWkSO+7dkmXI6l0AUyzHW6GkOIhI7Q9SE1bgKLCsMkmUry1uiqu6REL +4Hv6WdUgaTz+62V/srwXIPUM3r+BNN5nXldWcx0WgO8ltX4waT74+VPOFZov +QNR9fgc5kkcX/3Drl7xYAGrraq8W0nwWPf4VVPZogbRLcz8oCBOR0xx9Y7n8 +AtzcCtKNIa3HnW8OVNVXF8AIWRJmSOt1jGtdksi/AJqnJE3OdpM8nfvWvO74 +AlxxldV+VERA5qMaAy1b8+BzIOn4m7QfJG3r2Tqm54HndvO5StJ+oWKTvf23 +dx4KhlLXFs4SUKDchcKBP/PwxQCHWTbjUWkMpd+M4zycrRh0amXCo2+S1sR5 +i3kYEVxO6uyuRvda5/eXDOYh8Si7HFtsNRoi73m7qTAPfG5COVoi1YhGP1OB +mn4eflpgUTPiVah586wt3c4cqFI0NAatVqIQn7Dsw7Nz0Ku7ewIyK5Ew9p2b +tXEOZJht52LPVKKH3Dpbp/zmICdQY79tpxwNFzv49zvOwSmrQzY1ieXIQiPu +Qrj5HHSfNhd/pFaO/Dxn9P97OAc9fAb02rEYat2xrj16ZA4Ipyq+2b0vQ2p/ +A8PovGbhiQPXcpReIRr+UHyV8HUWWtnaFhODCpAF80DTt/ezcBOXNJ3bmI/8 +FM9SUd6dBYf7MPxcMg+15ua82zs8C1QdnsOuh7ORmm+zzPLPGfCuKeGffpGI +hoVXuzKtZ8DYn8ePojUeWRCPW5gazUBo7scvInJxyO9AN2FWeQZU7i7crRUm +ee39HNME7Qw8ZO/LDVMKRC8OsSTHb0zDMPsl4b/q/mg57orcy4lpCDCROnvK +2Aex9tl8HsJPw6srck9v6XxDaqr0g73fpoGgduWQ2voVGB678CX04zTwQZYK +Y4MhWDg+ZNN6NQ2b0QSTe/c/gV9hsHKn/DQQJy4uhil9g1Z+gaxmymnA2h98 +OuAPgBcVqre9V6bgUd752umXgbCsYzJ2d2QKghqeGwsGBAPrr7z/6iqmgGbQ +a1yiOhweUco7VTtOwQ2XXHrFKzHQKOX5LMRiCmJxpcwq1LGgatkp/t5gCiwI +d5xaGmNBduzNDJvCFLhJ1K9S3o6HMq7s6smrU2CNvyVtvRcPkho7kaX8U0B2 +PcyVPikBRAme6i/ppiBAICeZbywR0g86L0psTcK88air/eckOCfBc4hhehKK +D23aRZInQ4KZ0ci/nkkQCsswNHNOBt7k7D85dZMQfhu7NbibDOFDO0GupZOQ +P/hQfOB9CpzgULB4mjYJ9+3UQ7U7UyBAzevOpYhJ6OrGLSqKp8IR9y5+Su9J +8PUSn/3lmQoelTzkXfaTcON2uLlUXyrQ7Rr1pphNgmEwdYjwaRy4XMnJs9Of +hJ3tkAw9PRwcvNv1VlObhEM3uiXq/XHwJV7BmF9uEp7lEBeMgeS7fi/5bbFJ ++HdrjXB1GAcW7H9PNZ6ZBHMu1XmBXRzM3+Pdij42CU70pTUyJK8Zuxq3faSZ +hNljNTuWJK+NQ06aysYEnMmof17PlgYvNndduSYnQPA/wSPyh9OgX0TxxdLf +CbARRs/6//9/MCNv6eqaCfhnrNIaSvJhe/Rf9pDiCZg23rjuUISDBz28S+9S +J8A0aTbAzwMH9axv626GTwBTPeOpvxo4UL6dG8/mOQGxTrHKmidwUOW8Zz/5 +dQKeU6rByZZUuFmqqF1qMgHkRmMvhB1ToWTV+4qP3gTs0q0o/xJMBfEL3Uwv +H0wA99b94heEFMh+dXrq2q0JcNh+djlGJwVSOnN//zs9AfTFBjQ5ZsnAz7z/ +OefoBNzcvYLi55IgRklJzZVqAp7Sd128/SIJQgq7aS6Nj4MoPiaaTCwR2JZO +D1F0jYN1n4SYpHcC+Ai9K+kkjINQRKyfzUg8/AjdN7VLHgcNG91jnyzjgKpN +SVUtdBwubptxvciKBYfDvmf43ceBS74xr2Q8Bj7b8nU3vBsH5RuOtEJS0fBa +V1mWS2QcGInyQXacYTAc6Mu5xDMOz2LQIp4vBHSbetarWMaB//oKzyhXEDy+ ++T713coYvA4lYyub8QP5035spfljEPYyrNBi1hm+6/5Uu50wBmc0q0XfJnyF +mlAHn55fY0Cb39ZKuiLDvaOmDFuWY6Dz2BYnjN1EmlR3qMTFxqD486oCeu+K +3o5Tr2ZkjAKNsWLx13/RyC/Fui02aQQ8fZujXpTkofZxMxax4BGwyGYMqXDN +R8f53tyvcB2BjJDR4/cfFaDwMI26wdcjkBCOv2U0UYgSPMQquc6OgOvMo0eM +ZKVokniOPI1tBOy4/2FSFaXoPPVpJE01AmlTbSf9nf6gzK9HSrRHhqG/tS8J +7ZWhYpO57KDoYXhU6CsbPoOh3ZTRRX7fYZiqZ3+dIleO0ETvxXyHYXgy1Viu +HlqOqvRqU9r1hoFv486cglwFanyQGMNyahhmKF3vnXKqREc8IwajGIdBOCJ4 +3KehEj2q+XVKZG8IjEvFJq4er0J/b7mE3usbgpPaotYTcVVoSFTfzz10CExM +vv/EJVWjdOdUc0O3IaDma1Z5MVKNvrSvPZD7MgS6g2mPaDnx6OgnN+YdrSEY +8/h2aPc7Hg3i2+c7VYbgIaXlrGQRHuGOczdmXx8C23nHn0pTeKRQlONh/N8Q +aIoU8+JkCYiVfv+t4qEhuK9teWz9LSn/aivfPr01CEk3o/OX/AgoJdXv3P7k +ILwsZpsILiCgz7t9h3r+DkLaKZnxMVK+lr8rMJVHHIQ4XXq1ti0COhJhTvQt +HIT/VPECz44TUd98SeL7JFL7/v4qG1EiSkY0rirBg/D+S9jEhdskH/k8eH32 +xyB0TbVkmOgTkexQqAK51SC8OWoVKfmRiJhEx870Gw7C5dtXw7y+k/zjdImq +6MkgpPINTBv+IqKkNuuRAKVBqEsful4VTUSWZ6oqzK4NQi5XYlB0KslXH5li +7ggMQltG7+f9bCJixGs6Ch4fBKexzOxukrd62GOfU9EOgtYs/TdRkq/uNPXY +Y3P/oE0m0oeOVB4zM71h1fAPPN5S9j0ltbdjpdq7lPYPktlxrcKk/o7nBpdM +ePyDDtY+edsUIsp8fOFL5Lt/8F+Bs+HtKCJS2SiXeHLnH2zqH2kP8yei4WCN +DSbhf2AjIfzD1IWIbCRn8vCH/0GTkMkY0YKI2PrsLe1mBoB0qmam6JJ8+ZVN +TLxuAKzesR49oUxEitzJS3MpAzDjGBTIdomI/mEymfFuA3CH2UYw7igRWb1o +NdExHoDffrzH69ZI6xe/M1MvNABRO8YCy9kEJKfkk+JyaAD+leXidz0JqG/y +jJH0VD+MFBqV5rwmICbhe+OpSf3QkTSUiVgIKLFhOM7gRz/sfGg4cXoEj26a +fjY4+aYfhDSeJtZl45FFdtSgm0A/SG5bT/rdxqPD6lcjZWn7Id+RuRFjw6O4 +tRqd7fE+eNxdLdPZW406JVZ6jBL6QP0RRU2vQTWSBIUO5bN9QFbGn6/3rAq1 +Pe/xJ6Pug5IrK8Udx6rQOwpTtcLRXvjP09LKmfT9RCgENwnE9YKtaHZNzrVK +RFk/XUPD1wvpbk2a+ZvlyDKxlm6KqhfQPk6lL6UcjTqlKNWN98CjmzIpNU/L +UfV142rvlB7Q+3HAzl+MIdfEKeyEaA+8cNzASbWXocPOkwXnbnWDQ/99bWtZ +0v1Ocjz+nl4XcC64xX07nIpcjuFHRW51wfHzLfTOAclodTGe7yhfF9TfWqvG +n0pCHYmvorvGO0Hr2KT43LV4FHRsLPy5SSccGlqW/EIViU4ujfhbfO2AxVjL +a29+OCGP+spWdb0OWCja+qeY/wXtJsayXLvVAcF7h/Vk7MxQv66B9w5VB1yR +F2AR4r8DkfXDbi4e7dDuy26g9dcFjiRV1Lw2aYc+j6wXsW9+goNzDJ3Kg3bA +WW/P6A97gr7ki++MbO3gZyQ9Ma7kD3xJQ46BYW3wOc/WhFY/DHjcuX4sfGkD +5pdbLsdMf8MpEy0vZe02+F7a0iL2PhI4rrSEbp9og6nWANqL4dFw4jhj9KPN +VpD18jn0yikG2LeVE3FdrdBjlK9I9zwWWDEsRzewFa5xFzvSkMfDkdjdooKP +rYA1qXucqooHpu8S2JHHrSB54tE6p10CMBhZ4o2utILTxM7wyMVEoL+TWV9x +tBXO7hotanQmAt2l2daTKy1g85lD+qllEtCwCnZbtrZA1bCMYRddMpD/jRzj +922BJgs19262FNgv7p2xN2uBaVd/2yseKbD7+/jy3/stcJixWT5rKwW2HR5t +Xr7UAmHnBu/f0EmFTQPvfTemFpgboIqpy0+FdcU6qtG5ZlhbtOpRpcHBqhDt +YZmGZvg+AVczbuNgmUGOJRDXDNHx2d5z33GwuGB3fMG9GeCJyqvdApJ3Wou5 +lN82g+2b051tAziYzVvni1ZthmUZfPz7HRxMB4ue2xZqhjn3ROlqkocmbUxE +Hh1qBkaWwaQukofq/6i/12xpAuGY5IjYo2lAdK63pvdpgq8m/lZCtGlQpSL/ +vfReE/z6+OHa20UcAHOpnwljExBE2JzeNeGguEMskqe+EVS/RsSJxuEgPyw1 +tdWtEb7+A+8qExxk6/MVuqg0wrdbnl3nLuEgXSCsSpyuEUSfnc42HUuFlDnW +lkl8A2SR769F+KZCQo5bf+i3BjjidfIEXiwVYqwppu/IN8CHuhqh1boUiEBf +1vcpGoAiFnVe106BUOpliqzyeojZm9dLHkiGwDojZgOHesBkA39raCWD5xMt +QcJeHYyWTuiXX06CH1wtV6xL64CVJlon3TsRXEaUb523qQPRupaFa6MJYGsq +oe29WQunZiYsfMzjwepq5utbBbXwI8Z8PDQlDix3BD6sfKwFI58Ls4U9sfDW +9bjHk5UakLCXDcnniQHtyPU/3PNEAIMOk/fe4aDxyqS2BUeExAE319gvoaB2 +frzT+S0RUtIPqxpoBINKQcfCxCQBHg2Uqg0P+oNEUy5v5ggeNK/XpAgFu8AI +XeXFggQ8nK8cq6assgcv2RapMiM8bLRPeZ0T/gQjeXOP6xeqIYb7RenBlhx4 +hfO7Te5Uwajz5nlJdWc0YhS8zMNWCb8emj5NLopEXIc2v/P9LIOa8lbDy+U5 +yMKWLfoycxkUhPhzsTrkIuKCSAn69Qdokxyqvt3IQxadRgtPo0tB2ltZq6Qo +HxFje58EFBXDiC5X2ZeEImR5AwSpp/Mh6ZfKrwBZQLVZvbJHzfLhDxv9S6N5 +QNxnN5/xrudBlIsz8eQdDNUevuwrQ5EHYTLuUZnLGOLujtn6yJEDp894r2Vd +rkCWd+CoS1Q2iDY97pWxq0C10HvBjz8b6kcmBt/WkOoT2F6ki2bBTONxQ5en +lShgguFXw690AFH+L57vq9Ag++eBnIQ0cK9S3mrEVaHzikMCoaTvxOMH55GP +01WoIi6v+HV3CrjoPmdpfF6NmNq5qe5OJ0Pwt/tHzEOqkTal212xnSTYlmNt +1WyuRkv6uoMHnIngvZB0v1sCj6R9iULjFxJg61HNroExHv3ARD/U34iHn48l +Hx4PxSMeblqaENK5pHGs5NvACh69u2d+3948Bm4y8qqNcxFQwdfe4FdO0aC2 +yRe1r0BAvwv1nrxUjgQ+HRPz2z4EdOX4lWkR498gF8m8/pGUP+s/0n3dcw+D +qgAtst+tBGTQ3sdcmxYCJTqsMqWLBLQtmhUT2BQEVw1nI5oYiMjP99tVg6Vf +4LbKotfGT0RCi1rES0cDYOJC4l7lDSLC7l18unvFD2pjZGUj1IlIM41inqjh +AweXnknrvSGigePp5OeXPOCJZLYc1ReSXzo0BKqu/AQrkfhNt59EJO13cEfH +6hvoK/2UXwokIuP7SRbrJY6Q+3pe62oMEV3+L0aE+8AGhKUGch+TPOTlv2Lz +8LslZL8+cvIhyS+dJ928aE8agySBLZyf5BseXm3Vv2oakNf4wbejiIhwHfa8 +X27dQJ4TVRE6JA/tUHum1Ra9QHvDxVllhUQURffxcE6HGUKm/BRbuUQk58WH +OdyzQp9+zbMwZhDR+NFWy3sEe3T75gFuJ4GIqu5gbExRzuhnw4Wp6nAiCvQ+ +vmD5zBUZph/lf+9DRIatJjW9J9xR1sl/DCuORCRxDB8r2+GFBkf+89EyJyJq +HBO0K/uis09fz8SQfGRyV1KYTsAfXf0kGtuiQhrP/KsQKepfSJpD32WS5E3k +40tjOhKIctOmYqf/I3nx8p8PMeXBaG39vW7vPgFZW7LdO2QXjh6YunwJqiCg +4WM3S6SfRaA8hXcbxtEEFN97lU2CKwoRVkfkZexIPvqq7/h2Jxr168Q4L10m +oIq7G9e+Tceg/nuqhf10BPTplOd8RHcsQidGZPv78egfFD5tLYhHllh52QUn +PArwucc6m5CAtq/pU7s/xCNl/VEidWAi+kG2q8rGjUeZFEfEr1smI68GQwl8 +bjVyUjA8EiWShugqLf9Y1lWh+m5OD8or6cjyt1Pob9cqdMykldbwWgbqFyYT +nrxVhdTrIg7YIzNRheReD1NWJRpfObTRH5+NxtiqJaa+VCB6hcGxtzn56IFa +un6FN6CLzCWxXFcLkPO/7+t1XWXoUfcv/ab8AjSt4ENZwFWGwt/f7hctLkTH +3JrTEmNL0aXA/PYtrBj5iCccRWFFSH3Co9K1sQyN6AmvvFPPQVZZho7XHwCa +aqyJmP2RjX7byKKZFkCEm08Cb/7JQiu0tjqJxhjif8j0avxsJpIOv9xNb1KO +rs45a+itJaOmqvDmFstKRDHzoC9RIgwNC7llpORVohF5r+k0qWC06vXZy3m9 +EqVSthBmFH6hE1pqd65aVSEZ+y9ne0e80Is5WmKwTTU6Rx0XoNtmhlaPfQA9 +JwL67zoHn5yED2jS1v4eKSOgKJl0S8VXflCyyWNruENAJd0HNDzfA8Cpt1HC +1JKI8rO/CZ+PCYax+rPHVzKJiCH6dm5deCgol9mufZojonvtS9Y8buHAHH0u +2+51DRK+tKA4yxUFFn6OPhSxNShjOau07yAKOp3/mnz/V4OU96I24nqiIfz1 +9/NemrXo+J2v7ApfYoFMs/8Q669axPDmeNrIjTgwULky+aulFrHNc32a2ImD +c8LDcb9V61Dw0QSLAt0E8OK67szrWofcpcVK1KgSYYnJRz++sg6tGFMYLkUn +gjrZBBIiq0eMNSvFX68lQeGSzKk06XpkI157YqQqCU6OBOyKWNejx3sUFEyq +yWDXPtOTm1eP7vV945jFJ4NCQUhQ6cUG5AVnztglpkBS0uLHm28bkNGt09xH +D6cCQ6iSelViAwoIM9fnep0Kpu4RosqjDeiFQo+OT2EqtNquHannaUR83Nr5 +zylwIG5yZ+G+TiNKjs+XcZHDQYhebENbSCNq5BndXLLBwe6D7dQnnY2II0yW +JyYVB89lH7r1sjYhz8+ZPF6tOKgSS3qjd78J9dhZhGeSvCNw9kBxxL0JgfzS +W2qaNHBj1zhrSGxC1HW3I36ypsGGc6fjR4pmRHsPrKXY0yBpl9y8gKcZfREe +teFgSQPtjxeeb91oRrtDoCVAmQYM85r3pXSaETUr7sBgFgdlr11ufLVpRqEJ +rL5t9Tgw+5dxAUKa0QWGA8MvJE/xavZykhc2o54QFzbdDzhobaZhkOtsRopS +20+/XceBi4rojstqMzrz+bDE5noqiFfoTONZW5D6SkQHpKbCpOTPbrrLLejN +bz//8SepEJqTS1S934Lk4+6SW+2kwG3hwQKP9y1I4qNgv0Mgya9xhxMb3VvQ +wmoKK7NQCqRzXQs8ktKCDolGF17OSQZWZi/LgPEWZBlSY/spPQmqXIsMOqla +0Ty7gWcpdxJ8JBtTO8HXimRkVOcHfiTC3yWpy+F6rchGTn+RQS4B3IwNeQa+ +tiJbi1tfFQLiQXrEj5knvBWVfog4n9sfB5HtU3Oxf1uRcnlrSohWLLwuCEpJ +fdiGGCPbZ5mXIsFN0LD1k0UbsrhXSL+9+hvSQ8S3b/m3ofZ9/O2SyTDYsOlQ ++dvehiadTPX/iw6CHzePTlFptqO7twybNco8AJc1fKTZqh1lffdpU+xyhZbT +2RJhIe2oMDwlvrTDCTioH/643NuO5oUF2TYZzCG1xktAV7cDEWKJ+odefEHN +krr3hew7kNbk/epH7U5oNfXC59XIDqS9nbwn5v4DSXvV492GOlD4Q76QzeN+ +qFGN/nXBy07k7vCVqMcVgRZ7v8UdeduFPE1fDUtFpCK2u4/re9270OTMed7L +EmlIouzMagKuC3U/qnzL2paOHKMq5WTmuxBd2idTJeosxPqKfMTI/C/CHz3f +7Sudi67M2/JWfu5Gbb4MOXc9i5Gm3h0Vr+Bu1Dkt6XVCrQTZNp801yrqRpx3 +T3xUPVaKqrOLsYXtbqSodkXqVeAfpPF5U4/TrgdtKytw0N/EkDWZZcRHl16U +Eflas2imArkp/3ZOjOtFMZcgY1iiEoX64N90V/WirRN9OW9cKlExz39iMtR9 +qPnv84Gn7FWo9o3sCdOzfUiLpUk6m3S/7sl8uxel0Ic688JLrkVXoe2bZQSq +732omsssPP5MNaL/OYETT+hDvz/mf7Em3c85Wo74vcH3IStulo+PoqqRlL7B +s3qafnTjptyR1aN4dCfZ49Y+fz9SUyfEJani0bOlPH4RpX4kxeeGkD0e2TrS +Lfm79qP3sxJ0y0N45FFzubM6sR/dS1Zq3GcmoHCWpyUbhH703w3ZhkYpAsJp +uUQJTfaj0XefLz59RUCl0WnfntINoOT89I+/PUj+muo09hQcQCn25528swio +7zLZA1AeQOdno73PtxPQXrkaB9/PATRM99f0Duv/arrzaKi//3HgDDNTyE5S +SVEJaSPvIs8rJdEiJcmaLKVCWZJCCdGChCxlzzpKslPXOjMqoSgkIfs6GPv2 +fX3O+f3+vOe+Xvf5vM97z3k97pmZ1zCBn+feyrl0op3FHcLYyQQpgzfd/jXt +8Mwy4GSLNhOUor/VFA4Q4+9P+eRpxgSNrpm3g6v/Qmd4zMX3hDdOyW8O2yD/ +Fxqu75x3esgE81u6d07p/oXFvduai0IJfxQ7m9+3/wusmKrngXFM8CK91sp5 +/BfUhyW3t6cT3tKly3Vn/AX3TvOFvPdMiAsdWyP+5S8MSMs3CRDeym6VmDw2 +9BcebslsHyS8ZSm0ebiU3AGNIfQ32oS3ruTltTeJdUCCxI4NMoS3nIx1G0a3 +doDem+Mv739ggvtSeyV1fwd8XG1ab0Fjwv0E53xp7Q4gSSh3lxP+Czi6Kv3A ++Q74p7DubBrhw5CBVzEGth0Quesxh1gAEyKf7Qm65tYBozITe3luE57bQ7/v +698BIaonXzy+THip6aLz64gOeHf3k2LUSSLfO2M2+SkdkKctfv2AChMKN/pe +qMvvgN9Gxzc5ShKeLZfQ66d3wLqGZheNJQYwbbIOcf7qAMlNCguZfxhQv/rw +bsm+DrAeaIorLWFAx5lrYieonSDi9qWhzYkB/VMrVJu1ndDXPMM/e4wBrKiw +ec/tnbA8e51Zu4EBnF0f/7471gnZzSpLlZgOPP4G35lGnXB2+eDyxDM6CMv3 +VXXadUKnVarvnDEdttwSzBAJ6IRv85TBrKFqOEy67HKb2QmBn7e3ZU5Xgfnq +79vu/uqEp3WrLvMXVcFdQc0Wr95OCDp3d7zuThXkSm3S8OfugnX1lfmhhDu2 +qv2mhqMusBBxKBVtr4BVLmdjcgq7gOcYyMfeKAPZuxUn8xldEP+5UeSKZBlo ++uzhKP7ZBS73d6ldforBI0TAppzdBakOdZ1dKp9giPZFqX73P0jQtIJmlxL4 +1qNVMZL2D5p5t/6pKciDweEcl/GCf9AtqNvvu5gLVPbm7VP0f3CBo+RQNcoF +ROJ4utj9D2ymEuvUmDnwXqrUkHdzN1xyzPkelfkOwoyUB+SiuuF36x6bYq5k +yDZPilFM64YPGzQnmeGJ8NVG+NTugm4wDo7eKCCfAGQXVo5qUzfk+35dJZD7 +CtxCaPe0hXpgNC9keaLoORjXyApaB/aAM98Tn0P3bfHbrz3mtKgeoHuuDCtn +u2Lu+pQsdnoPjIvHMQ+wvHH2Tzk9v889oBO0P7V6OBBTuhX9U3h7Ido0PMH8 +eAQ27RtpHF3fC9OeO8vBIxLnDL6VUVXsBZ1aWV8hwltm47vLGSd6wSpzbZni ++1icu6y82P+sF7abdyQp8CVhHtK07p7YXlilbC7Z+S8JW5ALou687YWq1L8i +P3OSMQ/fAVWeul5Y/+AyY0ElBVsKzPsZ/O2FL6l/s0YHUnC+cElj9FgvrHm8 +1+NNWCq+tO7QLQXBPuAPuKEyWZuG8zcslzlL94EPvWD9BdN0zCeNBUp394Gj +X3T7hs50bCVz35xbsw9MDJV0FU0zcOE2zawTZ/pg5cWtglu1GZhfnrQYdqkP +JNqcBP73+8HLOyt1/9zsA+tQ6W9moZm4cLdv1FafPqBI8pD/9WRifuWj/TdC +++DQkXQzy100bK1KUc1P7IO10UHrPzvQcPFBht9yTh+o7AApccIjghoBjdqV +fZDs/71LrY6GbTSPywT/6IOR6lN+yoSXio/w3Pr1rw+YihXl84SXBHW+lG1i +94GBm+TUY5EsbKv3VOAKdz94Pyza+O9/72c4ddI8W7Qf1l5i/CbxZ2FhA/6s +Wdl+4IzQvDm0QMN2hnULSKUfnhYwyuP+0nDphRDdwKP9gPW2GsgW0bCw6Zmo +BsN+aOSLOuYdQMNXLIT719kS42W22BaeJHxl9WO/lVs/uKk0C7esomFR2zC/ +DP9+MDJBesNFmfjqVcPGiYh+UKnOz1i2zMSfrovLqKX2g/OXJmup5Qws6vTr +5sOCfpBq79cyeZ6B7Z0jy74w+kF63jaFLpmBy9yMBUSb++FXqOI95+h0LO4h +aW7a3w9Fl1y13ATT8TXP37Tk2X4IfxlB7rmXhsV9zXRV1g2A9MVWTdsDqfj6 +I6kozx0D0GZ32IYWmIIrHv/tqz4wAKZNtbXV9W/wjeeX/M5fHIAuP+elAa1k +XBVrU3Y7ZgCUQ/UznpbHYyUyZ11GxgCEh9nkri+Kw5HXXv35UzQA2g8qrRY7 +XuPr//2Y12oegK0yknaXqNFY9DtSERQbhGO/eNUu5T/HXv+1aWnJDsJc7/uL +7eRg3B9728Bt3yCYuhexDjx6jEuvvXVsOzMIsdNxffuOPsCXyRsy0oIGIaU0 +3Flq8Qx8vVZQ+Pv1IKSSji3807kB+78bMPizBkHmjPp09qg78MQFdrt8GYTz +7wrzp6f8Iee/GSnNVUOw40WEHvVCBJCuf3/R8mAI3LbAj6XoFLj+/UYi3/Mh +EDavnn8nnAY//1v9HuKHgOwYfbr7STpkkNG3N5+GYGueoAmnDw0M4rJW3VoY +Aq/N7tmJau8h4XuAJ4/rMNh1OJRVKBQAzwHZp4d8h2HaiSR1rK8AXOJwtNOL +YeDbUFDXk1AIOtenC36+H4YHpkU3eUSLgUW2nkgcHYa1z70EZQZKAR0AO7Ur +I1D15qesjXQ5SD951Lj59gicndpj/NCxHDj+1Gmu8h+B2gxH59sfy6HsvuWG +pqQRwFdT6goMKwCYDxoc/o7ApkXzXG+3SpCS/KxhODoCOhPDEXtLKmH5mjBN +bWkE2jiCGdeXK+GTQJL/qvWj0GJ4Xv/s/SrQMKpSSzw/CsGPLu6fd6oGqXS+ +9ACbUYi+GGI7k1YNy/PnxB1dRiFi4Uzbgb/V8Cm2h6UWOgp5JkrfbmrTIZa1 +03xLwijMqfjfM75NB6/Dbl9WZY+CeXrpT/sUOhzqpaQ01Y7CTNpA/PgyHTb8 +d1qktG0UTimtP2gix4DFwJf3E4dGISN4/4+fpwn//P47EjA/CiG/fWQtXAkv +7ZQzcVw9BiYmfDvGIglfeTsxDSXGwNVef5NPMQPuNRSqqG8fg3KdjkCRVgao +ux4XXH10DE5QN0ptFmHCBsZzz7GzY9BgEJgSrsiERYnWwSarMdhwt/rS/94/ +0Ga/5ULpzTHI2Cmw67gxE0pL7asT749BvhhD2ec6E17xf9gbGDwGdo7fOxI8 +mXDPciHOMXYMrvNM9r95ygTTHK0157PGwDdbTO9pFBPUuJ96qJeOwc6eiJNn +k5kgeb6xb8uXMfCa8vSeIzwzn7rBcHUrEV//baEn4Z3WOeuKsf4x6JASkPxL ++KlYL2vXz5kxyNmQvmYj4aXabx6nzLlYUJpUrK1KtD/OSPk18LDg4Hh5+c7C +/31fq7LkiDALnr32rOLIZcLr43YTBetY4Kzz7092FhOe3uLdobCZBUUefL0a +b4j8Y95ZxMqxoBevW86MZsL1qrMRQrtZUL7AGzL3jJjPyMxXX1UWsV/CTu3w +ZsIJ8VdcsxosSHFoVj7kwAR1QAevabMgp32Pv6oJExSvdDu1n2TBTfs/tZKE +Pzc8D0g9Y8gCrxdv2geUmMBXrNheZcqC69EPvqeKEfXvqhf9z5oFn/QVeC7M +M2CY11Uv8xoLzFwyFZfbiPVXXucj5cwCweS2bbEfCR+bfSx87sGCwKVuefVX +xH7wvzTG7cMCldsp79rcif3QnG46FMKCrvwB+/8UGZC24tbJEcUCvh3LZJsV +OuRtO2IrnsCCXTuEbhjU0+GbS7uj5nsWNGSkxT67RoffMZns80UswD/2HhtS +oUN/hfud6+UskFE/5rpjuRo4hUQevmxgQdBiVKN9QDXw/9dBzWphwXpXhZD7 +usR5wiLraUUnC84Jkv7F8FSDctaxiJFxFkQ7drXy+lWB7fF76VrC43A7fHfK +0uVKuOV0XMlYchwoog7O9msrwful+AeHLeOAE7b4qNRUQGRPdmnU3nHwLJvo +WStXAZ8f9NSNGYyD/trrba6NZbCr+NR0zItxaC1WTZboKwH1zvV338eMw8bc +lS7YVgI6qwZW6EnjYOsZcKXjcjFYnX+4euLDOGQvPRyh/i6EsImCDTqN4zCp +dffj+dI8mJXfrMUWnYBQy0C/PbVvgdtglLF64wRorhYP4iPOi0J3Sk5s2joB +nYWhUrVJmSDPMDyvqzIBYVGJ2kteaWB2+fHVeMMJkBcUcyPpJUJFzGTwiYgJ +6G0omFyHA8GYneXy6/UEfFCTSupx9wXWiSvGVm8mINjwFpvf3ws2Lrdtcc+d +gBas9SJa0RrcLel5Sd8nwODrFeunXJ5YoOh+tFLrBCwpXDL6sechThFS8y7q +nAAHYytLya+P8I+Kdzp1rAlQqxl6ftU8BCttjfo9zz8JlJ65ZDKOxNWeZ8v8 +xCfh06p8v9sF0dj055o3glKTwBP6NiYr8RUOfOTjsG3nJFz4pei2Uy4eS3eo +n32vPAlPXI8Fyq1OwPn/zaiqq0/CrQKTTO5/Cbh74Bqngd4kvDJJTBm4n4Q9 +Dm/rbTOYBKu/9ZVFR5KxUEzHZ7uLk4TbC73nON5gjROGYZ5XJ2F6Ym/6JasU +3JQscGfVzUlI5D3/xphKPJ+XasxeuE+CBt/UZcvkVBz1VmN7+qNJ+FtrveMo +PQ3vps7xKgdPQs1eP+cF3XRMt/jA+hQxCY179vHdZKRjs8IbTcdjJ2FOhLs7 +TC0DswXlihvfTIJR4D0Bo9QM/PhqV6xF1iT4nIaaNJ5MvLni1cPB3ElY9BVx +uWdDeE3S6Ipr6SQ021S8qi7IxKechU5yVE1CkNLXBXdOGu758mXPky+T8GBg +0u3pYRq+J+svLv5jEiZZCVtmPAgfeaKF+NZJqGdv0HqfQcPpTfN/FbomwcM4 +6mRuAw0jpbyq/IFJmKqRGpgfo+Gf/o7pmuOT0N+uNXafnIVv/N0R9HWWiIfx +dS3hLMz9X/ctIw42vE5vSEDiWTgmJNaoi8oGmzNeJHehLLx34IL6DQE2/BNK +2j/IlYWZmiKbZ8XZcGKwfV3UCA1bRNeSH0qxoU7vTMmjbzQ8PfFocM02Nuwq +VzIrTqHhp3qH6yJ3smHcU8FlvxsNyyQvfpBRYUPZYEkK6RDhy8X8yLfqbNDQ +Ufi6bSETnzG86XngCBsGAwKGMrMzcX+WglWVHhucH109+MosE3tRerVPn2WD +ZbXvei5SJhaziFdovcgGnq7NG0deZ2BawUVBGys2eJIuzdjtycCHBcWmxq4S +8a2NH/uUpmOn8sBP5DtseLLtsHhzURqWlbgxvvcBG8QMswRZm9LwLwd9WctA +Nnz1L3Lyu5eKNTasfVwcxYbK3c/2vFiXgsdvzZf2JbDB6W4sPnLxDU6u+TMm +msGGUyFvuXufJ2Pe28mGjsVsMLRtBI/eRPyp9lHAqwo23GoeFMjhSsS3ZK+V +1HxmQ7vcIFyWSMDNDXs2y/5mg1GXgWP4mVicooiHmxfY4H+1eeJkYzi++DBx +E4V7Cjh/uP3cE/wCr2n1M9jHNwVy21+8eaf2HLs8OlH4bMMUBPOtWp5qCsCa +XS0PDx+aguRYY5cvDpdw20u2JM1rCm68KU/0Mg2DkNFfJ1v8p4A23V4UeP4l +aB0tuU8JnoKwOotuoQvRkDHxoNcybgrcseWhRtV4uH1SIEesbApOKrwICrqZ +AsJc8se9OafhK/Wan3f0e9BxsLht4DsNpbtP63Sv/QT+07t4pp5Mw8vTQQo6 +jE9Q6cXx+uWLadiVepOn1gWDRnBCRVviNNw64nZ42LoMlLP/rbErnwbdWC/h +d7RyuPVfbvzqmmmQOn979OVCObwr891Hq58G9tQ9ivLxCpBv2Go8/ncaDjne +u3+xowKkJ+yS7y5Pg6vM05dqS5Vg7vGfqhRlBoREQoQiURXEkFZ/LlszAxfX +PFc871MF4iIZY+SNM+BlaPv8O0c1nIvx8EmTnYHaSwprvQ9Vw3MZPTE9xRn4 +XnWy8Kp7NfApDx8MUZuBtF87nJv7q0G3tLR2r9YMfEzcWnFCig6PjjyzbNKd +AeH6g1F/z9CBZKjkL3lxBlwCouSPfKAD+rMs8fHSDEQmjOxf1UkHT5u6TIur +xP0Spjfr+Bgw6+rUkOw+A+Fvz0ifNmfA/mVkfez+DBRetd6y+JABzv5CMwOP +iP7zRxzDUxmQzd8V+DSYaG8cpIjXMGA0ImfDrpczYNOUrXynnwGKmx6+a4id +gRP7V4KLyUy4mnr2sEvKDKBNvYtN0kxI2SXbJP52Bo6fz6UxDjChu4BtV5Q3 +Ay2O3lJP9ZmwBVXPm3ycgV/MhE3SNkywYIY/W66agUqfnV/v3yZ8pm8rnfB1 +BvpungvOfER4qnn/B63GGTg3UiUTG84EiUtU7d7fRP6uCy/OJzDBcOBXc8C/ +GTi6LfDgjwwmhN5Mu6YwNAN8vacqhHOYUD/nvlw7MQPjZ7K2iRIe4/c5/txp +nrjfKP3DzyIm6PFIyoqQZiHFk0y5SHgsIHQwP2/1LNR/P80bS3iMLlly/ILQ +LIT5d3MmER7jTnrSNi8xC1zbetyvvmWCpoKp42vpWTj1QFZ/gvCY1wdFEpKb +he3q1EKNGMKfakthXbtmQYXPeI9+EOHFytrtfqqzhCvEn8kRHlM9EVu8HWbh +7HPF4ZobTHBpdDj5WXsW3Izk8f6LTMgxhY7rp2YhUGio+uYRJrC6BZwFzs+C +yZW9Al6Ef5VudJBzzGbhcrrGrLkwE9I9HyjMXJ8F8XCZ5KxfDEi8m3bD2WUW +sn892vy1gAHRd+rejd2dBdal1cHd4Qx47LpRuf/xLJT2Nn8TO8EAH+cjbtah +s/BHc1Xkf7IMuHvzWmFH1CxcO4IPXZ2nw/UbReotabPQ9+zIFE8CHayvdXgZ +Zs9CWzdeG3CTDmZXqeUNBbPgQLm3XwHR4ZSN4dHP9FmI2jh9evlXNew2Gz9Z +0k3k96ruT8JEFciZSISoDs/Crrpn5LV5VbDZGL5/mJwF+7ilHaOuVSBs+Ow8 +jTQH3KI7S7onKoF9YofFa+k5uE7aNDXaWgGF6pecvE3nwP3wM+r8tTLIPhiQ +s3B5DmR0hNctSZRB+n/v2LevzcHwJu4J0mMM0cpL7k4ecyC0aKlxW/kT3FOM +enApcg4erfnk6upaAmhDQ6hW4xyM2HUwGYSnmAsoj3piHly4Lsu9kkqGPzMh +R7edm4fofqm+stBEmJjsaDpiOg+0SGtRr9UJsGH4/vSD6/PwR31Mx20lBm62 +lakuPp2HL5zVe0YUQsC/WZApGT4PMUxGhkXEY3jVaHnhwOt5GFgWfdra6wv0 +rxx33LLmiXMl1IX7OIPkR1TMqp0H/ppHKp/Fb+NdRSG6Aj/ngTGvLhqTfB8f +yeto3dk+D1cfoaClZD/skHV/wX50Hrj9zUOlLgTjytdl6j38C3Djp3zZiaJI +3BwlWMu1dgEUXd1TWb+i8Wi4pdmWTQtA1fucdKDvFZYI4vCy2LUA6xRk5VWv +xePrXgi3nF6Ar712YddnkvADj5DTs0YLoM7dWUGuTsYRbh1/xS0XgLXv23t6 +4Btc5nCf45zTAlTbDB88Mkv4yL4+5Jb7Ajx9YBJLT0jFg7bSm5/fX4DdgvNm +i5ppxPO1TPNbyAKQq1XebLRNx/Imgt+HIxfgQXx9detAOkZGlla8CQvAeWjq +7ujlDGx4NntiR/oCRGc8v3y0MQPbn+Z4qPN+AUYEHyfXHszE3nr6InZFRL7a +QVNuLzNx2LH4JL9yYr4S2bF7BzNxuhZrX3LNAjRUFt2d3EvDnwBVVTQswLj5 +keWsmzT8Qy3kXGfLAmSXPtt1gfBFv2pH90onUZ9Xa3IG6ml4ed9uV6nBBSj7 +VlNhMk7DIrvvkw9NEPNXunownZqF5RTrw03mF+DkbnLQN5EsrCEnvc2DtAiF +Q0V1NWJZ+KysU34kzyKkh7PfRq/Jwleky7QLhBdB49h998MLNOy5QfBXk+Qi +rN56RryqnYZDJSzt2FsW4X37GgHZQhpOFc2eEVZYhOBUI78rj2i4VJAjYM++ +RZAurN8fdYKGG/j0JfTVFuHCs04PTKXh3lXxaQ5ai3CV55Bmb2EmXuRm/fdM +bxHu0mUEJS0zsRAnqsk8uwjPy21JV5cycLaSZxGYLEKn0PmUG5EZWN+0OP2H +1SL83XM0bkw+A48FzkTZ2S+CsKSnyHJuOg4qUH68cHMRakfizqXvT8dKPTc9 +gu8sws8J2z+k7DRcK/zOXubBIqxxVj29cXMa5nPYoacXsgg6oL21ZzAFZ8bY +qv19uQhFF966ftRKwbo1SQrOcYsQvfvhA1rYGxwoK8UX83YR9OO2VO3elIwp +v4VrB78uQpOJ6+OSlnj8ZpX+R6/GRTimErfKaDgOH9n/LEu4jZgf6+70lrWx ++OFzatDBoUXQvHz4gq9WNObQWTz1ePUSNA10X11afo7jXA+AlNASKJ0uY3m9 +DsYaSW67ciSW4A0WT9Pf+gR7LrMEWrcvgX5UgaEx6wGez+2p36G9BFobz2zN +jz0GUV1byj+eXIKCJfkH7LX28J+g5fszhkvwMM7qE1vnNty+1vr8jvUSuGqu +Tfor5g/szXUGNT5LEG7/uGSqNRxGgwobr+AlwNGX84/qp0DXlSfNqf8tw9dv +lnvilvIhNmxcvB0tQ4M1KeYGswAulhkZih5fBor313bl0EL4vlb2+33jZdiU +0cehsKUYKuilX4w9lkG1sOed4u6P4DWxhSfEZxmcdnN3q459hINSgTr0x8ug +cOC1sDrtE+S4GlbvjVkGwWsTjq0CZZAgO/qJt3QZdlmMZz13KQdT/XNLmlXL +cPfJg0yjz+Ugca9Yzf0r0X9VvDBZqgJCfvgXdrctg9G9QufXFRVw32dTzsel +ZTjCMKdET1eC+ls/1iR5Bba2v3XYDlUw2zKkJM+/AoVzd4ubiPO0057CzAip +FejPMzS1W1MNlh36bxxhBRRIsWp7uOmwga/g35tjKzDy59KGCHU6NKtu3NJ2 +egVEGnMla27RQT94IFbHcgW8cvhfuDXTga/k9B+vKyvA2FzzqIPKAGZv3vo8 +pxUY6JMLnVFmANLwidz8YAWs3V8uCAQwYPFq/0+jwBXI89Bp5XrLgMLwU2JB +z1dg5bdofWADA1zKc89WRa2AW97lta8mGLB7RDJ0PmEFMlMj9VWEmDAs8aB+ +d8YKnDKb9NHfyYS0I338djkr4GdkvnFAmwnWTidPvi5egW1dijPzZkzY9OrD +kx8VK7BJiKnvc4vwDWPd59VfiOszdBvv+jIhYtJ7FfpBxO/mjeh+wQSDTb3a +br9XQLtLQqw4nvCL3gk/2r8V+PLjldo84Z3PbjmVXUMrcL9A1SKJ8I5/ogRp +HXsFRmO1NHMJ7xz+5oVOL66At+sqAUXCNyv3buHDJA50/lD7JR6i/Sf0TbsZ +hQOZfjwEp4nrS9Kal9x5OFD0ayyx8J4JUZ94N4bxc6CDE6u/8hPxbjdqqL8T +5kCjqrTEJ3H/e3/WTZPP4hxohDFwxjmUCfs43nj0SHKg7C+35hk+TBASb47i +2MSBWkp55Z46MWFMgbdovQwxvpdMQ4UJEzLuDbyT2c6Bei1iZjoJ39jWMlIU +FDjQik0eT6gCEzZLpbzet4to6+tw/hJgQpuDb5jaPg4k2ii9L2+cAZHY6omW +KgfSdDt7YQ+xXmcFNX301DhQlrl3gD6xnp/fLzmaaHGgodENmkGXGOBParO9 +fIwDgTdPXaEqAzTPFptd0+NAnjupN2N5ifVnu+ndPcuB4vRYQ/k0OrgcNTz8 +0IgD7XjTkjB7hw67IvYdeGLCgR5T3WVEjtIhRZW1LeYyBzJczeJkN1aDVcC3 +jUl2HMhbX3D0S1Q1bGyhiWZe40AzgznlcabVEOZxlVTizIEkrLaXX2qrAp+P +XX9aH3Kg+O+JQQ7VlaDBX97Y9YgDOR+06jp8txLmzOO+DD7hQAYHHcWu7KoE +Jw7TovkXHOi/BWpHY2gFmGs1hUkmc6BPuoW2YcfKQTLsw5MtaRyoJHfDTt3x +Mmjqfu4jT+NA1T6U2PyoMjjhf8rpYC4H0mjau76pFsPBGobexSoOdK0rvjCs +vxTETheTors5kEhyfVF4XT58vRjntG4rJyrm1uJWc0+GE0dc1rbJcaK0K/GZ +M6uSoHbn8U+xipwo3yblWHtMAnzjmOSVVeZEHYSrO56/hvoU7VQlLU50xU++ +jvQkFPRD1p8a1+ZEeWMyB2kfgqHhDov9QZcTfWgfo662fAzfT0QfPmDAicK6 +Z9hhdd7QODHyR+sSJ+I/pEza/s8Sn2ur8KXYcKINrwSNVWRu4abqlwo1V4i2 +Y9vsSdpd/DNS884pJ050OKtQ+/emR7hZI1zU2JsTrW63Kd5gEIYvyNmXrH/I +idbW1/2gWUfgFiGwavfnRKF7koIy7SNxa3f/u8tBnIhi1KvTdvoVbnusrufw +mhNdnFkDnSUJ2NRFaGJ3Aicq+neDfiA4Ef8x642cTOZEEQGSn3RMknD77pBe +dxonumXqULn+TzI2l7R5ppbNiQ69M1HPDH2D/3IdVF7+wImEXE9wBaAU3PHz +34OHJZzIncZV9cU3FVuWFcppY07kvKv6KWV9Gu5Mf1a3qpITbePzP7Y/PQ1b +vbBy+0LnRL3KyS+O7UrHXfdUNwZ95kS8Dp8U5LLSsZUtX5X+N06UUbqnn74l +A/873Wkv8p0TTQ84louEZGDrA/lCP5s4keNHpe8r7AzcveVJYWQLMb93jsae +ZzKxNZ+lhckfTvQHW5R6v8nEPVPKFKlOTnTsgEDAAisT2/5dndXRzYn+SXM6 +9+4jfMFsP5vUz4m61oWaqzrQsG3Oh3mbYU4kGLb/Qm8cDffFBCTIsYh6CoRE +DzNp+Iqfmc7QJCd6eM446MgA4SuHvWNZM5yIO3DHlwEOwkMXqBFOC5yok7VG +okUgCw9otqnvW+FETy3nrwmKZ2F7hff/pkgkFKcmOBpE+GpQ1P9xIYWETlBK +p86tysLXli/uuctDQuvvpPNYs2l4uG9X8yF+ol86qPvTLxq+3sDtzSFMQh3P +PttfzaHhkeKWrZViJFQl0/Xhii8N35OpnPy5joRkySoVFTo0zPOUVj64kYRy +SZ7hiyQajmKHBy9vJqFHusUmmz9kYjkzbzPhbST0/ZtHxyHjTFxQfUVhmzwJ +qTjVPracysDaSgZzB5RISPvA5MWoR0T9V2TDL+0nrt8iahoelI4n7fgvux4k +IeOefc73udKxT/3M7kANEnrozevW4JCG4xI+f83WJqEcoAtQdqRiJZ7c6Cpd +EhJYvbl1o3sKLr31+krzKRIKrKge5fr0BrdqOXFzGJEQCjN6/0EpGV+lGX8X +MSGhBmmjix+Nk/CsqFb8dgsS+rjd74DYvUQs3iumftqOhCLWrV8NqfH4TECJ +c+xtEpqr1qmzVo3CHaxkzZy7JGRS+zAin+cldjAOEqB7k9DWbVyS2+vC8FP5 +S5kjj0gobfnTfKNiCGZ+pfxTjyQhxqVZj/a1d7CRCitb/xUJ+bYXDvLZ3sC9 +r1u8rONJ6NCh0E69e/qY25Em+TSNhLKPU8KNgm8CCBkY/C4koaHnYjQ/+2DI +N3xdfqeFhEI9XD/UDSdBUvu++HxJLtSyKLc7Pisfpv+KSPlJcaFetqEy2b4A +dDsnY85u4UI6mnUHwrcWwsS/Dy9ZO7hQfo9xUm1UERwe2Bcsf4DoPx7m98W5 +FCIGRdbMqXOhJlfHmx+2fYTBocnHDMSFpma/Hp779RFCRz/4W+twoX12hV/V +VDB0Te7zijXiQivzggkLQ2Wwf0pk8boJF0rvvvbtxaFyeDw9eUfNgguZ6DBS +F56Vw965D67NtlzoMw85fo1CBTxY3ndD2I0LJar12fMaVkLjishQxx0udMt7 +8RUrphLkONlX3nlyoeDCyK/6nZVQz5VrfcKPC/0p7Yo2sasC6dXKpv5hXEho +u2NalEU1uPCItp6L5EI/9U9SzxHPGyYv20jmFRfas3c/OtxQDU78uWfLkrjQ +fJOgVowaHaoEwhqCUrnQxb7evTM36CAh5HLaLJMLLR9P0r0aSwcsoqw3n8OF +aDbrt7vO0UFYTLSGmc+FDNYylUmyDLAVZ2u/LOZCPglcy09OMKB4bWOVzScu +RK/1auFzZgD/utzDyhVc6KZ7hq33SwZYSYaVkehciKvudlB7EQPy17toNNRw +oa26/L5bWxlgLqV80KGBCx3Rhg3GokzI2SRaqN7EhRyN+WIPKTGBspmtwtvC +hXxPyWfNHWXCxS2NH1rauNC/dt65QMIPb2Vy96R1cKEolXKvIQcmkLaGvXPr +5kJS0ZcD199nwvltLjuP9nOhsn1uOWuDCW9sP5cpMsyFzH6rdf2JYcKynPKO +rjEuVD3MqX89hfCWvGhq9iQXWs9v6VP+lgkpCmxZ7xkudKbn+um2XCbMKzYm +nlzgQpY5fW0lhUw4pZQrvWGFCwl+OR9vQXgqcVdY7CCJG31gSVowipgwvdtl +QxGFGzncv600mc8E3b3noh/xcKPAu8HO/whfvd6nLHGenxvF2Br9iyR89c0R +3xAS5kaJPe//HU9gAgdNt/KrGDcq3bfGpzmcCXv6myQC1nEjCfeIY9oBTLCS +veSgtZEb1RXEUMLdmRBmOVy5LM2NdqKTrXRbJlS/ur2uWJYbXddx3dZuQOTT +THJ0leNGyz+2vvyjzgQ5saCq3YrcyL/LVJopS9T3zDrJ4V3cSGU2dimehwlP +niU7pu4j4vMGvL82yoBRcomklBo3qt9itKr3HQOkD2s7tWhwIz8fT4HYZww4 +49VQHXaYG7Uczsy9cJUBudN9Try63Gh4Y1f4gCQDevc60+knudGBdX0XPrPo +sNZxeb3PGW500+sBvaKKDh59oozZC9yI7/xrP2E7OkCz5sZeO24U9lDzS1c4 +sZ9Fa28lXONGXq9XdJTNqiFR/wLT1JEbFfz1fPVjSzVw1zg4/3DjRk9uGRmu +T6+Cz0UxNWV+RPzJ6uOFiZWwOLVt071AbjTprCdoaVYJO/fmuKg+40YTKuPm +0eKVEJLB3PQ2jBtZPdKtHPatAMOYKdeYJG50UYJznZRBOXTcO73FrZwbRXq9 +PdPg+BGmgeuuwhKR748x8iauHNi/kDijyklGN7/f9Hyt+h7c8g+7HCGT0dMO +i8St17NhStHnhtkaMuqZXSCnZmYBex2nZfBGMqK+dRk5aZ4KE5PLRyYPkRFd +ytTHyTAC9r6LLV/RJMbLM79kYPMCbtlraPBpk5GHXVufgmcIjHd4qm49RUbD +nw3yVZ75Aat2cYeRORmtmgn5Wh+4A+8OfJVy2YqM2GapVpoFttjxiLqMky0Z +EQckMvWjKx4tvrsh0IGMGP5n5KpmfPFI6jx/iRcZlVQvWfyce4EVL0c/YfiQ +Uc1CwGT1/gh8XergqkZ/Mvole2VG3iYSD4fd4RwJIqPKWOGa6bBXWFF/nddc +KBmF/eA7nBsei6/xFs2TX5JRB039lK5WPB58MDspFUdGvrR7mpXrE7H8oUgn +hSQy+rdoZvVgIRHbz6qOqKaSUVbyrbyS70l4wOF2r/47MvI+aH1Cyu4NlpNf +e9nsAxkdJXXTKLIp+EpP/t+rBWTUVcP2GfqVgvtNppt9MBlxj788c1A2Dcut +jTAMriQjyfaZGsfSNHzlu8r3GAYZKenU4f/00nHas6ZTaV/IqHFFMdmrPh33 +6bh+ya0jo2sqP68onsjA27jFdMp/kNEOseiHSp8ysC3Orar9RUaf+K6M39qW +iVM8zmm2/iajhVNyBwZ8M3GvCvtj718yahU47+DTkom3jb84OPmPjBSlTPbt +kSV8RNtXsNJHRmvv0EoGrGk4xe7HPr5hYr18UmsTYmi4Z4tztgSLqM+TXVX6 +hJdk24V3bmWT0eAD3pCxQRq2jspJ3zNLRqnXuYrcubJw8jmDbRqLZHQ67aN5 +v1AW7haYSNTloCBOmskBdcJLA5cD6oS4Kej1y0Sz7UT/aIHUYjOVgm6NDBke +Je6f4M2Ti+elIN99m3kjh2l4xkLP0E6Agjrl22O21NLw4ofOB0oiFDQ8TDId +SKZhjlXub6fEKejY4/WN4840TDbl/10qSUGtW1+XHT5IeCk7meorRUFp5bOC +3TOZWIBbTVlvCwUlVT7sbadlYtELDZbC2yjom9P+F//zkgTN7lnLDgrCHiiS +dykDb+RYLorfSUF7m5yTDSMz8JZzYb12eyioStg/dIcCsR5p8iK7VCiIx0PO +LiIvHe/WN7r+UZ2CzhjBq3vv07BK8kikLyLiRb2uWieThg/OPqzWO0JBHb7O +5i+fpmKt+GypVj0Kur837MejYylYh62tl3CagsRkbttuj3qDT+j8uX3lLAXN +n/r9g+NfMj7PWt0wfZGCdoU+ekS3SMImR+KXPppT0CWHYuH+0ERsGblf3s+K +gvQkWPNZnxKwPbr8UMSe6B86kf6KIx57hpSq7L5DQV+GsuIGrCKxT7eB1cw9 +ClrNI1py+GIE9v9vIOjTfQqKiR6NGjkShkM6xPpPBFDQ8qvVcXgwGCfvdoy+ ++pLIP8dSIULxLv5cv3klMY+CPpzmp4e3PoY62UIF+yIKKthqVcK1PgQa3U9d +2PORghx2nLopXR8Kf6TvvsdVFBTFN7eOejoSWE6Nl9t+UJB6b3Cr0+cEEBd6 +xBSboCAL2/7hIJcsCFaVuXlymoK0wiRM7Ne/g1XmeJ3fPFEfrYt2bpeyYSFj +xp5NoqLirv1yVqtzoOPIlTU/RKjIStWkted8HqS7HzcIUaGivYobFgVrSmBL +XM884wAVnVSdvlQbUgqvqh8krRyiIl+8rJV4/iMECRezHbSpaL21xi7+tk9w +iyb/8qQRFdVL39gh11MGQ9/p4GdCRde5qkUioRys56z6Sy2oKKM3em1oZDkY +acccULxCRY0+jMy+oxWg3sHbxnOHipL1soa9nlZCHiXN97AnFcmfUWxJaqkE +pZ1Hdno8oKKmGI2cDtkq2Oxxz2sgkIrev1/pd8irguh4ie2bg6iofeecV+p8 +FYgycusuhFJRN/2iG/1QNVBER6SZ0VS0IqrVGfixGrwPBtasxFJR7++lGxLz +1TBrufWWahIVHSfrhl5SpsNQllllSiYVecnTBBb/93lJ49y19ndURG/pjj3Y +RIf2+XBR8Vwqiv6lqMJPYUD9sW82fqVEfqui7c5aMuC4gz3/xzIq8m49+Tgv +kAEVYZQCdhUV3TzRVPksmwHqJYkWijVEvBy/a02NDMjr1FhlXUtFmg6ax/2n +GaC06nd2TAMVLfwJiIgWY0Ka0m3jH01UhGpvr/DtZcJmQxESbysVndF6l9Ss +x4Tou+8yDrdTEfZRWDtnxQSRRL2zHl1UNCdOuWx/mwlPmX0L73upyPGbDGVH +IBPIYw+TBwapxK7/NrUnkgleYtInN49RkVDUwVifZCbMqJVOXZikIh3x2S4J +wlNOVhdiQ2aoaJPu6U2ThKcGA9jazAUq+jkYsE2Q8NL/+/9A9P//P/D/AP3u +9VI= + "]]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.05]}}}, {{{ + 106.66666666666666`, 0.}, {0., 106.66666666666667`}}, {144., + 89.60000000000001}}], + Frame->False, + ImageSize->{288., 59.73333333333335}, + PlotRange->{{0., 288.}, {59.733333333333334`, + 119.46666666666668`}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], + RectangleBox[{-25.2, -30.24}, {295.2, 126.66666666666669`}]}, InsetBox[ + GraphicsBox[{InsetBox[ + FrameBox[ + StyleBox[ + StyleBox[ + TagBox[ + TemplateBox[{"\"(\"","\"a\"","\")\""}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->15, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + StripOnInput->False, + ShowContents->False], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {14., 105.46666666666667`}, {0, 0}, + Automatic, {1, 0}], InsetBox[ + FrameBox[ + StyleBox[ + TagBox[ + TemplateBox[{"\"(\"","\"a\"","\")\""}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->15, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {14., 105.46666666666667`}, {0, 0}, + Automatic, {1, 0}]}, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, + 126.66666666666669`}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], + RectangleBox[{-25.2, -30.24}, {295.2, 126.66666666666669`}]}, InsetBox[ + GraphicsBox[{ + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 59.733333333333334`}, {0., 119.46666666666668`}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{1.304, 89.60000000000001}, {0., 89.60000000000001}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{288., 59.733333333333334`}, {288., 119.46666666666668`}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{286.696, 89.60000000000001}, {288., + 89.60000000000001}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 59.733333333333334`}, {288., 59.733333333333334`}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 119.46666666666668`}, {288., 119.46666666666668`}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}]}, InsetBox[ + FrameBox[ + StyleBox[ + StyleBox[ + TagBox["\<\"u=0\"\>", + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->12.75, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + StripOnInput->False, + ShowContents->False], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {-1., 89.60000000000001}, {1, 0}, Automatic, { + 1, 0}], InsetBox[ + FrameBox[ + StyleBox[ + TagBox["\<\"u=0\"\>", + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->12.75, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {-1., 89.60000000000001}, {1, 0}, Automatic, { + 1, 0}]}, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, + 126.66666666666669`}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], + RectangleBox[{-25.2, -30.24}, {295.2, 126.66666666666669`}]}, InsetBox[ + GraphicsBox[{}, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, + 126.66666666666669`}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], RectangleBox[{0., 0.}, {288., 59.73333333333334}]}, + InsetBox[ + GraphicsBox[GeometricTransformationBox[{ + {Dashing[{Small, Small}], LineBox[{{-1.35, 0}, {1.35, 0}}]}, {{}, {}, + {GrayLevel[0], Thickness[0.002], Opacity[1.], + LineBox[CompressedData[" +1:eJwUmnc81d8fx21SZFWSihSSpJIkdYSskCQhUVZCRlS+EUKRnays7L0yL3e8 +P8nMCNl777233/3df+7j9Tjnc96v9/t87nk/z+NxeQ2tNUyoKCgoaOkpKP7/ +bZQTOL+/T49pt+2TP4CwgJP8N3foMcnZE1J/dwFx26Trvd2gx9T4XxjdWgf0 +n/r1bz9X6DHfEi69ezOA2kTLa2YW6LGe0MqkrR5AV1gfUAjO0mMtI9w6qjWA +AhZ7xY0m6TGtL6kC8j8BzTSZv4oZpcciKqyeTAQDUsxbT+gcpMcUlx3brtsD +Sgry6OLoo8eWbJ+w3bgPiMqOlVW9izze/v704jlA+g9jFHza6DE9B4dEkw0S +wl+94FzZTI8VGT3tjaokIU4OXAHlX3qsbKwsIjqQhOxX5KalaumxHeKwtLUW +CYkU6mvn/ybn80C2IKmViLxDpv3ngB7zUvpxhjuAiMbfOFScJ9BjdXKeJZ/l +iChWPOhKbAE9Fu+x9vt5AgHtHj39sjuXHrs94iI/oUJAuusZP45m0WNbjsGH +ApbwiB1XccgviR5jeNjy3PoKHtmEa8hWx9FjAxBz63ddKapz6P+POoYemzjz +fcnCqBR9vrE59l8oPSbBE8ux9qkEbZQK/zL1pMca/mPK+hFXjDQjS9bj3Okx +y9Gpy0o8xeino7xIrws9Vu2EVKsji5C51LPIhw70GEnt9J3AL4Wol/jtjfRL +eqxrbOLEU5l8VIZtnee6R491NPkE5b/JRKfiPJ89UqDHzN6xHLbmyUCOHznC +AmXpMan59AW7qjQkJiNCQy9FrrdTtuyxgyko5ffzvmVhegwreWl+0CoO+VZW +B9Uz02OxYtYG7yQ8UZfAnfhiRnpM1HI0IqTZFQl+KfkZR0fOV/b62u4/e1Rx +L73xzR4dhnHDU1Odh7DX6MN8ao4O42mQfh7O4Au23WreVvV0WOn3868+eCcA +JlX1XbuGDpubW8+mYEkC5hiUJlNBh+2kWbzhCUqG9Gei1UeJdJjzr2Ppt3zS +YGSUlQ4y6TChnCPyyso5oLXQ8vGwLx02DAfNnUYKIPGB6tdNTzqM6oNGmbZz +ISzlVcQOu9Nh3ImRfcBRBAFviqDYkQ5TEva80CBeDH1tIn/j3tFhY3rjP+XL +ikFYIqXPx44c30shZ0YJB9VbYbsGFnTY55QsY3PVEjiqx8Kk/IIOs/NSespZ +UwImRC9uMSM6zCG7WjNWuhSoXP+7yfCEDrt6RpNq6Qwe1AcXlZe06LA/6Zfu +h/nhIUbGXLdHgw6b8jNrqF/Gw03aJ//lKtNh3dMXtbLyCOBt+s8rQp4OU2Yw +T7t+kAgdVffCPWTosHduD2uOGBCB/3x5itVtOuzMe8J1yWwi2HtLFWtL0mFv +A4/cCN8gQtl0QaWMOB3mrf6+je82CVhVL7YJXyGPL0f3NzmT4Fl20uhRETrs +yZXwmbBSEmQfPrVKIUSHve78amC5SIIdm1Ca6XN02HKnuqk8H4ByMzNHKy8d +5vQ9YfukOkD4VU8+OEmHcdzNmJh+BzAevH8l7TgdhpZoKtMiAMTX3sl8O0KH +PTRo2nmAA/B4vPDgAysdRiEQWdXfCNCMM3v+gokOi5I9cfX+CAAP16DNgwN0 +WMyv7lPRSwBpQ4aNrrR02MW0GDfNbYArGSOXcinpsBdsAY4B+wAEO9OA/l1a +zJilwlaVrO9KTcwxb9FiLRvuVv5bAA005mq312ix58ducD9cBNCun856tUSL +7VcYVUYNAwyGvGKKnqPFLs6a6rxqAjDXn7esm6LFpJdlDatKAZb5beu2x2ix +Pj7EnP0DwGl+6cKFYVoMi3oldM4VgA5n76PbT4vt/BXmu6wHEOC6NvWlmxY7 +mO1O3X4VgFPJQbmknRZ7EvDKnpseIJ51K23iHy2mvspMoG8jQUH8rplCHS3W +4fB+ZdqUBLcsXKrfVtNiVzSoHFcESVB5lVIwuZwWo/jsR1k2RoTOcppxGiIt +xnnQvqbpEREM/T7Li5XQYj1fNQ0E6Ykw84gh2aiQFhtrN4u0LCDA3thBk7Is +WizIjJNqlooAnjl+5YtptJjg5gs2mUQ8sDgcPsubTIsVNbQGFt3BA98B9mGX +GFqM9wYp45ptKShe4Hp+K4AW2zBsxIkm4qBpORKz9CH7P9lfwiuIA13CSZ4o +T1psKnTzXk5qMbxS5e3fciH7G73GPfGjCIKsBZ/ibGgxsx/WpYNmBdCTL65z +VYMWEz19UKhsNhtMnHA4QzXyfgVzGHVHZsGcnCRnkDK5HnSYaf3dTKBsu9W+ +IEOLeZtwKOz4pQH/htyj7Ku0mFdzquHYSgLYSD18cP4ILSZVGavcEBQI3H/O +d1qw0mISFKbjF9V9oPoxxfNsJlosVvm4L8u7T3DaLsvmKh3ZP/805/B/dtCQ +Rh94a50Ge6bFsGr10REJHyM0POikwTqaA+N1OWNQR2KQVnArDYaxnDMLdYhF +Hlde9rU10WA7Ivdoq4biULfq0bknf2gwvSX8P3xOIvL2sGEyxdNgLPeCLfL4 +09HE4lmV99E0GKnpofRx0TwU7LL9j/CdBpO60EjpXZOHpJman+yH0GCWrVna +r5/lozBBFwsPfxqM+8Nt0P5cgOQNOr39XWiw263CPjq5RWhpJoetyZEGM/R8 +hj2/Woxi3n+OYHegwap3d68r5Rej1ZCr6eE2NNjE4X1D2zQcSqzzq4l/ToOZ +ylXaG7wqReq6xg9Gn5LXdz+UGNZainbGJTsFdGmwoSv1mZcl8egh9cREpgYN +xpk75fVoA4/2Akk282o0WKNYd0nFAwJKPxWycfkeDdbyaMjNOIWAqCRlGIpl +aTDB3rviFApElF3FGbiJaLCGpc3I8UAi0n00f0xKigZzy9H91txGRHTDFT+c +JWgwq1GlnGJOEvppEyXwS4wGk/n4kcmf3J/19l7nUF+mwTwEKh+rkvs3g6/S +dfmLNFjwAl3FbAUJFRznAa/zNNgYtzmX2ToJPUtZk689R4NpRMlnFp4FtFeI +SyHw0mBiNwNTuB4Aiix/z5B9kqztU+o9HQBJ/JN6+eM42Q+PQe9aBJlfBvdq +Ao+Q4/vfe2aIA2S/gAm5sZL9a8dmVDQCYt1387FjosFwy7MD3COAspnuzhgf +oMGE/pDmjJcAqXDTq2rRkuvfyf41chvQlFBNlgIlDfa5EHsAZJ7yvOHDfGOX +Gns2mOz1dw/QWUVVa6FNaozZufFJ3QagMq3DjSdWqTFhaXMomgVkYNIkyrRI +jdXlR70J7AW0Y/ft694MNVbQLMesVw0owu3R0vwENZa74TPGnQ3o+tdjDwdH +qLFD8gaC7f6AWn505jcPUGPenytrAswBvc6O5CjvocYYi7l8Ve4AOkx8+qaw +gxoTV+beZmcHlFl7ui25hawfTFrM9pOQctegeHgjNRac9297IIWExicSwr7U +UWNqMccC1s1J6AydoI5lOTU29jBCqHCIiDCOqZKnGDX2Njy00TaMiJ7yZXLd +J1Bj7z9s/nQivw/h0qI9lwuoMcuht7G53wlI/P6SFF8uNeakUoNWbxLQv6cF +0RyZ1JiQfZAkdOIRs6OEwXoCNRb1kkPxDAMeZX7Zgokf1BjV/tfInvBSpBRO +4OmKpMZMzWsq9c+VIo9C6SHCN2rMvpE3lOZKCdqaVzRxc6fG4u01hvZPFKPw +PcZKOxdyfqC1etKvCF1jquc3caTGbAIDLqVuFSIboQcTCnbU2N64TJh+bQEa +NdaxYDIi+zNVrdq/m4fc7E7U7emT/Y9c+CoQ/RPxuPUKL+hSY0XnWOg8FnOR +7o/nc80a1JgcR1Zg4Nkc1Nj50jZchrwfzNkbZ63SEEHt/Tu+M9TYxLHE8f7o +CBRcfldQ9xQ1JqrPfsMuPwy9kmTtDOSixgQ/LFzEKoLRKf5UyT02amyAOszj +Xrkfctlt3e2gpsYwAXap+8JmSCbzsof/KBVW53n6hm1WMHCd2RWrGKTChC86 +pt+KDIPlsOrR7V4qrNw68ljVpwhIdDdQeNlGha0FlZiUCsQC7RM/RrkqKmxq +xkT4YGsSVB+YDNxMpcLeO57ytVTKhViXgjuiSVTY7XHyGTGTC/+tuiyZxlFh +A7Qu+m99f4LQ4FHNlu9UmPgFpq/1FXngg5M7luNNhWEWsqKFnIVgLMJSPfqZ +CguMn5l5nFwIUondDtzuVJjmW43uHdEimAl43fXFkQr7+ITxOOWtYlB7ERtt +bEmFjbjcXl69WAL8vRZqkWZUWAGLiFx6XAnsaVzfbzKmwoxpl+f+sZZCzu2G +Z+gpFXam3OOf0ngpeBV8Z32rQ4XB+zx/BxU8PBMyKct8RIUdKvVOH8wi97ej +O3xcalSY6dBEwUUTAkz4VLWoK1Nhrr7l99dLCfCL8tsnT3kqrITnbUr1ISJE +vNMXJ8lQYR5+o69CdYnwevb8+MptKoz50drQo0QiKButhl24SYX9bKJu25kk +wplOTNHwOhUWmqqU8vECCf6VP07/e4kKE6gtuEMZT4IYPLNY4QUqDB8d81Kw +mwRmeRXECAEqzO7bfpHqYTLPpDkpuPJRYaOTfvlmtwF2flxtMjlNru8ro1Jb +M4DK0CndeyeosEf0Nzef+wEE+sWNiB4j7w+vr+3VLABdD22ro+xUGGeq++ZA +FcBZx8Mb28xUGM6vS8q0F2DOtvLjICMVVh33hQizADizDwer6KgwrWTdlqkN +ADcDsZBMKirMyEvr5+gegIrW9KmgPUpMNZ1FL4fMU0dV41PfbVFifGJ/8xXI +/DUgq3Pl6Roldt4o0DqHzFPpkiwEmSVKrLJ95uTEEID95aq7gnOUWPJY29mV +BoDbgs5/maYoMZ918V9thQAMp6/pLI9SYvuUJnTBYWT+OzIz1DFIiZXdcukV +tQeIOpRgSeqlxB6eiaHJvwdgSq27ltBJibW2jTLxngIQ3WJx/dJK1hJv9N2m +SbC1UHXAuokSC06+crE/nwTl487fNOspMW7S24/S70jg33ftpGQNJXZJKeRy +7jUSaLfOJJ+uoMReBMkNSsyTealMt3SKQInV0cVU/n5IhKISVrlGHCXW9vy1 +eP8eAVxzq+sLCygx2Xb2o/JJBOCIER90zaTE3OX8mC+P4KEveNbcNJUSM5SP +cGpxwkOqT+LKvURKbKK+ep+SFQ9S/7ExHIuixBpuMWzeES4FY805kSwfSox4 +jWnQQhQHIveScEGelJgYj/aGTUoxbNzRk3Fwp8Tej3wz/cFVDL6X/jySdaTE +XA+W3GtZLYQCxmSnTnNKrKqU11/WLR+cKZ/SgSklpn+SR0KsNw8UN9gDEw0p +sa2ySPEj1/KgZ/RjgrUuJXb0am3dkZ5coPn19A+tMiVmXyC3rsmRCY/eHeG8 +cp68f8W81e8pY0HmKu8foXPk+r12VlZeiAKReWEnPl5KLDGoU46z8zswvJAb +4DhOiendqoo5/OMblGrZpa4zUGKBEUVShoJOcEq8SYI4QYFJMAs/oboWhBiX +eqYKRygwnmNtQdKPQtB61kRU9gAFph11PkTwdThqPEdBGdtBgXEmyuxSx8Yg +tyOXatyqKTBcscVRCYMkNLbiq6OYSoG9PlWRpfUiFzXnhh+8k0iBcdHY5Y6z +/0RgmUi8EUuBpa5SDtYRf6LwETzvhXAK7G2d7vz5A/lIuWVqksmLAis1cJs2 +dCxE4oFrkXQeFFjfn4uFlYeLEJ8Kldq+CwX2zPQPd3FsEdr5fTxv4R05np1I +0nBxMcrJV3z/7wXZzzv7NxwlJSjKWlO4zogCGzvx9LHbpVLkdeFZX7kBBcbg +tF7YHleKDBPeyRQ9psAUG9Ppl/7DIzUD95Xsh+R426kXQ/rx6OaJgOSU+xTY +QIXlzR5pAuL4lsz4XYECMz31Y+j4GgFR3M8jfJWlwLxGB86sKBHRLCPJyhtR +YFGdu1E3vhNRV2UNj/tNsr93DVO9w0RU6dba7HidAit38DFoPU9CebcHPeyv +UmC+9+MOHLEgoR9bM+KvLpHj6ZgWBJH7uW/RxoTJBQrs1Jf8STlyv3d4TROp +L0B+Xspg+QwboNiQ49FRfBQYzS1DK7FbgKpwIj+6TlNgZ3stPGmNAc11y8Zx +clNgC3bH1gI/Azq6r52gxUneX+4OuuZEQLfPWCUFc5D9ukZFlpMAmdx1T2lm +ocBc1fWFTVoA+ZqFp7EwkeMpRFfljgIq8MnKUDtAgXngK9iSyDzVk12W5UtL +fh+i3JSlyTxF3dye84eSAosY3JL5SOapR1OdRqw7+1Cmu/XiBVknitKY+a3s +g14HLXFpC9DyWxHLA7P7gMvT7eUjrydD1Lb5NLoPDGmd29tkfvtK7W5P2bcP +6Sd7h5z+ARpQynL40LYP1QVby6lEQJcC2502G/bhtX6ugHsCIOc2yo9vqvbB +qW3n0OFPgOq5hT8tksGOP224Wt0QELeR1pdXuH04VN9zRPUmIIs0V7/JXHL8 +0UuyB1gAlc6nfzVJ24e2uzfFfAZISNtp//vTiH1wTnFr2LInoZSy8zGdQfsw +oqZxYl2ChNYYNOMf+eyDoRu1bdsGEQWHpKarOu1DptLR7OeWRDTc3ZxdY78P +qV40+Tw8RHTlzG7e3Vf7QJH1cHPiLwH9zX6Av6VPzi98/cMvPgI6teoIJVr7 +0Hf/htBkFR5Z3kz+fe3+Psx8/LSgaIZHjNVbtRel94FbqurJaHQpkh9M6Dl5 +Zh/8faWTTvbhUIhAw8B3rn34I9Vo42+CQyOvNkaOsO9DNu3X21mTxchtS2WW +iWYfOLq5yyQmihCJfW13l9xIbj/52f0eK0BMujxU7/v2YG6uee7epQKkF6tM +t9a2B5rVF34/jcxHW8I/mOeq9sD+r2ow+caExOUVT/el7UGg6emky705KNsh +Qpr0ag8G3komp51NQgNY5FqYyR54CTN+0I9NQGwHojNtn+7Bhoa62jxnPHr3 +/QfnOdU9CH/r+QdRxyDp0sQFH+E9wJTzvIxsvqJ/29mxOtO7YOP6TY/3mivQ +yeVqXR3ehY5XSz6LoZ9BwvfnIabuXRA0bn1wdtUXorgLHLA/uxBYqWh7vykY +TG+VqAuk74Ix1t5vkhYLG86/KVbNduH1tVd3rCIzQaiqvKjh2S44Y9UffOiz +Qe9wpWWq9i5whCt7dVnlwK8f1R1PFHchc6TDguPYT/DG6nPLBHaBRirbD1eQ +DwSGv6ZRp3eBZeSNyEfNAphXb+R+e2wXVgUk1xgWC0BzsNnrPP0uXP0toLF0 +ughOUnU8CxzbgT0GvOtXDRyoK3ceNe/bgXs2y6yFrThwC+qqk23bAe5Dlahf +swTGzvRKrFfsgIygzc81+VLgtOibayTugMjLvOvEklK4l9+fmF64Aw2vwkal +BPGQKzvEop+0A2Z1tjm8G3gY8hmuvB69A8FyVZ9NdMj9sGXEiTVkB2wjmyl5 +igggzz12Zdp3Bz4atyvJMBPhP+PxiXKPHSBmPJAjPSdCZuZETIzTDsSXXg/5 +nEuEvpVJTQf7HdAxPBnnv0UEmU8z2AXjHZBllr93yZUEU5EUxwL1duAP2zfB +0WISBOVxvFrR3IFFvUMKGuT+L1kj+FtbdQcMGaLeW3MBDPdLHSfeJftP570s +fhfAd03dmvf2Dryc1bOLtQAQYzKp+CS+A3W+ZaOpZJ7q4fvvxJTIDvjH3axR +zgDwkPSzVRPYgfWjf7c/lgMIP4iryju9A0wS1zaVOwFaXhSePMa5A5G3H3XH +TwI4OdfYObLsgHVzpq7nKpm/Qnpr+hl24JN5XMPaDkBdxuJpOcodaPLAX1wg +85R9Ge3b1M1tkMmsZbIj8xZ35/G6Q0vbMKuwmeBC5rGK+YtnbKe2QeEyvvzo +HIAVnYxD69A2OLOVDt/oJ/PYSa2GG93bsBMYxT5dC0C6an425t82eNwj0l4s +IPOSsvN7qrptmCj8c4A6HID5eVCjafk2MA+oM9m+Ayh6l8xfS9iGXImLkY4a +APr+pU6XCreB22CmS+A8AF1SQ/O3rG24eIIt0HGbBNn4IcGNpG14Hnzv+Ica +Emg1rznrxWyD7aiP9dVvJNibYGzFQrdh4AL7uWRtEqTsn7pwLmAbhq49M+49 +TgL1o1c/fvHchv2VQ/ODbUTYEFZon3XZhge9IdzEACIo6lq7F9lsg3FsQcLp +VQIs2Lh3cr3cBmXw9yPEESDcM+ySy/NtsMmsvf5EmQCTBdCtoLENYzit438D +8BBU++9ypvI23Pizp0kSxoPk0Lgni+w2mKVxaw1XlIL3YRaxzqvbYKB5LoBh +tgSu8J/1viW8DW7hjrQCjiXQJSUxEHd2G+7Xj5UU05aAkPkzX/Mj29AnVd9j +y4KD2vLcke21LaiLeFZxea8Q7LvLJZ/Nb0GZ+cqTKttC4F7qCCwf34Kofzb3 +DYYKwPI05S2/ji04PPO6cKw0Hw69fxByqnQL3KT030bd+wlql5bu3vmwBcp6 +qtSieylwszFnpvbNFnAr4uSY4pJB0PbVNy2rLWDRcmUZkk4C6vyJAQuDLTja +v/zukkM84MT7HUPvbIHgGfPsqyHfgfd23c9p2i1wLQtvsfpuCMz9X7Tf7m0C +xbT/8RoNWbTjorBPsU7W1Jo/LspYorZfZSpHJzbBNZ6XPu23G/K+WzIu/WcT +FrzK3+KpQtCKSvLJUP9NkLKlY7NvTkKDs0blPJ6bEChuWm98OQU1+PNaZLhs +gr2beekNv1SU1hiFw2w2QUzB+VSbZAbS1/z2cFpjEza4VF9YieWie6vqW2/u +bcIYRxbjRksukghljqOQI88vGjkjbfcTsXd8mTtybRPkPSn5i1PzUPUT1y/S +x8jzm9vqqVYLUOHOLdHaw5sgsXzISPpjIYqP3m57xED2Y4kdiWIsQh/63561 +2NwAV4kfwcYcxcjcVax2dXEDjj7n+ZUVXIy0eZdsXckXHb2RwMZ6Vhy6YvQK +Qro3oLHLZ/E+VQk6TXPBlKdlA4KOpVd+fVOCDiVNHMqo24BS3cuM5qMlaGzM +SBcjbkCf/pRefGkp+ufJS3mvaIP8O6DuGD2NR5hgf0pr9gYsKQlFf/6IR5Hm +uqtTPzbAQadAOPMGAVkyzav+C9uAKTvdadkwApLKdU/GB5Djn5uv1F4gIKaH +nPsJnhuQacr7s0eOiPpWMx/7kg+C97OsmmXBRJQdfifX/h05ftcrjt1+InK5 +2cbw1Jqc34oF+0d+EuL5uF9y0WADev5uHLyRREILfMFsRx9vAMeFKTqdXhL6 +VSlosae2Afbe5vIRZB4Jekn8PSa/AXPi3AUrtwEZHtLg/nt7A8yPxO4/MwN0 +JWfMvlh8A2KPEn90+JL5S8Ox/ofIBphJmv17lAmoZeUwvxf/BsjvZsb/qyTz +V1iis80psp+Db/tVewDZS95o1z66AW7HxPl/zQC621t/6Q7zBoT/sukT2iDz +oquh13m6DUi25Lv5ZQ/Q2Jn1Ada9dWDbY7rZTea5ogqfG1ur6xBv353KswPI +04wnaGh2HTANoRO6y4C0DxZO/Rldh9dd9iteZH4UzFaSze9dh9RTnYY5zYA2 +1PsiI1vJ6y1jBo2lgGqWX6+4169DWdXLnPloQBGh9KqWFesg5qEywOoEyPxG +VJImcR3U/jNRlnoE6GaP6J5U4TpkeuoxvzkP6JBLhda5rHVYivTj+L1BQj28 +ujlMSevwOXXxoMhvEsoqn6Nfi1oHguKEGcmLhJxfuD/rC16HvltDRh+USEiN +kbOk0ncdyndm1u1pyftz/455mNM67NRMRNywJiJsqbXMxZ7stwPpnzpJRF9D +zE+YWa5DzIWi0xaVBHSl+1udhN468HyYPGR/kIConAXP8WqS/ae14lRT8Ogf +D/HDAZV1cPsXpv/nNh7Zm46JdN1ch/CkoZvzz0pR0aLEV8cT61Bqee1kvx0O +fQ6unzRiX4fKYywBv+eK0ePrhjIqB9dBj++awqBJMdpw8lnm3l6D3MMvPE4r +FSFJhr5HpK41IEgbDQqM5SM45c5FGbEGZ51rVBV5shBdoBC7fdAapPbW62jX +ZSAVyuaD495rUC3QWB5qn446hnl26xzXgOKt10m90hS0lErqD39Knq+Qzf+A +Jx7xX91KFOVdA2wi7VgJrTeyTIyLTji+BgN3834TTnqg/CNKoUfZyM9/IS5v +mjgh6Y0wzx0qst7ZlIv+rYF0iNfMq0dWwesKd9GGzifwVbC99Cx1FSRCLm5F +78dCM45T8F/sKmwxZ1g/soyH40IYj/z3VSgbDdz0aEuA5EOH2YS9V4Ezcinh +U3wyYE2ZK+sWq6Auc1e8kD0T6GQ1Z82NV8HYLnuh2TQLVAu2R3v1VqHxK1Py +WGE2dIUqt/9WXQWNDz6SUQm5sPxkoiTg0ipULiioNXHmg2R9QB6V4CoY2SQW +lefkg+vt6xlveMjr50aXU8sVwCHez1FPWFehQaWMwG5cCPxjfC4CyytwSi86 +UMe1GCwf176LmF6BruILLJ/3iyG/+rUN08gKxPokfDN1xIF0xq/nyy0rwKh9 +mZHiZQno2hjIQdEK2Cc/bGg9jgeP4d65gOwVmPvq8J72Ex6ytfS+P0teAd6R +31u/p/FAeUtnjjJ0BfZ/fOvOyCCAUG57eLPfChQHnpYpoiGCJp+WbMIn8vyt +AT9WHSKkHngYLvdmBabOB/B+WiZCs1OTzJFXK5Alc83R4wYJdubvz44ar0BL ++pfB+Pck4DdqCCvSW4HP8XlNrUUkuN+mIuOpuQKm/GeC2edI4KBUO/NYZQXy +3grcfsgDEE9QChOUWwERP4N8X1UyP12qvrN5cwU45GlScG8A1uLlZ2qursBf +Wq7oRjLf8BytCI24sAIyGY7TDUUAyl9k71jwrcBEfHlp9l8yb+38mr55YgUe +rnLSWw4DRFtLhx5iXwFf0dpY6iWAyiGSdC/jCuSzDgjbbQMsPLo1nUW1Ah6d +1udKyLzGVYMPcd5aBi6p0c4WMq/JSUlK319aBtzgcetKMq9Z5eCmTk8tA4u9 +er//LED4meshC4PLsCJxaOtSL0BZSCH61bkMS9KVRplVANMMYlNfm5Zh55pr +CH0WAIdTXrBhzTIUdYv13CXz6O15UXT11zIEaPNrW5oBmBnmTFKXLIOMMeOO +622AoNaLwS25yyDhzOHrfRjI507m7aTUZWB62BcV2E2CMbzQ5JtYsj9nkaDI +eBKwXEr7Jh++DPje6OgCYxLciBe4fSxwGS4nnSCO8pLA8EjyxLjnMji4qJfc +6CKCr9fZbziXZQidH+Aj+BFhwIp3Qsd6GX4Z3rJ0HiMA49CPIKEXy3C1tkGx +04cAYo9O3drWX4Ye9mnfcGECeN48ERSltgzav2c83Z7hQYThiFT/xWVQY960 +H/hWAtqO38Zyzi2DFTHT6trREnCbY/3qenIZoho+lX8IxkFrC/MYL9MylL2y +m5T6VAxOcQyBxjNLQGNzbHHsRiEkc3hKXhtZAvXomFXZmAJo9KQdpe1ZAllr +/x2V/Xw4a0UlmVK7BMExZyT/FOdBreTO8GT6EmTCar0BbS5ISpztH4hfguyg +4adp6dmQek2lqz1iCeQKUUv93Sz4LBrVWOG9BCSd0vgkq3SQ4ZcixpkvgchN +5rH6wETAsTqF6ggtgeLtycfuIYEgcDjxq/qZJeAh2kYnjXlD6KE6XwWuJfC6 +JHH9SIwH2NFzu19jXILG943lPxhsQGQXb806tQiNTyiePBb/iBInthVr0hah +4PP9TAl8LGIf45PD4hbBa2wgvhTFI7fhe6j4+yJsjFi2mfxKQAZ9kdeSvizC +s3Sq14r4ZMTVcvPMx5eLYHxSuqDBLRN9aTI66fB8EZyWFJYEprLQRoMPp7XO +InRcEW/vVMlBbTXdzE+VFmFEx6mxkPIn+gqO2xLnF+GMicRQcVg+oiAmrF3i +XQSrR7XrHdcKkFVp7SL/8UUQxnlfbG0sQCqFJyY4DixCQ7X9gf2dQoTPkx0+ +SLkIuVzJu7t+RUgo16KPanMBTKs1C9+fKEYMGfiWhYkFcB10Wg65gEPvUof/ +jg+Qx0ufnGPMxqGxpIO1fR3k8XBOhxThEvQ79smvuuoF6HH5qHH4VClyDt3O +Sk1dgGQVuqff/uKRoaG4klDcAtjTPbncKURACiK2IxnfF+CoiYnufTcCYqkc +48rxXoCOIwJd0eeIaPUrb5Go+wI0E69xPrMloq6neg/yHBdA8ViyE38JESWs +NnkWWi5AY+4ji+9SJOT16xDfdZMFeLZhLizmQEKWfgok3NMFkGRbc8/JIaEH +Om46kloLkNpxYYF6mITEzxFX8GoLoNfC5iLEBohrcT3glgJZN9j95b4FaJ9w +5QKgBSivLWJtNQI04vWqUlpiAZwfZTKofQZUrZn6vEyUnP+CDKN7IqAsnuEd +2fPk57MFKWxIZF6bORlewbsAE6BtxtoC6C1O+6oC1wKwrAc/MibzzxOPbw3V +bAugIlBrbboESFq94aXywQVge2y6Qr7GoLPcB2jrqMn+i32KbMl8xdboKR25 +MQ9U2rKn/yPr7he7b2Mm58Ey1Pci+VqEEvdfZ8V1zcPcbf23PuT1rMImhhNr +5yHcJOhsODne9Uv6XKmEedBdI248JPuhqPqnnpE1D2tUK4q/yH7/6Ct5ZsfM +Q3qbPcUwOZ9vayTiz4B5aOlS/EEg56vnL7ZS4DoPlTpVNzSMAfHzpwvhbOcB +J3rAIZVcrwXi6ed4w3kIdlcIKSfXs+RRSBjp4Ty4evEbZJLr7TbL2PBLbh4o +PGbETHNJSOWTK03FtXlQZEmi2yTv15GTa5LV/PNwpUFU0/IWCfUVWNjWHpuH +lR93hKt3ich2RKuvaXMOIgKvvNd7TUSSTnUcrVNzUCTwtD6Fn4hoOGTudXTP +wZYmhxFlOwGFyl7E9RHnwF77yCajMAER4qmDpj/OQcMR5w+VqaXok+R/1XOv +50B+OLam4XYpUmue21s0moNy3MSuUlMJGqTssti4OwctSYf7WqZxiO557l1a +xjkIenurZGOjCDVunHNi2J6FM6FaRx7YF6HvgZF5B2dmQfJ+YdqPmUIkjH0+ +zdYwC1s5BRovWwrQg9NPN08FzUIX6aV9jVseGip1/db7cRbyPv59VdD1E73W +SrwYZTsLYu0xI1WXfqIgv+nnxx/MgmUe7fGMhBzUvP3fH3aWWQh+truFFtOQ +RkdoJIP/DAgqmKUcyIhEQ3al16o+zIDi99vx53zC0evDfX8/vZoB6fXgLzov +QlCQ/DkaatUZCKTv/8cm7I+aC/Itdw/OANagonSh1RBpfG28tfRlGjgFQv8l +MYXBkPBKe+5/0yD4rW7H/lIEvK4+9tr65TTUqZ8RPq4aDUH7+skzitNQEBBW +tkSIg+ZXs8zj9NPQ1sQpPl+RAoYHWNOS1qfA+4H1ljpKg6VEMVnj8SkoODe5 +m1WQDmw9ju8GK6dg6HBRiWVQFmgoMw50f5qC5niVrpYvP2Fo9OL7iDdT4LAT +uCR/NQ9ef3zAoWMyBTETl6z/deZBEC5csU2OPH5Pia75ZAE08wv8bKSeguyE +dpMY5yIwLFO+F7A8Cf+eNEgeZy6GpadWo6rDkzAS1x0/8b0Y2EIKj9eWTYIr +//gv4WQcPKSWc6v4OAkxudF+lAGl0HDTT+/760loLOdlcV8vBWX7NvFXRpMg +0fxSSUEPDzKjZtMcdyfht3ea2zMuApBO5lVMXJsE/ANj/kg7Akhqbf8g8E/C +HiNr3XA1Aa5U+WkaM0yCEtXJpzYviJC93yYisTkBqwnXVGJyiSAkwXPg0NQE +6NmBQvYqEZJtXg73d00Au9QJQqg4CXjT8oj5tROgGsyXpmZHgqjB7TBPwgR0 +6Vsm1GeQgJPr7usnWROQnPWq9eAACYI1/FUuxUyAefd3CioWABafdn7qgAmo +KtR3TrsJ4Pubh7LdZQJOBrPe2TEEYNh52Z1uMwF5kpUtK58APMTyC52fT8CO +Bcsz/0SAfcudAA2NCXBnyk0sJwG8T7przi87ARerBSiCW8h81+svt3V1AqwO +37bcHAV4fbTjVMPZCbj+wcxlicxrc2q8m3FHJgDseF99IPOauaf5vzd0E2C/ +KUD3ncxrY5CfpbQ+DqyVaTg5sjbc2PE8OTEObI6PA123AHpF5Q0XO8aBQGMk +rvr//4O9DJCqqBmHOT6zxQwyH7bEdRz9XjoOy3woKaYJQL2Ld9EyYxyKykqa +BfBkHmWzqJWOGofPmsphyrEAivcKkjj8xqHxUkgm40eAcvddl4kP4yBiM/PC +8imANEFel2A1DvtnikrsrwHgVwLEAg3GYWeJIHz+AID4xU5mY/VxYLawGA3o +IEGeyZnJ63fGgTS9GJuTQCKfowXR/WfGwf3em4MSF8k8fXjvXT77OMTM9Ar8 +nCZCvIKChifNOGQsZ5+mSSbCd1wn3aWxMQhv4ujUZyYCx+KZQar2McD39Mc5 +EggQeN4S31Y1Bt9uhTyIMiWAV8SetXPaGAhlLgUdz8EDzT8FZY2IMQid3g4N +UMWD68GvZ/l9xsA3UMhIaqIU3jnxddZbjkECE80hO7ZSMNVXlDkpOgZusRwi +ezdxMBT6lXuRZwyOPH4o10gsBv2/XWvlrGNQLeUa+FiqGB5Jv8qwXB4FzhBZ +poZLRSB3JoiDUDQKbN1a/ZZL+fBZ/4vGveRRoCy3vnn3fj7URLgGdoWMQn+a +TcVGah6osVsf2rQfhZY3UyL6D3+CNo0KjfjVUWCBA+gVcxZYjNGu5OSMwMZr +aS3EGAdB6f/9S0gdBk5fMUMWrq+oZcyG9Wr4MCwcPi8beC8YHeMzu1/mOQzV +mR63y/4LQ1GRWrUDpsOA4Q6NCf2JRsm+V3+fPDcMFFs8oU+PJqGJaiHKLA6y +NrxuWxqRjC7QnkFSNMOgvsYj8PJEKsr9wILXHR4CQvWVO2UsGajUajYvLG4I +hKgGdnQMc9FO+sgC/9ch0LgwJfuW7SdC490iRa5DwG+su/0HfqJygz/pLQZD +UOmipZHFmo8a1FPiWU8Ngfb3Pxz6AYWIxS9mIJZpCHrqZ+Vk+YvQw5qQU6K7 +g6DGeFber6QIddzxiFDrGQTcXV7zhZZiNHjleZBPxCDoW9V4v+8pQdnuGbYv +vAfBt13v4NiDUvS+ZVVd9v0gyGhwnhb9XYrY33of3tYZBJWMKu/j3/FooLJl +rk1pEPjDE9XDdvEo89jphrwbg/DeCvPOfUpAd0vyfc2PD4LYkij+PxYiYmPc +s5A/MAin5JPimYyIqE9X8d6ZzQFoZtsfoflJROkZQUJ7EwOgSDd29+EWEb3b +6TnQ1TEAAw3icrO3SUhOVWCysHoAqtWaTlQ7kxBLjG31V9wA5J1TquosIaGe +OXzKq9QB6FBxoDy+QEJpiM5TKXwA9D4vy3/gJfNRoLrpOa8BEDF51r6nCkhm +MOIupcMAqOEyi0LfAGK+Mnq298UAjAkIZN8OJ/OP2yWakscD0NbhoLpYCCj1 +33/DwQoDwDXvMp3WAMj+bHmZzfUBmKljTDEeIvPVG+Z4FYEBEFy0e3FqERBT +pfZHwWMD4KZ3qrdlC1DX0YRnNPQDIGbe/PEzma9U/na5YLP9IMi0HX6FrEdt +rG871PdDuNnvS52bgJzZaHYvZfVDG4njpOM8oGMF4fhx334QKban5BoAlPvo +4vsflv2Qu/9bHlcLSGn9l8RjlX54+6j3tE4eoKFwrXVmYbKmOuJFEQzIUXK6 +sPJgP3CNhsvk2wDi6HGxd57ugxiun51vFcl8+YHjqnhtH9iYD0Y/OAFI/nTa +4mx6H2iETCcqT5JQP3YrN8m7D7hy86pf5pGQg2Gz1VPzPsCK9pOK35JQetL2 +dN15svYKqqRdJCJZhcB0jwN9IHOYn/ZEChH1TJx9KTXZC4rUgQte2kTELKw2 +lpHaCyLDLp2xWQSUUj+UaOTVCw7/PU4zeUBA0tbvjE6Y9ULjLbtK3AIevc6L +HfAW6IW1T7mKCmfw6KDmtR8y9L0wEdzNnlBQihJXa55ujfWAkJzicr1MKWqT +WO56mdwDZyV+HejUKEGScLdV8VwPuDExjgzIFqN/z7q+UdD2wN5W/GxdURGy +pLLWwI10Q0FGkpkg+fcTczf8r0BiN7iu8Rz8slWAqOumauj4umEg+cl5f6c8 +ZJ/yh2GSphv2/I4e7Br4iUbc0hVqx7pAlO16XYHMT1Rxw7wiIL0LXOXe3eve +y0GeKZMY55UuKD9nplRKSkcH3SeKhe50AgvhsqKF+A/ELjmWpGbQDorF8zm9 +DgHgcaRyRPROO0wYWRy0Tw+ClYUkPna+djAW5wuZCQmB1hSTuPaxNjAOuJX/ +wygSwo6MRj2zaoO3lkzLLi8S4MTi8LfXH1qBqiCNKkEhG3zrfjdrGrRCWZKn +2EpQDuykJLBev9MKmdkaeVuWudCrbxSwTdMKdESTLqGsn/Cjbsjbw5fceKWT +CyYPFwBLalmNqVULcMR+X1mKKwBX93gGJfUWyCWWVQhdLoTnkoafmThaoMeL +TaZDvgj4Ugc/hkb+g6HIISMeVRzw+Jz0mn//D9yqPk4mNOLglJWOv6LuP4jt +LXa6oF4CXGJNEVuc/2C1ncl3VaYUOI8xxT3caIakwoNMrEWlcHRLMSWzvRlM +E2Iyhs7igQ3D8vVDm4HTmafm+SoeWBJ2SorfNINe26uGWS0CMH+WwFgeNUPU +liX1bD4BDr20r3wp1gzI8Nd/6oeIwKiSW1fG3gxBlg4UjM+IwHBppvnEchPc +SlfnP5RDBDo2wU775iYYNRi6qbxJBMqOH6P8X5tgLGVG9Z4LCfZKu6ddbJrA +4Ypf5UYpCXaijy113G8CijcZQsWLJNhyfbhx+VIT1Lpfzf3AB7BhFLDnzdwE +q713deTUyTwjX0szMtsIm2Muq9QOACvn6Q/eqm+EO4Z8fEURAEuHZFlDMxvh +/i9u9Uc4gIV552PzPo2gzzVR2tNI5p3m0pOKFo1AjNe0UxwBmClc44tTbgRH +P/4nIWQemgq/IrR1vhFsxcL4f5F5aMLRSvThgUagfZev94fMP3VEzVfaTX8h +GIU/zt0DqHav+48x8C8Qz/nJ2W2QeUVJ7jNB7S8ond/l45gFgMOEICumvzD0 +WbUmuAegtPXqD566BuDPCuparwQoiszIaPZuACl9vkbpTIC853w4D6UGkD7M +uGLnC5AtEFkuztAAYVGaz0NfAKTPsjVNVNbDY2sZ6uxbAMn53r0Rn+rh87UH +wb+YAeL/o5pSkauHG5qC0R1dJIhB79f2qOqBUtrIbjuOBBG0S1Q/f9WB2qyk +xFVjEoTWvjxs5FoHAwHM7V94SeD3WEewarcWFlWu3wA/InidbBL7j1ALXovs +xYVSRPAYVrxzwbEWODWFXbfGCOBkLaEbsPEHmI2LfyVfJIDDtVzTO8V/oAw5 +bV/4gwf7bQG75Td/IE9cd0/SEA8Wnsd8Hy/XwInskZYbn0pB98ca8fRcNVhV +bQyXhONAy8TqT1NmNQjy85t7suPIfX2szd2iGs7rVuq+8y4GpeLW+fGJKuBI +XuI+9qoIJP4W8OYOV0J6SBRxmL4Ahhl+ixQnV8LPP3Hlp2zzwV+m6SbpZSU0 +HLxyOa49D4YLZx/VzVcA6QrBsznqJ/hH8XtPbJcDDcHrUzZHNgy/DF/i4fgN +omJ/DScOJcDJAxuf+b6Q4FnE+51QQzf02okj7vJhEjTqfEyP0vFC1fOieBRC +BOm6ycEbqv7oddvL+SdxBFhw45CzYw9B1Qndj4NLSqFxIN9CwigW2d8GQdqp +ItBWO8RlGZmB/vzslmG3KQJXFb/iI8uZ6PS5DT3etULwuObJmiefjf4cvPz1 +FlUhFB36h3OzyUWnO+M333DlQ3lnl+GnOfJ5qgLsHrF5MHbJTCTaMx/9ge6L +Qfx5wKXje2PzZAGyT+YwzL7yEzQvzdwVkilEweOHQupDsmFvjcFSyrQYDRx9 +15efnAXhXGrmMFKMLsgPCkQUZ0J4/GrYwWc4VJZYWGramQ7eah8iiColiLnl +NI3qVBrkRT0JpyaVIF1qb9Wr26lgf3zwxL8LpWjxuf7APncKxNswH2vZKUVS +X6vPj11MBvsb920nDfDIC7tiV3c7CYKlLnOpAx7xnKan+/4sAUQJV9z7XhOQ +pZrtfRfbeKDI3DsxV0lAxR+6w03c4uCsGw3u1DEiisYZPDZW/AGV977r4jKI +SOyY2JSoeTQwNnYbMS0QUd0bhg+7PpHAgLd2eCJKQkYtPYf/ZH2HNZXBxe+W +JLR15Wd86N8wWDAIKcQSSSjo66drRoshEPx+4Fp1BwmdX9CpvsQeDOqzjHZp +DIAwNZEnO2JBcLT9zs5TMUDaWVRz1VqB4Lxov9D/BFDfsWzKC4u+IELHu3/e +hcwvrVoC5WJfwH6J7uX1GEBSQfsqTx0+gTTPXwqaEkDm91Nfr+E/woz+9wu+ +fwFdPh4venrfEXro/xusGwTk/23Z8cFnexjR7836TeaXthPe/vQnzGHj9FiO +FZlveHh1lTs0tGBCJDGibg9QZqsL7/s7t1HEM/nCHjIPbdP6Zf0pMUTvH1/p +jtkBFMvw5mB+qw2isDngxL4KSNafD3NVc0BWhO+RNycBjbE326tVuSBONnwT +ZyegchWMgznWHQUKcypnlQMKDTg2b6/nidTnhn9vZwB60WxV083pg0aq33+l +DwAkcaQyQabVH8noLIS1vAJEm8kMLYpfUZ3CF7UXZD6yUpUUZhD4hqY+8JLK +T5HzmTP5fpM2BG1VOLsukXkTBX6lsx4ORRMzAbBGIqHUy0S7+F/hyNIlXKzD +i4T+s+dQO+Achc7YVFiqs5DQ0BFpvJReDJriDjFdryeipO5rHBInYxGbowdl +lCeZjz48/2ixHYckVSldaOYJqEx1/fqnqXgkcenBRE8UAb095TcX05mA9n65 +7XbLE1A/4J40FychczbpVacAPAoOVGObSU5Gbyld3K6L4JHi85Fq2tAUFBxU +wKRcU4pyqVjEb9inoVhh34mslRLkdvcFS6xoFvI/lrzEeAaH6jq5fanFspF5 +3a9MvYhidMSqmf7F9RwkMU34u8hcjDRrY/aP/shFVPTFF9FsIRpbPrDem5SH +lPHyk8uu+Yjx7sCoRX4RSqxqzau6lolEDuMTTl4rRjRDn3u6KtLRw86Q53+L +ilFH9ve13AdpKOrVvd4rpTgkep3rXtDTZHQptKhlEytFPIEVR3+pxCLNcd/f +ng0kJH00IHts4wNy+Pni4w118ntBZ2o2KG2Loh1l0HQTINevKx7unBpomd7p +aYo5hrDWB1fd5u1BKupyJ6PVLxTcT2uPn/gKf8ujGpvsfyPnF/pnXqomwdB5 +75z0wt/IuxSdGKtNhhX/d/7ua7+R0JMY4Sr5VODU0VC55lCORG8JKlSKZoDh +LH11uGMFEhbZjEl9kQsrR+zAwK0KVewceDDvVgja9H+ih0lVaGzX6pwocxHg +N3icXmxXoVljam/T0CJw626QsLavRsLdxg9fRhfDaN25Y8u51ahMS+sNKzcO +FElOq29nq1HQMCSbhuHgcJxQnrNpDeKgw2e0uJfA66CPgVQJNajtRdRY3UoJ +tLl3WH3ur0FnZtlpLhuWQpTp5wv+2n+QN4cbO+UVPFBo9x5gC/mDPM781VcP +xoORkthESNMf5GWiIdu8hAch4aHEaOVapOwQekcykQD+J2+483rWot+Hekfp +1wmwyBz4POl3LVpPKL/ZfpcImhTj6DxFHaJ7SDSJDiQCbvHWqSypOoT/ksqh +3k6EE8PBO6L/1aHzs3JfRo+TwLlluqugsA4l630O0dQmwd3i72EEkXqk0PAo +IrqaBKmpC2+kLerR1YCWY2ZbJDgUoaBZnlKPlKR2JGYFAKx9Yq4ojtSjS19F +i/kfADQ7rbLU8TSgw842w8xvAcStVObvP21Amr9OpcSGAnw3SKj/970BjTgX +epDbJeyob2U8bmtABwnG4Tl/AJ7JPPDuZvuL7qZHhp/rI/PO1VQzg/t/0XSW +U5s4mXcEzu3LD/v8RX0sUrcH1wG8j2qde1H9F1FovnzMR+aldfe2j2+oGpHb +Eb67O2SeSt2htC3maUR4j2uVFrsAum8uPtu83YicDPiuvV4DODSnff/m00b0 +8d1xL5ZpAJKpx+0Pjo2o9ledumI3gE1/zkX43oiCV2QIJ6oAeLW7uSlxjcgC +/ynIL5ucbyPdIdm2RnTGV1o87iuAh9KVbY+VRsQipJSoa0POv+zpVCVbExKc +YLMjKZN5T/JLJ8PlJnSFeKi5iQcgIr+gWvl+E4qVnvKKWCLBPeGBYt9XTYg7 +rX3tFEbm18SDKQ0+TWh9IpzVlMwJ2Sevh7KkNyF3+mDjd2okYDvsbx881oQk +bqZWHq8jQrlniVEbTTNa3VxpIHgQ4Q3FqAYnXzM64We2r3qDCB2LNy9HGTSj +2yz2FCahBPA2f8HT96EZEQRG5CkRAaSGgw7zRDWjp6lsMbhhPPxomZxN6GhG +5/5mPs3gxYNpcVh6xoN/SCbUwf2MbQl4C75ofvv6H+J2W2Q8uYSD7O/iW3e+ +/UPiIteeMFnjYN2xVamj5R+SuP9j4OzTYvCSZp+k0W5BqVrqhmmHCiHz5xBL +o0MLeuRSaFhlXQBNZ/IkIr+3oKNlG9yhf/OBi/aB1+XuFqS6+OlA9qc8yKjx +F9DXb0Ue1aojjtE50Cipf/+8SysaG7pyOlUsG1YyLr5b+dGKzPS5WRcqM0HK +v67Se7AViYqt/sZ606BBg9G02LgNFXErCjN1J8BC96dEFot2hBV+wtGI+AGH +6qO6bp92pFhuQbxU+RkkSGdXkjPbUeBZ5m/puq7wMfa37K058vynolcrR58A +mwnl8EvbDiQtdMsz4tZnJDbnxPv7XSfKlA961Ccaj7QNVJT8w8l6Y+6gfWkC +cmo8YatT0omkiGmd7dJJqCKvFJvf6kSBVYMmTLKpSOvdhgG3cxeakffXtjia +jf6jsI9549GN+hq/CAYbFiBvxWj3lMRuVL4g2T62U4AiAivNOsu7kf1v+/6l +b4WolOf41Vu0PYhH1lmss7gI/TGT4bQ+14PEC3QXP8kVo65ci93Yuz1IeHd1 +LrC+GG1Jk6poPvcgxvqoXMsWHGL8Mp4pntyDCE7nX3GQ7+dcTSxBZpU96HVj +3/Pq2hJ087mRXh1dL9phlQ0/kF+KVNJ87+zx9yJ+yXu/XvPgkd5iIb+oQi/a +aG9c+/EFj5w+Mix+8+xFuuYiXrT3Cci35nJbRUov4h65x3E6g4CiWJ/g16t6 +UR7THTagIqJMHY/Y8xO9SMUio6X9ERER4rI+PWHoQx17x430Esn8Ndlm7idI +1oHsTtJzRNRzmUIdFMn6JUWYw1US2v2lwcX3pQ8pJlg+Ls0hIWZGp33NtD6k +MlsRljtGQqc0kkY+1/ShKI16thZOQCIRDTW4yT7Utsewyi0P6PbQevbUgX70 +v5rOPJqq93v81+VeUW/JlBRJKklSSCL7CalMKWkQkoQiSQiVMoYkSRKRJENR +Zpc7PJIkkbkkczIlLvcaMn7PZ63f78+99t7PHs5e53mdtc55DmJylIJcMZgq +bohZp9gFMs6rXXijMdi4G/qYGnaB9/Qyhcc5BH+UXrO5c6kL7D4fSFCrxuBH +TtTLC++CmYsTHzs6Cd4yrFToe90FHsd9Xe+PYngePfafxJcuONUkLLef4K2c +NknOwT9dEPpNRH2a4C3bVRtGGJRuUMw//OEtwVtOhYWdLeLdUFkulOM4h8Ht +tGHD6KZukGw/kiY3gcF7ofMD/+5umE/1kOz5ReyzL64VyRp0Q9B7efSqHkPo +gWWZmie6QXdoVNqdhiFq6FnCMYdueMuu9zZKwBB3f2eks1c3WP1I7lD3Ifbt +nZV3gkK6IZl0Mmn3MQwZLZbXEmO7oTdUs8F8M5Gvz9iForRuGJUZOhIzyQKa +dNCpuqJu2LP/SNESZkHZe0mjwcpuyFN1PZcUzIKqC9n7eL53Q0GdiKuPAQvq +BXRVpAa6Qd/eqTiezILuo87ixvw9kHHLfO1PFyYMTi7xX1jdA2Z6WY9XrWUC ++2nM7K0tPeAXGLuMWcEAnl5m17uDPdCnq+CeKcgAwZBjjVUne2Bz5C4P/nQ6 +iCgOVPQ49oDuyeX+YkAHOXfh16KhPSB7t9roll0p6JLPe1yv6oGYzStUfLxp +YCPQuPnG9x5IVvm6T2ehGG4I7//h198DSXvzLd/7FUOBzHqdEL5eoO3U/23g +XQSbtH7yP0a9sIcWxzY8WADLPMwT8mi9IAtecfSatyB/o9yk6FMvBJnU6Py6 +nQ37A3aSSr/1QvvG1gsCO7LAN2rlhffcXjhOksxfFpAJf7K+KNer/AL9tH2u +nKWX8PW3XvnfjF/g5Blinr38IQyP5HmMF/+CbhF1kuq+CODnbtgyWfkLoiIZ +b9TPhgAikyLm+wj95RnPZnVPyJVhWCzf0Adsl5eja8Z9cMxJtSGFp31wiO/1 +CUpNIs6xeZmglNEHhmUHpLnmybjmgoipSnEfpJqMTGTjF5jiwc7TaCHkeNmI +wgep2Csq66bBqt+wLEDn4YcVr/Hpz/LC9mG/obfypEe3Qh5+W/PbJuvpb7B0 +EP3eU5eH+erTsrmZv2H0bK1877V8nPNNwSi4+jccJG6Q1/MKMLVPKSRteT+8 ++pihspu/GFsN/G0eXdsP87WR3q6PinHe8NuNGkr9UP/CeKh3LQ1bj6u8/2Tc +DydPH6Zt3VCCCxbV5gfv90N0oqold7YUC5KnDHcm9UNAqLt4nQMdn6UUP/V5 +2w+2uqrRh7/SseAKTQ3Bun5YsWPSuf0BA9uunA0+1tUP9rqqXS1DDFwkQm+O +H+uH4HyrAzuBic+t2ee+TXgAgnfNyrX+ZOKidYtl12QHAB9dHyu4keAfWbyS +oTIAu3Ojpl0usLDdxjs2fPsHQOmpZTY3hYVpm/dnGx8dgFu0+V9PfrKwkCJ5 +PubcAIS3zz343/eD57d/MOy4OgC5xeZX/tPBmKYS9HRTwAAE3KgSrHfEWEjt +wODl6AF4JixZHBmBsb0GVaMohfCnC8bqZWFcuvdT8GLeAKzhPf9kqBJjYZ3Q +ZoMPA1Cfm+Vzsx3jC/sPb3zQNACeDcPVMyOEvb6g+/dfA/ArSH7ozAxhf+hL +2XruAKRn1pNTCV5yMIpY6cQ3CDoqsqvr/3c+g6mJTY7YIAiu3zLVNYexyDGh +7Bn5Qbit2YeaJzB2tKibQ+qDoG+45eLbPsL+VJRh2IFBsBE7kevWQNhbHX3a +YDEIg9yVSjIlGDudFRlc40Csp59DL00g+Mquabed1yBohr1bZeSDsZhDTPDr +kEFQfPYru5ngx4sXLZonYgdhTUNSh/Umwt5FYqNW+iDsOf629C+HhcXcvl8N +LB6EyA4NxQgmC1+6Flf25RMh//H6uT+Ahcu8Tq8Uax2E4eLTBpK6LCzhK2Vj +NTgIZ9YvZq5ZYGLnWz+zUmcGwbBUaPnRfCaWCLI2VF8zBJEJKpkPVzGxy12Z +p7e2DoFLSl9pQQkDl4d3DXzUHILtpxWv7Ldm4MsPzwWfsBwCt50LIU2xdFyR +dKHsesIQPC127khtKcHKFJ6616+HILXJynPT+RIc5/yso6NkCOpNucnSf2nY +ZU/TrF7rEByaFugtmirGYo1IXVh8GMzsqd+9egux3552PT35YbB589Q83qIQ +DyZdP+alOgzhiZaVHz8WYIbz2yvtR4fh2GUNSnBiPj5PWfc6I3IYIlZ7Co0q +5eIa52Laz8RhuLj7otOT8By8u/HYJ6HsYWg7hsf7v7zDgs/D+jy+DINCbqsd +KGXjvD3TMvuX/QGnR/RLJcx0THZpfPTD/w8s83zg65cYh10aL6esePgH6hcC +tkm9fYy/7RHIheQ/wP7Z6p9Lj8avKejrKxbh/7y1ZTQpDB97nr3Mfe4PkO6k +/f6TaIxfNIbeEvQcgYxP2d1RP2NBUFM+Yl/QCLQKzJ9I+fwUPJ7jeLdHI6BS +9FVauuAZHHKZKv6WOwJ87X8aT+q8ADbFfiJldASUDngJhw2mAdIERy2nvyDY +cfH9ny85IHvvbvOG639B4aasosKlXCB11O1fFvIXpAYSbISpeVB2x3Zdy8u/ +sGgvsPrh7nyAKv8G166/wArz7Zb1LgQZqWodi9G/IOwV+yqEpwgWnUWytBb+ +wt5HbdS5u0XAWvkyZNnaUdi976Jk1b1i0DlZoZVyYhSSk6/2iV8uAZnMFZmh +F0ahwKBDX7ijBBZnj0tc8RiFt6G2Ko8PlwIr6TdbK3oURg6tEaNI0iGJvd1G +7sUoeCxUuTX70MFP1+vLspxR0O5T3zT9nQ77+qlpLbWj4PbrQQlfGAPW7Tki +ymgfBZnRiT/ffzJgPuzJnZQ/o/AtZ6tMnSLBPz+7/obOjkLKofKyLk+Cl7Yr +nLkiMAa7D7V8XmIw4dlttyoLyTFwcbAu2kRiwc0Gmrr2ljHg23jr3iFggbbn +YWGBA2MgmTyVfz6XBes+Pbw1Zj4GmzXqKoz7WDAv2TbcYjcGpXcPaomJYmi/ +JHeKcXUMGkfaWvL3YWAwLn1MuTMGowzDnk32GJ4J5e8KezAGZm7nNC+EYLhp +O/f8StIYWKWlHL6cisEqT++/E9ljEDox8N9eFgYtvghfbcYYtJ0ZFqlqwiB1 +onlA7ssY3LxJ8xL7jWE2fZ2FQBsRf+eaoXUE77T9sy8fGxwD/bq2N12zGEqN +snd8mx6DvmqhR2cIXqr96mtqw8uGmdadlChCZk7LBDcIEvI1NHdz7n/va32g +64uwIammmLSRgyHxsONE8Ro2OMkFqgb2Y4hwX7512wY2TIS06D1vIfJPeHc2 +SYENxqvY13zKMLhUmMeuUmEDX1jzE7F0op6/0zVBGmxiXvrEPMIwGEs8453R +YUON6+WeBEcM2oD2Ohuwod9UNihqPwYlpz63ThM22DtcFz25GsO6h6HpRy3Y +cIfGrz45yIIVpUqdFVZssKzE664WEf3vrRfbY88GkqpoRMNtFows9zR648wG +bV/RBukDLGhXWxMgc40NKT88P1pTWVBjzaQ99GVDdERI7dMPxDyEnBvjC2DD +6G2B7203iXlozbT6E8UGg6UHJtG/GJCx5NVDesqG+F+0wD/EvBVu1neQeMGG +7l+dRyu3MeCrR+eV/blskBv4r1Dbjg4/E95wT5QQ+WjKUWemSmGw3NvH5T0b +KgWM7DzulgLPKtHAJw1sSA5ny04nlIDQnm7+7B9soN0QjZOTJZ4nzmZHlPew +QTGvbN/pZBqoZR+M/TvOhgI3/+2aj4vB4fDNTD2RcXBnSFesMy8Ed7fDyqel +xiGqJM5mqqQAbj+RyHeVGwdSC8/NCOkCiPudw3i6axxuiqToHf2ZB9X+v+vG +jo2DfFmMyn9qObCj1HQq4dE4FMQNanj0pYJ2z9obuQnjgO55F5bbvYRDy4aW +Kl+OQ410eBlv5wuwOxEoMJE/DlXa5Mev4hIhZqJ43aHmcai36Gruln4IM4ob +9LhiE0Abn9ym7H4H8x0b/SQgPQEzph8EyonnxVU+dOP1mybAO6r+E159Hyt+ +sjhhqD4BzSFVj263xGDr8+EXky0IueZqfGlSMi5P4Dwwjp2AoMG4R1M+Wfg0 +N9vje+IECJvi9MAv2Zht7HTa7tUEGEfP7JyTfIelF9vlvAsm4I5ZZr5PUw72 +tq0sfNk4AXpzYaarD+TjlSV34pXbJmDx0Q6O5M98nLZK63ZJzwRklRxpPuda +gJvK3x2qY09ArS1rxDuiECtvevpzVogDZQP+489Ti/HHW+ZlwRIc4vkg5yJD +joatvv33SliGAzyiO8bCEmk47G6A6+btHFBsO603GVqCZbu1zXPVOKC/daDG +/V8JLtozraGtzYEdhuMdtg6luG/ImeeYEaF/FnPGXJ2OfXU397cf44BK57ZL +Wk/oeFVCd7WjJQfuBq4/dGaSjnWMLWJuXeTA7EC71co0Bm5JXemz7CoHzDxG +Le/NMLDLwmfrR94cSOLuKxU6yMRP3+psybzLAY+WyXU8rUyswv9vudoDDvzi +p+paSbFw5dl8NiuWA0781kJPTrGwNe1yy+EkDnh5H5jNiGZhrrBCafMrDijn +8wiHV7Fw+MXepLPZHEASv0Z2zbLwhvJngcMFHFhQMSl/toXgNamTTp4MDji/ +SD3x3gxj02urTEgVHPgQvJWa4Inx7y9fdt77wgGd88wP8rEY35QPkZBo4sCM +Q8wayzyCj26hueQ2DgwONmzVqMY4s2W2a1svB/auFX5H68AYKRdWFA1xwLep +cf4nwW/fQq5k7h/nAMf691LSNMaXu7ZG1sxwwMD0pQ6J4De+PX3uJ0lcMNFT ++rFI8FtCVNLJXn4uqDwJCItfwHjX0Cntyyu5cHU65mXTFMZV+0U3zEhwIfXX +LvE3fzA+G19LCZThgpPYyAU5gh+nJu4O/7eZC2J1bUVaVRhHGOnWxW3nwvXt +p8v/vcN4Y+p8/kZ1LnSef/Hz7COCL+eL4t5qcyFJ5PToVXeMj1pcvaWpz4Xx +PH4/NROMB7O32VUYcUFrl/errI0Y+1H7DY6Yc0G5gSLRPcnC4meTt7VZciHw +bLNEywcWziq2FL5gx4WSMU5g9H0W1hUWnxy7yIUJWbfa9eYs7PY+jEXx4QLL +3/5RdQMTy0teHt/lz4WVa+KjvgUx8XdXM3nbMCK/nclogyoT66xbHV76lAs/ +qIIbMvwZeNx9ljHwggs7skQGSXIMnPq5Y0zsNZF/UXx4A5OOl19PtbhSyoW8 +F9sz1g6WYlbt3dBn5Vwoa9sTVexVit3lnemfq7kwFbBHQZinFLc27Nwg/5ML +Mlsk+/QESnCaEh5pnePCn9B/fBNDRdgyMGU9lW8SjDb2LLw+VYT/aws+prpi +Eo7vybha/aEQe9w1pt1fNwnr3PgOJT4owPt7fwTq7psEB63+X8dJebj9CVcq +y28S7AU341v0DBw1+t3kR8gkVJx7ouqtk471DtDvUB9MwrHJEzIFzFf49YR/ +v+3zSUiT3tw0mJuCr5uszBMvmwTZ8wO81uw4LMKrePg2zxSQntc88qvXhUOu +Z68fC5oC26DVd5YbZELI1A7ByXtTIFb+2KAp9TV88CMlPnk0BfpXrfg6lt6A +zoMX5e0pU9CnduwfJ/MtqOX8+s/x/RTIfS15drsvF9z3FCQLfJ6C6n1vjh8N +yIN3ZUGqWfVTYHmrKChMOh8UGzadHu+aAvaVQu9vRgUgO+GYemNxCnxbm9Pi +govAxnePhgx1GuKK2+OPriiGBLJAddl/06Cb1Vlf+6AYJERfj1GkpyFcOyy+ +MoIGxxN8AzLkp0HJQjRtPbUEHm40EjdSmgbJtacGuTdKYIXayN4orWmoQMI2 +jValYMhg1O7Smwb2N/750k+lcFf/vm2L4TTE7tz1uluZDmQL5RApy2nwThmr +yRynA+pYlGSem4aU5ie/d5ow4NaFujdnL07Dsg8elmWpDJjxdGtI9Z4G2uhZ +Gj7IhN2LyP7gnWkgXQhmrHnEhGshq6aH7k5Dks6BE8ZtTMgR6g2LeEDINVHB +JtIsGI3NW7fjyTQgbZkeUSsWKK0PfNeQNA0rFkufxMay4GK6ua5H2jRw60Kv +1tawIG2HfIvE22mQ09nUkLPIgr5irmNJIeF/lV6gqYRBDn2cPcOcBvmNpOJz +FhjOVj2+v1gxDRJPVgtv9CX4zMxB9kXNNFh5Xoj1jid4qnV3vl7zNOx2McDW +RRgkz/Eb9P+chvmb+c+/1mKwGPreGvqLkDu+jnzqxhB9NcN5259piLS2nDcY +w1D/z3uxdmIaTqiv/nj4HwahgMMP3WanoQ+t7Pq6iMFIUEpelDwDrIhPgS0E +j4VGDxcVCsyAsoZVpPU8hkop+uFTq2aAlhR8w5GLge/lvfZZyRm42RFykTuA +Yf82qyuJsjOgGEORpH7H4JevREYKM9Au8GUg6T3Bn1oLMb07ZmAm07XtPcFj +sx9qtwRrEPKfoYfuBI9pGCeVboEZUCsQNyt0wODR7GpSbTADtmjVVCRgyLOC +bhfTGQgqiOaliGFg9628tvIEEc9uQ6w0wb/Kl7spedYzcKpP06nrHQsyb/lv +m3aZgSQ6b9nNvSxIuZFx+ZrHDIyimtKSWSbE+9S9G7sxA24WdY+Hi5gQ7imt +Nhg+AyM2ruImG5kQcE3fyz6aqF+8Nj26iQE3rjrTup/OgKGUFodzmwEul0u0 +f2TMgFX2ATuNWjrYO3f7WeTMgNIZ7fSdrnSwvsj/vqF4Bi4lFfRdX04H0wsW +B6orZ6C8JmO1jFYpqFiPm9D7iPw+n1G94EYDhTOSURojRPwdrQFHJothw2lo +zOfMwKH64i8LXsUgYnH/RBb5H9wskRgddisCrvHWs4my/8ApdvbcEioAmvY5 +t9tW/6BG6e1/2yrfQs7e0Ly58//AQ6/cXMM3GzL3vONed/4HZXb+TYcUsyBe +bcHbzfcfoLVaLjtvZ8JNpaf+5+L+gZLOZNt2nlRA6xqi9Zr/wZ3f18iv1j+E +qjlUyG88C/r5B+v3xybijumoA5uPz4Ih13Hr/IlkPMHpbtG3moVL+nLzOt0v +8LqRO1P+LrOQprNyhGc4FV9tL9OYj5iF+TOp1yubXuOQVuEqqcezwB1u3rRJ +Pws/a7Y9pZk4C1aJ/pepOdm4sobk45U9CyJ+R7YVaudgKSYqZdfOAvlPwjaj +/jy8oyTKcOW3Wfj935fhq2H5WL+wu2175yzY3F6+129rAXbNvjN3aXQWdsED +y96zhfhDYpn2b6E5UJA3pe18WYxbnwrX8q6eA8a9DXltijQ8+tjWWm79HJjy +7B7PekvDkpEkv7M75kAyyELa93UJdvFD+MeROZg4d70xxo2O/X2jjsycnIMH +7PyL577TcaxXd5eE7RwEhSr2vNdk4DLXO6TjbnPg+qLkFWmc4KNL9VHu3nOg +sePq9/cHmHjYQXbDwztzkOqFitsfM4n9tWz/16g54Jp1Wv7dwsKKZ4QbR+Lm +oIa17c+XiyyMTtraLX9BxF+hU9mSxsIW5jkTWzPn4Ifeir08XSx86Qgp8FDu +HAx6hVoeEMH4tpGZqGPJHIw/FOSNRxjHHEx+Gfx+Du76JnyfvkjwjB5bNfXz +HHiYyRqcisSYBaiivGEOhhMv3C3MxrhJK+p4z485+GUsmCxI8MWgRnffUg9h +r214zpzgn0VVFU+Z4TlosMi4GPEXY1GVO5R9E3PAR/XelD+DsYJS/eMzs3Pw +hGpQ93Hxf+dVyW72Jc+Dk72s2weCf8zl3YriBOfBoITZ9WYOYyfZMoNikXnY +Fh1YcXsC41vrhL+3SM3DFMnlEerDOFrS1pErNw+/rasfsOsxThfLmRbZNg+a +umPV0TSMGcKk0J2q8/Cs+s3GbQkYN6wwkzTTmgdp9YIDLG+M+5clZ7jqzcN7 +Tk/G0aMYz/Ox99w3mofqoxZRf+QxXsWDPr8xn4e9dV4CjzgsnKN8qwTOzIPd +ddcz4u9Z2MyqNLPJbh7O8fefPBHOwmNh008dL83D4zmeaOsjLBxZrBY+d3Ue +Tl54tEtVmIWVf1/1feAzDzMDU1NdNUxcK/Lu0kb/eZje0rXjcjATr3DdamQU +NQ/ikf1SR4cZ+E2Cg1bXk3kYipfSY8YysOHnl9uuPZ8HFpXyWQ0YOExeZkXC +23lYwzo+7BVEx9SfIrXDNfNgtc7PhNFTgl8tM2P6Nc9Dp5azIfdKCdbffT9b +pH0eoi71HkifpeHAh/yRe/8Q9vzHkzCFhkmH5k3DBRaAnMnoTeQW4ueemiCz +agGuep9xiHQqxDovvXbkSS6Ag4FBYuiPAnxrkb2ybcsCFJ2bzRvKy8ezBb/r +txoswLGambUvDuTip71y75kmC5AksbdPJjUH7xG2zT1qsQA++tbaR0g5+Lpz +20Mf+wWgrXi/5YB9NuZuqDv2OWABvqa/36U7n45HI2nNTngBcoIMCkZ3PcW9 +Tvda0/cswjJ/z1TyxlhIihmX6ESLIPljzlDb9ClYlp20EDu8CIP75S1Pez6D +xtXyjXdOL4LC9UPjcZYvoLyS8eW07yIcf6R/5JlXOvhNyAlGBSxCVaB/cR43 +A/bKhB2qDF8E9DhfjO76GvI8LT7uSiD863TfZVlkwwv5UdZyxiIMH3nepO+R +C1Zmxxf2VyzCpQz8tX59HkjeLNXyrlmE5vNDA5eq8iCqKYTW174IcuHbz1oJ +F8CdgPV5zIVFWFzvG2ThXQTab4PZHMoSlJlIWbgJFMPMjz/KikJLMB9UMFIT +WwxuO2lvYmWWwGbBUYX9iga23WavrsASDD6eGQ18VArrVhT/enVwCRxM7uSY +8NGhVUNarv3IEhRobs7Od6OD2YOhpEO2SxA+9SNRSJsBK+hHOvyclkCqxfRu +bzwDqvoL1xa6LYHtOaFnwpMMQDoBcRv8l+BEwB/X/QlMmL84+O1k2BLMhJgo +bR1gAu2xqXjkQ2K9w/2r1ZVZ4PG+wLzi6RJ4zwemnXZjgcpfqejZF0vQ3/1X +MiKbBSOS/vUqr5dA2fjlrfLfLMjQHxByzFuCWOSTx5HEYO9mYpJYugStFhIO +qw9iWP8s/15TOZF/vvGazW4E33xaUy3wZQni+o/KronBEMu5vQw1LUHkmeaX +w3kYjq3vN/D6SdRzYvTF4xqCX4yMg7N+LcFmzalR8R4M1V55H3r/LEEUSWm3 +ExtDSIokeQ13CS7V6c2GzWLQ/eqHjswvQcTN2sf/+z5v6aY71iWTkM4KH63d +hNwR/arTmkpCBiv2TGGCj+gZrQvegiRUVaOVuZrgp6es5dIxQiTE51W/Erow +XG/W0X4nQkIuPOLMPdX/Oz/r6plqCRIy3hC1dlkOBlXSK9/fUiT0TSHFJTcK +wyqJ1qek9SSksLz5k6YLhrFty0vWbiShtEheqXRdDK9vDr3buIWELI9yHH4T +fONQ+ylt2zYScrfecv9ALws2yKQlqu4gITdVE9+61yxodw2K0VIlIZrmYsc9 +VxbEYbt7ehokNHXrvELQdhaYC+8PMNIioUZTemg5cT2rcxeunNEjIYcrU//2 +mTIhhNzucP4gCU08aBB/NMuA/eal1s5GJBQ+Un3aJoUBNK6X0Q1zEspRSDzy +oI8OHgcsdANPklDvzyt0kdt02BGrqnnvDAmFJGexDorTIU2DvTnhPAntTX12 +Q0C9FOxCv0q/dCTy39VhXsIqAekfWWJvnEnIzlFuzla/BGJ8L5Lp10go1WL5 +bJ8eDQKYvR1tgSRUsJv8eFG8CHSE3jf33iUhL6q/drp/Ifyzef5l+B4JSVET +UsaHCsCNZFUy+4iEFu/WaHzJyQcbvZYYqVQSYm/efsBQKhekYvLvyWWQEHVu +sqHwcg609D0MUMwiIRXlR47St96BcYip294CErKv7dz0NzcL9n7+ZGRZQULc +gVJbl4E0ED9SSo7vIyHZb2qV7ZceQ43lc7c1m3iQcc5dSb5fz7CxvsfqdgUe +5D1Y8zn8/XNcu/0wK0mJB9le767qNHmBv5I4y+XVeFDGd5/FGtlUXJ9mkK6s +x4OU4scztFIzsVnUWtNxA0LuWeBpnH+NG3zY3HxDHrTnd/jX0qNZuNE4Xlfz +GA8y6x64Wj32FjdP/O3QO8eDPIQtyqbncvHx9vIg6gUetMu7uWPVkzzc8vHJ +ts9OPMhPvcHx5Y58/C1uv4+pGw+SCpIa/3GqALfqPBY7fZsHcX+3F10IK8Kn +FC7R1wbyIC87DaaAUDH+sQrsOkN4EHvviHPYg2Lc1jf47nwkDzLhuxXfEkrD +7eHaRq6JPEjmUvWWumOl2Mpj1YTKCx500dbX+QajFHdY98dxUnkQI89sIECO +jjtVovq9s3jQx2ezF11+0bGN1IX7Wjk8SNjg6mY1HQbu4t2rtpjPg8Qyh8Lk +HjNw97df/oF0HlSlf+CSvgYT25bRFAwwDzKgpn09F8DEPZn365Z94EFBHtQs +n89MbPfIzutLJQ9aChU/FrCChXtvakhHVvOg66/kktyNWNjOYUWF2Vce1GNs +Nb8/hIV/Hem5JNrIg1zOzzkNMljYXrNo1bcWHqRXa3nVZoyF++Tu0eJ+EP03 +mFNLlMbYfoXt2TMdPOis6TWHpIMY/55Uo8r08KAdy42MrS5j7NAlkN3dx4N6 +Fz+8byD4qb+q0/zlIA+6dSNCY/YNoc/Ln70wwoNiaDYFDRUYDySEvlBgE/33 +vNdy/AfBO8HWh/5weNBXSbe6O0MEX7nuGsue5kGcXa2XzScJ/Sn+WLc5HrTg +YCj2ZR7jof3t2qpLPKg4CbH6CX66tC331ySZjKwijJZeEXw1LBYSTqOSUd7V +DbwC/zB2XrTceUOQjBYV4+4Lj2E8MrCjdZ8QofcLn2V2Y+zSwHebJEJG5woz +9ol+xfhv6Y9NH8TJyPWOWq9IMcY3N37gfFtDRrzj1kPwFGPBiKz3w9Jk9GWM +p8nKC+On3McPFjeQUd0j2d1XTAnes75tLbKZjCZb7njf2oBx8UenbZsVyShi +8+vaSKK/BsrH/mkqk5HYcqb6GxrR/yX5x+d2k1HbbZPdW7VZmOModN5zLxlJ +n+t4nzTFxAH10yphOmRkonxY72AWEz9/UV2TY0BGhpGbo84JMLGyYEF8hSEZ +/Zsw9/ybw8AM90SnVlMyKjqSdrvbnIHb9Nz4SCfJ6OGeMds9EXR8Met0o+gZ +It6iqzpzAx3PiOklbzlLRs5k6qahvFIs0S+ufcSRjLTn6lf4VZXgo6H0a0nX +yYj9XJxRXF6Mu9mp+/NukFHvub7tERrF2PV05MrK22QksafCNCOjCEconnvz +9y4ZrVXmVIreKcRVNdRf2nFklMGduGJFzccn1dk5Zs/I6I760zEh2zzcn/jD +zz6ZjByKPxfXFeVivitZUhEZZDQuwBEaOkNsIKuOHftJI6Nn3v6v1q58g4ss +Et/7/CCj5Aq50rZ/ifhlp2pykRQvStaMfU79FQNTXaIywTK8yG2NYU588xMw +7OEkmMvxIjOjHZVt5fEw8Sv/CXsrLzo+qrS783Ay6A6pPlDU5EU5hS9mfyy8 +gthh0f/+afOiKKFTjZnn02H4Dyf8E+JFy8RFPdUrMyB6ND/E/hAvMh4fCi29 +8wZ6Oap+SSd5UeTdzhLJ8zmwe1J03uUML6qwjBE7TM0lOITjo3WWFxnIGX2S +TM+FXf/yPVsdiPXSK4u1e/LAf1H1sogXL2pcds9kj3ohNC+J/un24UUeUYW5 +5A+FoMDDdXp3ixdFk0eFP5gUQT1vgb1xMC9SWh6Q3Xq6GGQF1KxCYnhRXld8 +1XHDEvAQFGs7HseLtFVPhnxmlkDVcu7Jjc940bdJhZlX20vBTajAvOwlL3La +17lwkkyHipUxDZHpvEjfNrxjpSMdJFd5HLF+w4siNvH+x/1EByyqZjSbx4tq +rDgfl/sxQERc7HNVES9SKzPu2dTEAAcJrsGTUiK/5g/XNOWZULq6ueICixcJ +bi9V1LrKBKE1Bbpq5US8gFUHZEuZYCcVU0auJOrbkRXTuciEorUeOg2feVH3 +ph+3XYAFNjJqe10beBFbWiunKZ8FeevFaNothL1+S/6zARZQN3DVl//gRSHK +qxrFVmOwlGvO/9HOi3Ydab6oTvDD240FOzO6iXzndTxnnDCQN8W88+rjRbSP +geGn7mE4sdlj+4FBXkT+l9Fulknwxpbjb0RHiHk4pKbdUY5hUUFta+8YL1rh +XLZ69jvBW4pi6TkcXlSaffNm6iCGtG1c+dvThN4qVqKNi2FWqTnFZI4X2Uzd +2/l0HoOpcoHsuiViHrdconUTPJWyIyZpmMyHqt0n1HMWMUypeKwrofIh3+g3 +zfwEXxnuOh5/V5APxYb+tBkcxZCoqiZ5QogPldo465h3Y/h6BV9eJcKHKqxk +obAWAynL8EONOB+S+PftRmMRhp2DLZKha/hQnv8Q9W0CBjv5c6560nxoHQ83 +yOgmhhjbkQ+LsnxoftVJpXenMHx8dn1NqTwfspFLr+hQIfJpJV/xVOBDQZrL +0tr5MCiIR1aoKPGhrBNetNxmFlgeXSM1soMPDfrPup9PZsG9+6lX0lX5UFtG +TduMIwtGKXQpGS0+JPP9UujfYSbI6hq4/dDhQ69ji2Ot05hw1K/hY4wuH9qz +WrSn0ZoJBVMDbssN+ZBf7Z2X3DIG9O+6VllpwodGP4RvLXJhwOori2sDjvIh +3UjMly7GAN8BsU8zp/hQ9L7pAIPTdIDW/dL9jkS+cSA0UFQCbmK17i+c+dCp +GrpA+IESSDE7VWV1hQ/NmNFyquppwPfZ9VqTFx9y83KWO9VRDNUlCZ/LgvmQ +vc+h5dH1hTA/uXn9zTA+hHzM43oOFML2XXkeGvcJ+4Uk9RO0Aoh6XbX+bQxR +X/LRxdmYfLBImPRMeEnYl7MyrXfkQvfNI3Je7/lQ9/pv0b8n02EKeG9sW+BD +ZY8iCldWnYPdcynTGjwURJL66hScbIq9inQ99CkUpNK5xybynhueVAq4bP0f +BQ0+2KZ4aiYIc9fw2D6QpqBQG3mDTokneIKzqM/ZR0Ejtafq+HA63vUu6f3S +fgpSDPjeJaqRid0v6eisMKCgqMy4dVvevMbj3bc0NplSUIziRMqVkGzMrp3f +etKGgv4WZbq99M/FKmHP0s7bUVBs5qlHcYp5+Iq+9kY3BwrqC38887Y+D4+W +3lgX5kpBhs9N/vsuWoD/ps8K0f0oSLxbV/b4tSKsdD7+3qcACnqavYkSRS7G +LjJ7lzWHUFD7dWmDrZHFeCTGh+dvJAWdkgjduy6ehpXM1vj9i6agiJeVcUZS +Jdh5ecks5QkFrf547l1gbAke9p/hyDynoKEKnq1lAaVYcV+c27aXFCR52V3z ++UQpvjSj8VcjnYKqyubttG3oeMj1er/ZOwrKvef59rICAysorj5vnU9Bj64U +dvaEMLDT76Kui8UUZNfEPNzczcCDZ6ZaAzAFbXVcmTsXwsQKq2MtHnygID9r +uCzRxMROjeqNCZ8oiCWybdBXioUz7reYZnyhoIejp9ukrVl44JDnl4I6CrIK +e8vgxrPwZj7xQ++bKIjqI1w92cTCDrigovY7IXtOkySXYZzme3x/208Kko/9 +Lm+uQfCQOpfZ30VBNl6u+Pk5jDePP9rL+UVBzAX2hukQgo+yVIuXBiho15s1 +DubphL9jk+qKEQry3LH6yrtygrfkruVIsinootqZYSrBS/KdIts3cSkoYcdh +sxPDBJ89zcvcOUNBs/If++KnME49fmyzzjwFxemmFDcuYNy3ciLFkERF6frj +qf97v3zofGjdKj4q8iwV03An9KPFMvOt/FSkeEFT1Z/wn1heqJC8nIqcljXf +V/yD8fRZIwvHlVTUE7jr25WfGM/n9/gri1KR9G/93eafMCYt8347KUFFj1WP +un9/izHFSugnQ4qKYniiB5ceEryUk8ofJENFBnU4qt4N45V8WmpGclSkaxY8 +Z2KEsdipBluRzVQklN559H+8JJnleP/HViqiZp0/bs9hYWnSYknydiqC07cs +Bd6zsNzxmH7HnVTUeD3k6LVw4npkKIruUKcirzff6ZlHWFjF7KQLU5uKjkid +//aslonVU//GBSEq0tOKvuRMXP+9M4EfjfSJelRuaShqMbFeco5MmxEVDdz9 +zz0ljoEPcQ2MXhyhol2k21ru+xnY+FDHdSdzKpKX2Dlh00/HJ9gCDVOWVBSq +wV/zXp6Oz+gnLzBtqOj7q+SHx1il2DZut2KwHRXF+tKD1Y8T84vOB4peoqKT +fUPtSp4l+FYUQ13Fh4rih5TZcfeLcUDfMbvpm1S09eoyjSvLi3HInqFI1h0q +MhXHo2tCinBUt/igcSgVCafI39ztXohTVa7EX3xCRc0+/4bTt+Tj6voNSymF +VMQ9xPt8tWoWrpOnbbtUQkVu1S27tNpf42Zv01M7mVQUV9X1Pcs/E3fI3sjF +FYR8IjxQszwNs92az7c3UZHY9JS68foXWGLV3SrxCSqSbPOJpDUH4wcaG6+a +TBHrHXJ/89jdDy+zwWuCZ6lIpSRaKGD3VTz3evoSl8yPSGGui9ei7KBb3+m/ +JlF+dOcgK2qv8API9D58LEqdH627kTtgn5EKcs9/z37S5EfGDy/kd2ikwbOP +/i+X9vEjhRSv63c/pEOkSCnX1YAfDQ5Pmpz9+hrcsxSfmJzkR7ONsdVXLXLg +T2MlBJ/hR05xBs+PCuaC/T+7QcZZftRrM5F2gJELJw0SNJWciHyeGNWxJfJB +u3t5u6APP0pWWH10fWohFFIzgnRv8aMsVXHFizpFoLxdf7uvPz/a81mzvbe5 +CDb43vQbCuNHDC798NJkMcQnS27ZEMmPJP++9XS7QwOxTwV1p6L5kfx6d/u3 +1BKgiv2VrYrnR6founvVqaVwe2/Y56Ukop7DNPNjt0thxnaTu8ZLfjScYPas +j1MKf7KtP6S94Ucn+sWerKmjg33zP+fOd/yoXz+kMFadAZ2zj8UkCvhRBZLo +3feEAfUHv14IZvAjvpdsgyojJhx2vSTELONH9ganIiKSmFAeQy3mVhD9VHRc +0h5hgjY95azSZ340M/nJtEaNBYU9Osvsa/nR6GUQVPZmgfKynzkJDfzIzuRr +6okiFmQoXz/d1EL0d1uWl9YYCzZYiJKXt/EjGcm1uFEOQ/yNd691O/nRSKxo +muhRDKIpRua+vYQ/rto35YMhompgLrefH5kq8wVdS8RAGQtMHRrmR7vjTp8P +pmPwE5c12TDGj6I+7CzY3IxhWosxeYpD1MPK2mc+gMHN7lRS1DQ/Kth0poh/ +EsNwKNegao6I7/i1Yv8Chv/3/0D0//8f+H/Wnc6h + "]]}, + {RGBColor[1, 0.5, 0], Thickness[0.005], Opacity[1.], + LineBox[CompressedData[" +1:eJwU23c8ld8fAHCbFBp8lZRRUloqSVEfyaiUSlEqo6GFUDSoEKWMjEpE2avM +kN3nyR733kdG2Tt7XPNeMn7Pzz9en9c5z/mc8znnPq/zfl1krlrrm3NxcHCs +4+Xg+P/va8m+o4uL/ETA1CL1QwLhs26T6hw/EdNWQ79PxZI2Xy4/YPMTroLx +WuQ8CY9P73ubOslP/Crpsl/5j4TfikXlQ0x+YnLc6cFBFgm7V5zh2DzMT4xv +Xn779DgJPmMtytf6+YnzgXmPdIdIGPp1x+rzX35C2Otw446/JBz9xops6OAn +boUMV842kxDt79Yo2spPHPQOfZ9cQwLX/RUrTjfyE7vrC1+dLCfB5OxnHc/f +/MSdrjMcdfkk5O7Z+qykmp8I7C4z004lYbVoVjonyU9Y2WxbHRFJgt2k5qBa +JT/R8p3jc987EnZkmFxIK+QnaMYPZFXsSPB4P/hmBPmJme9PQOMqCb32j4q3 +5PETYqNpN/efIiFM2X93WDo/cSxL7tmYHAnz/0ndbkrhJzZGC/5OEyHhIutr +6H+J/ERb6a1lN9gMWJVVvMw7mp840uum96mEATaB+kfKwvmJiXBL4Y0JDKA9 +anvM/ZmfkJdZKfbZlwEv98/0PA7gJ3aMHSuyNmQAO2fbzxvu/ETpkbBjMXV0 +OBeczQp35SekXbg+d32jQ6qj9o4Wp//Xp4GQ9KHDHTWz4LOP+Il+xddm7pp0 +aMl/a69+m5949+/wk6uRNDjwWTrB0ZyfEFcZexzxiAYBzxI7v1/hJ4rbjvP3 +n6DBaSg9tf0iP7EysKjOZ7wSCojZLRK6/ITkqIOqze5KWB/ubmagw09stZq/ +v5yjEhxdRD/4HqH20+GcVBGtApQ0dvDwq1Hz+Q+aLa9VQGzhldaJbfzEcudi +IdaLcvAqKfOnC/MTO0/6FoaFl0Kj/OGITEF+Qk18Mn7gUilsfp2dGs7HTygO +fF6iKVYKxbpfquwX+Iij6rohii9KYKHKU3j9CB+hbX11UuNiMdg26XncpfMR +72uiDWaaCsCQWesi4sVHbB0Wr/KKz4GoMyf9Ztz5iGQ0+HpmJBvGvxWHdbny +Eca3Dd2W7s4GH/vvmOnIR7ikhbs9+Z4JZbMf5k0t+IgJn4CjCunpoMp76XHK +cT7i5AZnfeFViSAt0WFzZgkf4XHEWXq51lOI77xa5czLR4jzzYdmHLOF3V+7 +d6Zw8hGhZ2qTF5UNQEutb0R4lpdI/HIxV+/LPbxjMmpJG+AlPu67CfRIX0yP +mL+lQ+Mllr45b1OyPwqPbpW4ctCHlzh1bq+dX1oG/poIJiw9eYm4xYPa729+ +x4t566RD3HmJmur7U6REJlqdlGmbdeIlkskgRtWzLPS33mycZcNLsLwrtfTV +crE5Tdlojz4v4X75z8zCEQJt1M6e2SLGSyQ9r+wPlixGyYotDRYreIl3ql1K +3VeLsew8x5UkIapd+s/0/bhilLqfaLOHj5eQd852M9tVgox4ft+DLB7iWZNu +2vYDpeiwr1XceYKHoKfL2ts6lOKm4vTQglEe4oJPdthAdik+bb+SrNPHQ1QH +HUu0Uy7DbeJ5jDMNPET/K22LRLlyrI/yN3xXx0P4Nq9de9W0HN123279/YuH +iHHXbVYNLMemk/+NXKrgId7unBs15K9ADzcboRu5PMQr3j/erMYK7BvbeMLh +Ew+xRJa4Z2xIw3dO/2rygniIqqaIBW8XGqoLVV9afM9DkHE7/cu+0vDDZicL +tzc8xHj2GnnDeRpqmzZ4vHHiIbbFPj2Y+I6O40PJK3858hAr9qpzCWTR8bPD +y4+rHvEQdYpfz19tpOPU+z1fAm14CKEah7UrJBkYRfMuj7jCQ1jXnyZU3jLw +9MXrZ/4a8xDRoabutkkMnOs90CB/kYdQmG7zDS9j4Fnuvr4EfR6ieMXJoa4Z +Bi74/rAZ1eMhvszueD+5nMQv69+zd+nyEFNCjjtmNpHIdUBDIPMID8HStD7S +dIrEpNLVvjPAQ/yo0zfJvEriRYNRcTU1HkLk1IY4NzsS+bqKQ5+p8BAOR7Tc +NV6QmGoTIv9TiYf479ARC+Y7Ei8v3Evm3kWNH1ZN844kUcDr2D7t7TzES6X6 +7RKpJKavkcZXW3iIspuWa97nk2gWO61dKcdDTKu3bVgoI3EhIys2T4aH6PCI +C99cS2JwkYNA0joegu1iNCnSSqJKjdrt0DU8RIDM9cy0HhJ/dyyU+4rxEJmh +Im9XjZBoxyQUnq/gIYJ7HdV2TpK4YvG5530hHoLfP8qeb4Zan5DW0PUlPATz +4jWhoDkST0jynzTk5SFcRe+19SyQOKBQnqjDSa1P3LJ2dJFE9/2ewvvnuYkA +RbIjjYo3Hj1prTDDTRgtnVuyh+pfYChStXaKm+hco3zZ6h+Jpua/FIXGuInR +mYjJqywS5+6/9VsY4ibEzh+bWzVO4sfnBuOjfdzE/uMi8c6DJO7zEz/b0c1N +aCpnHYzvIrE2tCGtup2b0JPtXPKmkcR7ScGiRc1Ufz+uOzurSBTJN7bPqOcm ++n5fLfUuIjGhUup3TC03cXhwbWB8JonHGzuUA6u4CcncFaau8ST29kV+eE2j +nmcNf137kURZvs1GlkXcRHpQjoHHQxIJ0YFsY4KbuHIjesXV6yQab0iQOJXH +Teg7G6/4R52HQHXF5l3p3MQbSys5uw0kKp8aV9uQwk3IPGqdN1hKYo1x+ifR +BG5C2eBgxNwYA4UdVUxZkdzEOvd8s5BcBia8nsW+UG7CdAU74sNnBh4LzJNu +DOYmbo6rcV52ZqBbhnpn3ltuYs8fwQFNdQbKFnEdSfLhJj4U6i1arGcgVhdF +hnpS9RWY0bryj46zo0fNn7tyE/08yJWXSsfABcGS+07cxGOHj9c3etJxrxB9 +k7kjN2G9/hBpdo2ONgpn+nTucxM7eWPXXF5Ox7/XjSyErnETf0l/P8/LNHx+ +fy1twYSbEJl6OFmwjYbSz1u2MS9yE17hSVrN/yrxYuiVkWp9bmJtmKlzXkAl +VjXctg3U4CYGp97fsMQKzNNzeLhBlppf06Dug9YyfFektfniem7i16MHjXIR +ZWh1YEWDrwQ3sUVmk9+/62W4flPcgYWV3MTAguC4TF8pOs3XzddzcxMph1Oe +fOguQY2EXW5v/nIRAmd5JzZmFWHZkn7fmTguQmx2ud2h74hhTumHFaO5iJkn +p6SuLkd8POU0fiOcizBbZix6//YPVOj471xtEBdRW3dw+v7qfPTM0hRP9uAi +Nkq90Ht/Jwf1boZ9um7JRfgNPE/w6U7HmqLzX8id1HhqlanHMiLwc66wUsZW +LmJP8tiVOslwvPWtOP+jPBexSWdTggl/KM6F7vllLsVFJHM4DkuHBuJGRxH2 +P2Eu4uCS7us33d3Rblep1uYRTiK+pePfVW4vEP2s3OGcwEncUHZ3PbQvBVrf +Dd+5EcdJrJXjmrReSIE4z6hJ3ShOQvbA1m5mUSqoPV4pIB7CSWhIaoj+PJUG +18+N7Ej05CTMDSXW5176DumCMU8a7nASkaf1dilr54HBQ7HVu7dwEm2SvT/V +AwtBY49MhYIcJxH44eqKgd5C2DG67ckGGU4CvhdK0JSLQOCmZrvoGk4iZ/Hm +sh3VRZBjeD+OJcBJbCi9yCu2WAwxK50uMnk4iY7111/tPFoCbxkey/o5OIkw +AaG5O74lYKkdYdPI5iDkRL7a7l9fCuuVf6nk93EQag5Vqb07ykBwvHkgo5uD +qN+wLyjPpgxYiX0hSe0cBGworgtJLYMqOQ7OsHoOwrp36257xXJ4Lraz/HkZ +B/F+OLdOXbYCeia9jI7GcRAxe0VzoLYSqlMClx6O4iD2C70ySOalAVpG5e8P +4yCklIru8CnTILA7V2ZrIAcxem/06bW3NDheO9Av9IqDiGubEY1Vp4Oy73Qw +nxsHEZikziF9mw4bTnDpLTpR+YtXOd3zpcNc4ZpvzIccRNnzS5Kfm+iQnHbU +oeYmB8E+mhzZe40BIdbnttGucRCxcufjeVwZ8GqrWWuRKQeRf9VfjRnGgKuR +DzW+n+cgTvHH3t7RwAA9U9fJpLMcxKprD6ueTTBAda1PTOwpDkJoWZtJ0DIS +RN/GCAbpcBAVN8xWbFElgePUtzy/IxzEC7/L10JOkzAs+OOuB/x//aUqv6+T +0FhSLu2qykEoyG0qrXtIQsnzumrHfRzEgcvHTn98TcK3Qx1udns4CBFbfdkN +H0kInR1SttrJQQS9yv1gHU+C13d2n/lWDsKNNBZ3yiTh0T2eYBN5DuLyw4ei +Z4qo+/b7NZ9CNnAQm+We1sqTJJRm7QhtlOIgtnPeed5fT8JI05Hw1ZIcxEct +jfL3HST8t3gh0nA1BzFn72C8rZ+EQ7J3o9+JchBHx2bmEkZJMNdyja1ezkF4 +7lpnLT5F5b8VGL9ciGrPznSzmCEh3TPxq94SDuJSktjq+DkSmpMKEr14OYhb +svPLqhZI4K7+k1zByUGkCCSfbqc8ZDDQcG3F3CIaN/Q2NFBxlCLPLe/JRVTq +bIvLo/pPPNhhuWR4Eb9o6pa+osbTyL9g8+LvIpqEGx09ROXz43a142xdxHmb +jKMtkyS0H0t89PT3Ir4WdB0xp+a70/fPkxnGIm4/b3q7vo+EZ785XexLF/He +HpNxJWq9dMltL8ZwESWfCdAcqXpIXjN8bZW1iNG1RhqJDBIs4p29+1MW8cJ8 +/pfyQhJyRr/4mccv4olFoeu/qHpfeLIYZPxxEc3Vu+9HhZAQW7Dlc4P/Il7e +Jp1p403CtMC5CAPPRbxx8OtGhackvHsf9+Xkk0WUbhDDG0YkdDVVJ5XbLWKV +y6MNg1qU92Tnv2lZLeLBcTkZ010kkElncg+aLGIP+Tx/NS8J66ccMdtwEdUP +NrSYDjPAUjWmcO+pRbx2NvdjUC0DBMtmK7erL2KdgJ1+XygDjITlquJVFlE/ +7MjqRep8x507VSu3axF37XFZvuwmA7Q7IpvXyS7iuYkhv2UKDHgvz2gPkljE +A4csd3AJMqDbit0ttmoR87/2bxjvo8Pz2RPDQjyLmFqcElEcSYcfq6bn5/8u +oIPV+eDLQnQQuijN5dC6gD9vLbPS/kuDy2HH+aZ/L6DmRX9vpTwazG4LFR4p +XUAz5RcXN9ykgbL2UanW+AWsZly8aJdaCUmPPqr/sFrAukstHUfXVEA7ETz9 +wXwBd6rpObu0lMPKJZ8SbI0XUKrm9d7UsHJ4GBS6Wu7kAkLN0S+LG8pBPSeK +6bltAf0fZliGri+Dmn9JYUaD8/iLdqlNvacY+DRTDPd0zePzpRLr5YKLQcUr +dZlQ0zzqy6xcte1UMYRIpj8iKuaR6dZ8Oim9CG4czD4t/2Ue50WlDJvsC4H9 +rJBj6tY8gsphzYQaAhRKi74zzObxeP9/9QeeEHBZpMQy7sI8Rq189k56IwE/ +Q8vqLx2dx8gd/04udv0AD4KeUiA/jw+1ZGbbl+XBOq56M9+eOexka4xEK3wH +jRdDxNbrc/hJduN6ow+RMBDMIe57eQ5v6byTWbMuAvy/iVpNnpvDqJ0Z9vsi +wqCrTW1NvtYcJjWwG9wNgsHtgLetnvwcLnc8F6/W+AaKR7fL2g78w47hdRmZ +w8549KK163ebf2jjOi3h0fcVmTauDRK3/+GoYqCWpnEiBrp/2Ol05R9utN1+ +jl2VhP3p2KSj/w9/h8TKezemoIfIcqWGPf/w6/3DsXcz07CyKKX73/Qsxovt +ZITpZaPeznGtw09nMY3rw8W2rp+oWpU8VGk/i4UfVat0dhXgZlurt4Z3Z1G+ +Y2iv6LMC5E7ra7cwnUWGuZcnQ6wQs5TbHAMOz+JhVk3U84NFKHOIljrIO4sV +ct/PFFuUoHDb6wsPFmawwThNUTOpBOecdBY5WDN42EvXiYNZgr9/Fpz4r28G +93ZoRWy2LUUPrexe9YoZHFZ/NjV7uwwnT8SsC3gzg7UaIlKteyqoulwrknaf +Qavzpr4Hblcg442MxVenGdwoc9g2/VMFxleFZBE2M/jHMc95hrsSTc69PTuo +T7X/OeUUVFyJulOnZ+11ZzBmemNH6kQlqgQIh3NozmDUULxDozQNV9W/HhHb +S81nw4lTho9oWHbJ+bW6+AyKgap01Vo6ZswdVKwUmcEPpv1xhzXoGPHp328D +gRnUCdHZk3WTjk/bHmy0mGGjYYvg6eRkOt5xVqqcGmPj21Pij7dX0/GCzLit +8wAbX97e9+vrBB13X7PC901s1H/D9zFqDwOleLbekK5l48y+0b+S+gxcFt23 +7CuNjR4KtuJ+1gzs6bl2kchn49Iug8O3YxlY4y7DqfudjStjvlys/MlAYnNb +bF0SGxOyvYLlmhgYfOfi1EAoG5d09CqjIImWQqMnaz6w8eDLx19rZUlUS3GN +yfVhY9D7OynJ+0kUOrt6MdKdjeojAyanqPt261TCeS8nNnpPfWz+do3ySuDh +FLuHbDyj9O5SwwMSnVR/Cxhbs3HTA1uJglckSrssZm83ZaNR6bTvnzgSmRve +rfzvPNV/KISHm/LAz5LNFgt6bIzgV1QcKSTR/3Z+YY82G/ly9/sFkiReXaYv +SR5i44HDg6mclDd2J/fYZSqzMW+V7JYtlEe49R3poTvY6LLc8qMw5ZXaSZFN +rzax8b3U0u+pYyRGfYh6ZrOejWYX2CorKe/YHdj/58J/bPSM6RnaSXlIq4W+ +87AwG81HNOMEKS/953z11RY+NkangF4E5akeWVb7igUWvthewJim4u/Fnvtn +p1i4jf/hJoH/++uWtH/nMAvPXSsz+U157cLSjIGKvyxU9WrzvkJ5bnPSsSNp +LSxkLI/6HU95j326NTi4joXK13NuJVMeLJ+4N+lKZ2HinIvzvV7KXwH8Jy2L +WVg1tvLmBOXJO/tDos/ls/ChhOq93XUkqjYrLqhlsHD3FwcexQoSlzkVG8ol +svCVHof3EOXVZpmLyULRLNxCi3K/lUJiYtEI/3QICzUle55EhZP47KarWes7 +Fq4Q7OQM9yNRT3B1dokXC6dPn84ycSZRKjFhRbIbC81Vn+i1WlH7derwnQ9P +WBhTcNBJ+iLlsfG6Aic7FrJ3jq/YpEWi3/s7a29ZsvAY2DWO7qD2p+ktTeUy +CxfpXh9rFhjI9WyznMw5Fj4yXHg42k2dT+n8p0tOsNDzVrthTTkD7W707GhU +ZWHEBQNLlg8Dv4+p+DmuZaGJ7FT/LyEGvnxH77+2ioW67oY2egN0PL/vqsaJ +pSxcqq3UFFJMR/YTzwnJf9OoWeOklPGIjgcEWg1+NE5j2IrB64tVNBT8ei8p +pnoaT3U3KyhH0bDpJD+/T8U0sr3vf9N9QMMnbxWzTHOmsUMq8bSEOA1xvasE +58dpvOQ4oe2oW4l8vgqr7Pyn0bZw+syTNZV4grN6aa/HNE5WHhL36anA+i7p +eZrjNDZr1vxhPq3A8bgfbYHG06hkubipPrwcN+2ZjVKUmUZRoWq7Xiylrsfh +nyLXTGNd3KxRr1MppokdC/hv5TT2v7oRthpKUZ39wX2OaxobJs7C6twSNMrf +e6esewp7/1xiVMYXo5eO7U6zuCkUCUq+JXG9EKuzVm+uCZvCDb652sdXF+Ia +BUJaO2gKe3j91KsrCzBmmcjKbR5TaCiQKDylWIDEr4RJlsUUZhyfWaiaIHDi +Ul+2z84pdInMznyfl4cXbUw18fskDvrHbOHJSEW3rpYRn6RJfMo+rzo3koJJ +hpeDzGImcVeiw2WtzSnIedBohDNgEh039zHqdiVi3JKzgZr2k+h3J8OpoicG +pyO0h8r3TKL0g1daPaffoX/d9ne1KRP4vOxk1D3uUMg7mnAoOm4CZ7f5ZZSv +CYeeXIV++7AJdHFVvbslNQL2R8gfEvedwBOWjRvft0RD+12ZPiPrCeybfnzz +7NYE2CEgpta2fQJX1jhNrdNOh8oDc139X8aRULP+ETqLcEBlY1t7xDjarPLM +fHCOgLi9Jxr/fBzH9NeJ7NkvBLxUDKkq9hhHh44d2sKGP0Fjk1p++J1x3PPV +xY47qgCyVjwJMFIYR1Pbt4cvShaDvEiU32nZcdzp09tVfbMYApbRvHQkxpFt +/9v8wbdiuM8v6bpXcBwveJ+z261VAjvmc61XDIzh+SpVz51mpRDV9+9oefwY +xnp5bO+4XQ6rejZoEuFUe8vlgB8xlLe6dCEzaAwvCRYEhnSWg2lr8N7o11S7 +0+KGM+crQKJWVdbl9hg+vR372VipEl7/urbu0ZUxvPbSoYHjdiWwGZ6rrY3G +MKSqVuFtSCX8Lm8SNj42hllvesWectDADx3/qWwZw1XbuD0Uc2nAkR85vVNm +DGtsc77+10uDuzmVY5vWjOEW6XT+lhV0OJGxtk90yRi+0JSq5r5Oh9xvR7qW +co5hTtgn4SuedFBIsWjlmmFiPWegTGAqHQS+5tYy+5ho/c+923uWDg/jusje +dibSIoV/HFvHgJ7opZWt9UyMST31s+EQAwrDLv2klTFx5oXgattnDNj92TWv +kGDi8BPjcfsQBoQFf83MyWLijca9PMezGfAs4F9iXBwTzwuqmlwapXx3VfmY +QjgTJ95JTg7xkaCzw7b7axATd+yyarBdR8Lykh6JZA8mvrO29NHXIWHKT+a7 +oisT3xy/P5VwkfKb8eUz3xyZeHE4uo5lSULk1C/3DEsmSilKvbv8hoRXP5dt +2GfORBxXPmP/iQRLb50fWcZMpHts0n7ylYQzRs+NDhgycU2V3YxNFgnKcvmT +uXpMdAsdndWn/CYxxvI5qMPEDzHJXTKU3xbzdm9FYGJk61rDFsor3a+sStRV +mHgmc2jejfJM2bm4KwWKTLRn7vBdTfktUbpr7sgWJsps0K78QHnIf2hdYLEM +E2tnRh5wUX57kHVhj44EE1PFD1+/QHnqkttbRtlKJmYlpVgFUd5SP824fXwp +EweKRB4WUx7bKLmEl8bNxHObfayaKa+trHJXD2aP4uAK1Gml4qab8w8+94/i +iYc+vJVU/6jFe4nhjaOosfR0SgQ13t0PfV1RlaO4aTj5ojmVb99OE4m4vFFc +zp8vvYqaD0dpzemviaPYI9El/39vVpgcc0/6PIq6zwY+K1LreTv9Iz/VZxSf +v5jOD6PWe/mN0mS6MzX+J9eSOaoemzZ9UciyHcWIVebcWlS9mPlSV3KvjuJ6 +34Kyx1Q9sw3ef/hxdhQrD4jZBVP1fj4syPipOYrD/hstv1D7ceKFM0/x3lFs +m+SSiaX2S2zd9IGyTaPoRy5Z5k/tZ2u6hW2l+CjGvq5LtnhGgm23YeuvmRGM +PXDl4jB1Hg48oYnWDYxgtIvTuwDqvPCIaujWN42gXafoiOIeEgKObM9qzR9B +reCzlar8JJg1RYx0JI0g615sZSJ1HrfcXy33N3QET7rmdK/6w4C8CG7/QZcR +nMvU/4ERDHhx4HHZyL0RlPTi0OR3Z4Be9cjC2LUR3BqVbKl9hwEdnI0WbK0R +jMGZt8nbGcB3JUWLV3AE2dpB0cfj6FDFlnsi8G8Y77ZVWlu60SHIN/jb0qFh +HHV0CHljSodtxEuplYxhTNEYlW1YSYczUsYz6/2HsS/lv8GvVjTozHF+2+Iy +jEHuNX77DtHgnmHU9hBb6vnUwy6RQjTw9x68subMMH59s4JzY3wlVP97XLFq ++TCelOW04qipAP36gGCBN0P4aLnUrZWTZdB5P2dv6dMhdM5Iao5IK4N7Iq3k +C6shVLC/nbjvXhn4a8vxcJ8cwufvOf88GiqF6vQ0y/mlQ7hp5Y6gqLoS0Per +Ojj+ehBlF3eeXfu0CDq3Tf5JeTyIFUeq6g7tKIJ7ZeL3rG8PoiCvVOG71kLw +XzSJGTo6iJFjS991qxVCtdWwcC//IE6GdpfcZf4E/eOC7U0vBlBbfiZyn+UP +OMut+bzYpR//KuqH6sd/A4aq9+Wge/2Yvy1XPWw8FY7b/Va2utaPniF8QXqq +qaDx99agqFY/Gsjn/KC/T4bdpd7nrgv0o13c9RHb0nhY7vlnE7dPHybf1t60 +nS8EaCstKtVDevH9D9XUUd+3eFQ3PVrUuxftr4oOL74KwCLXeae+p704Xn18 +y1HnIMyd9FHyNe3FVa+0zMQtQ/HL7/RPbbK96HbxObPvYzS++rhg/Sy+B5sL +fL2zP6egpqy/aN73v9gYfm7fhpJcfGnyWl835i+aUyfxm1Meln909m18/xd9 +tBQvrFbJR71V1stm7P6i6ubaMN3oH3iB5wSP8h7qebNfvyCLQIse3snk5G40 +3OY32HelEJNk53dBaDe69Vxip6cVItNk0prxphvLzi1mpvEUod2fzsEhq26M +OHhms1pUET4rw64t27qxONkzeH1DMfp/eVwTGdeFTbPLe+zFy7C2x2bFnsAu +3LpHb3HyYhmKb7h1qsC9C012bdZ78KkMQ4INK9tvdOGg9LpCO6lyjPHaU7hO +rgs/3IuvExevwL4yBc5E0S70ZDCkTPUrcCuvLKjxdGGseZXMO68KTHm6PPdi +Vyeqxri15s9XYM7d4W8fwjuxtfBcUlV1Jc596WZu8uvE4n7bFi1eGkJv047v +zp14Z0vQ8g/KNCwyrfhSa9qJt2uvuBe/pyFfyM++a6c68ZiR4uDnQhoeq8/a +NHGoE1d7eL49waQh43RsxIr1nWgzNfRwnTYdl3t/bg8T6sRkRubeg9Z0PFv+ +fr3ifAc+ZOWpKnygY/1ht496zR0YulCfYN5Fx47dV/w9P3bgrp67efusGJjk ++tX2pkcHCqsdCeb3YqBD7dTpIw4dKHh5LiYqnoGrHniI/DPqwFW1N78e7mBg +e0ntyO9jHVj50dke/jEwQVyK8W1/B/6YMBPhE6X8kp3mdWdNB+p8Pt7Uf5jE +lYILFtpLqPmwr6vznqe8dvGoruxMO3YtdWz6e4fEL1/9FRb62nHPur/dHk9J +fDjXvKSxvh09pI3DJ96QqHlSvj+jrB3frOS7KhVK4vLPtmV+We1Ir73nJpRE ++WIkN9Yqrh13eCfcy88lMR743I8FtqPmK5XIHWUkPvA9fUPuVTtu/bwuyKyG +RI2Oj1qcj9rxz5r+Lv0WEoV3/93YcrMdn8umSfH2kNj0fCdP9nlqvFjZqQfD +JMbVPO56p9OOi5U2a+ImKK9tLCqw2deOZxos9ALZJKrbC0eckG/HOwmPr+pQ +3hIqueCyWbwdU+ODFDMovzX+F2nGw9+OJoo3wjoon50gG52I4TZ85iMWQ6Pi +vzbWhx7R29D8iYPGA6r/s5U88zsT29BUkMe1lfKgeHpgbq9XG5ZtyHfhpfKl +GGx3CLVsw/tuuuaD4yQeY/1UOX+iDZ/sHTHzHSKxM9CQJbytDb08HNMnu0l0 +PDCYUbK0DaPCTBJWN5Mo2uxk92ywFT1M3oXP/aI89lR0j3JlK05Px86ElZCo +LRU/NvylFSOGkjbx5ZDYRhxMifZoxWuBmrHbEkh8dLX6rvGdVny86wWf2Cdq +/6L/DdK2tGLphqbK7Y4kHtHx/eK2pBVfpT5+aXqL2p++jbfV+ltQbX9ZmcE5 +qt7b9Hq+xrWgXmSH2NvNJMbSO6OuvWrBY4Yq9U3LqXpaP7y29lYLOppr+Q2x +GHjvW1i7h3wL3rZ42XK7gIFLz+0N1eBvQbFhJY/6aAZGTZUbz/Y04/6Kx2ar +XjHwt8pE4+2YZlQ0/nt4/CgDrRvdg2ReNmP9wobSQHkGCjyRvNBg3oyB4yJ3 +lvMy8ABq1R2Va8ZsjT3Oj/LoWGPW+JaDtxkfjvjRLALoaMllrZ/V3YTbRsm+ +vdTn67NWICkf1YQj9K7Cc+voyE0bKOfb0IQdAfqjAxY0tIutEOjnacInv0+o +TwENu59/0ansacR4m8hPAqtoWLz/TrHPl0bk/xYZd/p7JbrH9hOrdzei8NI+ +jrdjFbjUtS9T4XADMo5EPLmmVo5PTMqml21owNRzKwLLOMtxaH/c3lEeKnbk +WHO2pAzpzJtpaWX1aObdZNt+ogx9THqT1E7Xo+KDNfLip0tx1YGeaD3TP7ir +7D+ZDsVidBMr6VY8/Af7uVw6Q/uLcJIZvWHVhj9oGbCuNja8COtizcP/9PzG +o4shsp9EivCD2N8Qs7u/seN5SO61rgJcO9b19t7TOmy4vNYoxpLADXEdLgHB +NZi29ECc0+7vKO257tWoQw1+S1Tij7DNwPV3jd4cvViDGLp3aV9yOkoo/fo4 +u7oGpw+kyC1sScOVBJFmElCNwfb+t3aIUX6rD/27ye8Xco5V1m35FIkokud/ +V4jEtISbvXsY7pBTtydUmsbAHq+lCop738D34K9fqz0YqBLpx+l40h+S5IOL +lAUYmLgusWwwJRA+g8P0Ahcd11UP3bHNiIAn1ioXfdgVqPjhDPdpnWRQIdNl +UrpKMCjhrrJxYi50CRTuyIwpwSx9VmyAUR680fil+uN2CZ56eF6umicfujKG +DWijxZh17aDBvgs/4E3IJo++f0V47en8S8HHBHTdDhyXFi3EPWfZRq+nC+BN +ZMyi/J8C5LdgfzY6UggqLenLdn4sQM9zdQZPfQrhzelfmw5KF+C3IxIP0+WK +YP8+wUtG234izy6OB4HHimHdEvbLDa9/oG2XphKPVSnceyIavkvkB175EzTa +kFgKZaOKufA+H+W92N5Nw1T779ujl8Lz8GHZ3xdGFmVQFtl0/l12Dp49Z/ia ++3I5rBdn20ZADlp3XD7973053PcQ9UopzsaYjj9/hUiq3fYkQfuVhV1m2u6O +hyrA7hBu5h34jrmHg3M0VlZCRWqTxiqb71jAtaW2UbMSpOTYl2WmM/DA1Sdx +zx5Q7Ut3+R3kykC/GfMPnb+p9oaIGXuJNHTgB6FhTxrYncBVbmHfUMfRST39 +Ow0qsGm7/6ZvKPXO4aBDO9UeI3o1aXcqRsV0Fs0p0uFd77L39PdJ2M49eCGj +mA7t/z1sTYtJxDTrQyFhvXTYqt0h/zEzAR3lim55CDCgICoj50bDF9xrGKFi +oMMA4VopnpMD8WhmbiqlZM6Ai9weJ/f8i0NtMQVDoecMGLti0r4oGYs6AxpN +X7IYoOZXtqVnewx24aWzVtUMeEXsvk87FI1Pb8pbbxpkgLQUP1+QWSRabrmq +83gN5S8921NOthGYs2TRbsVOEjKfNgWaPw/H4NTMzZ+OkPApy/T89aOhKD0/ +d9PrNglK4koDinc+oaHQWMKIAwk0e4Gn857BuDynceCwJwnXaptFKhKD8Czn +9vcvPpIwuzs1IoD8gO84n27OjqO85fdi77Wx96hg/lKhOYOELUyjsp2r3uHM +s50KIz9JIPR2XJpT8sdNq71xhEbChUSukTJDX6wc+evZ8pvyhngS59YxL3T8 +m7E/p40EoTpD+SKl1/i8K+WJWy8Jav6LJ4wfvcAC8+IVaiMk3DkVd2861wXl +ifXYPkHCrjURilKLjugiIn/uHpuEN28nHM+8tMP6plfxzP//veFajzf8a++g +kIVi+CXKa9IyF4/X6xsirfDEpjTKcwl1TjIOhw9Bsdnp7Swq/sfrnViRfRU2 +vBtLk6fiMAH7pWl1NnAwWOGn5jwJR95sIJz1HsHzq/vN9WZJ6FlVbadX6gRx +M5+zNadJKDpBiAqHuYJY1voO+THKQz7io3aX3SFgRT4/e4CEm9V3y5tWe8KN +tT+uZnSRoCJWEqlR9wYCf0YqmjWRwJsgjLVH/WA0YWs2+xflyZMHtgnIv4V9 +DSdOOpVS6xkxD1LlfQ/7mpV0JnNJAF8/PuuuANBt0RS8kExC3K78+xE/A4Fx +UJj7azgJj+1E9ZY8C4Fd3sP20q4kdIqp56pd/gxuM5PTR+6REN20V1RlXRgY +9/nkXjAjQfjpFReLf+FwxSDB5cJ+EgpOsva9GIgA+4+T1ZobKU+v9x753BAJ +/NH6/HLCJLRh1qXqzGjYW6YsWdTKgHe+eiuHYmJAVjfqnVsxA45e6S7jDYiF +Cyl9UmpfGZDCtVx5v108FNexOd7dZ8BzrZvLwxQTYcU/WiMnmw60BkkvbqUk +mJSuz0+roYPY3Wr+m/uSYVH70K19SXQ4V/l58b/QFHieclI4h/Jcz8QSVkv0 +N3iQMivakE4DwR/d6T7yaWDXuemcljsNdr7Ce4fj0yBcbImr7wUaPJK0H4lK +SId/VXrSlaxKENRq/2uR9h1Ipz9d/FsqYYdIbuS6vZnQtW+xMXy8As42vL9C +fs+EWJ+mYoXcCgix0m3ZnZMFvl53jq08VgE7A77XzhA5cCxYY/2jC+Vwrter +0J3xAzyntT7+1CmFR6k3XfafRih8/Zf/NmcpfHLUgMFfCJEK8pfkc0pggv+J +cewdAq7PpHFPbi4BtZBdDYJ3f8JsO8tr/VwRkEUhVb/sCqE86dopE8cCmBS7 +j6bPS+H9m1MfYvuy4QJ/xaeuH6Xw5/4WF9MD2ZDLln5y818p7M7MYKh4ZsHz +JoaKtV0ZeNvZFdxUyASRcIVvz26Uw5lvPzuumKaDwrbOqE/HK6Hk9p5nN/QT +wUzjjEfTSupzG+GmOaflDkV74m6ZniLh6rH30TqGLiAvt6jdRb0XiHvC4pOV +D4Dl+tvFnqsK2iVSvD/37MAfN9wOPXWsgj3Htq0YVnuFutvaM72sfsHLAGO+ +j53heCPzw5evZ2rAo/FhxJcn6eix+Wb1g3s1MK3+teM+ZGBSkPLs4bc18NEw +qtuM8zuyHOuO1dfWQP3Lkd8vn2fiK/VV/TwXaqF6sG9g8+Mc/Fr+Rt7EpA7q +eXfsfLOawKoDJqe2ONXBFm0xAS1bAie/bn84GVoHM3cT7p8pJ1DtDa3Eo6MO +gtfcL7388Ccy9AVvZF7/DXfTgs82VRQgs+lF1HKLP3Bfce1n5xPFKHrSgNbk ++Qd0s/bBVGAxqvzYOBmT8AdsIkx5PLqL0SWs8MjBkT/Af8m8hP9xCa405+y6 +bVsPrpuiCzk+lKLy7yrBvf71wPmirl22uRQv6oTt5kirh/3nG5NOSpdh5BZ4 +HjBZDy3iOsbfostQaeSJTOHDBvibvkrdKqocL5ieOPYmsAF4fIcbX3dQ96+q +tbZG2Q1QkZ6+5+O6Ciz+lkOMzjbAtrp8ay//CjR8yDaVfNYIbP8fqfbWlejQ +V+re+7kRigeCfUciKzHU6EPyN2wEntPLxo7+qcQ+VeXFo5xNsDRm/1jQARo+ +5rD7bO/WBHb28cH2EzT0OPrJNTaqCQp3PNv3j7pffvQtudVQ1ARrtrwaM9ah +Y470mj0HeZtBJbPFIJ26n1bc0lhtLdcMLsvf9kZR99fGFIv5MK1moG2wuWHZ +QcdZ9R+lPC+bwbfY77EDdf8VfN2boBzTDG4J/878oO7HEr+W+98qaQZuvYnQ +mlsMVL1y7TKNrwUMci7EWFH36xPxXocXNrVAwbnLnMyfDLw8lrFJUacFxPoV +xaGFgU9cBMbeurfA/DsRNaDu717lu34Xx7bAsq6gkyPyJIasuJTLKm2BzsdL +pG4cIjHByC1sS18LGB3rJ6PPkpgXnvjikkAr3LIa90y4SSKt//cd782tUPtA +1POxA+WHXRyn8SgV73+6YpkXifM/9SU2vG6FdcIHuZy+Up4QfLJ4Lr4V+r/c +2G2STeJ6/ejul+WtMHnxlT0H5ZkdHxnlWf2tsPSTxUlzyjuHOllJA0vawG5G +7ahXE4l6CjLvJBXaQPK+L4c95SWTe8cf6x1vg6In5uukKE/dzblv4nynDRTu +Keh7UN56xvXpyDePNhh/hybfWSS+OV6yuftLG2h6PxaJpLwW6j8q9F9lG8xa +bTh4mvJcSuPqCZ3BNjiuxkHPp7xntkJmKI+3HfpmK1MGqfhWRkZrnVg7vFbJ +62mg+tsYHf81ItcOhTLOj19Rnnw031rIr9wOBv+pO7Mo/zmH3/8urd0OtJ8h +6+UnSXylJRC/37AdAjMT3cRHSPTtDwnWv9EOQf6LI2WUZwO9d72xeNAOqoF+ +MaqtJIbtKnF2e9kO+9uqOWxqKd/WXbz/KaAd1s1+Nr1RTs338aj595h2iJI7 +sEsqn8SsdW4XyO/tsOvfCebHZBKJn6t1+0rawSK2bUNjGIll5okHOf+0w+Ho +c6YtviRWLdFQlOhtB6/5qxrRTiS2n7EQO8HfAatL4nJfGJHYN7XIby7eASt9 +chihmiQyg97NPpXvACX3pa4uO0jk7MxvS9bpgPJeq1OhC9R5falfXXa+A/KD +mrRauhm4UqG3qONmB3Bd2/Gxp5yBsveWf1n1qgNsw+Y+mfoyUIPrmt3Dsg54 +0H/EYakIA02WVG9y/NMB46rt1ttH6Oi4/HDDs54OMPGe0NSl0TF9vdShlzyd +YKyyX9HpBR3lVJv436t3wuCaO7cGBmmooXE8J/BUJ7xoK3wkVEhDk2PZliEm +nfC1SddXOYiGAec//Ip80glkbpNnmAYNBezOBn/L6oSPiXc9519X4kbHgpPf +SzshNaXL2sGoEg8/38WR87sTsGchfMlm6n3hK2L+c7ITjk2OJpoXVOBgQuWO +KsUueL090khrqBwZf48UDMd1QaOiwzrN/8pwYOib3VhmFzhd0zMj/pQi/6SM +/FRJF1xZsXDHKrAU1bk4vOa6u8DvzelHV8VLMXV9nsFSmW4YlZA8P720BN+d +V+rfHNQN/m8jRCt+FaJR+cbl11//Ba6cHG7xwnxMov01SQj6C00qowuXhPKR +pyomcTL+L2zWqxV4ZJiHKb83676o+AuHHnm/1v+bg3zd217GLO2Byrm/jmbT +mZi+oDTX590DIr+jex2HUlFYSavPyr8XFIx5Lm98+h6v7+Pb9z2iFyLqee9u +P+mPOQdKXyx864XV9953TKu8QfPDxzb41PTCFimFx7/uuWCe3kmTFNE+eJo1 +fvE92MDt2wa14wF9ED+1nsfX/xMUfTYnHgb3Q3rPyrvqLWmwg5eT/PKlH8rr +t7185J8OgRYhLS3Z/bCyXOr6jHYGWKrUzB6p74fPVU5GeYnfQbRafe9ysQGo +u7RqMdA2G67xSn6JezMACk/tH56j/wCaRWZW06cBSA7TObbPDkG5Wr9UOHEA +ll4vmuUQIkAw9HW3XeUAiCSYDaxNJeCbCmv9YYFB4D21zODI+E/gsqx+2+Ay +CKbnXSaHDYrAstoqYpnfIMjsME46FVoEv1WWpELYIAj9SM+d6S2CL7zqjOgf +g7BGzDdH8mEx6IcmCtz7Nwin9eMkjbxKII/3mHi04BBMnB1ck0WWwCbLbrn6 +NUNwUunSoO7KUphVWXvkkMoQPLjDwRB4Xwrh1a+eCtoPQfjtjqeBvmUguH+j +10G3IUgXEv9jQi8Du1D8aPN2CAxR9djRJeVw1HI683fqECyLidry5Fk5MHmv +j0eMDIHP67A7O00qQH0/3FS9NQy/c3VrJMYqQdrTvVbm4TBcOvNWQ3M9DTha +yMMCL4che8GU7+lxGhDOZpJ1kcPgOvcp/r8wGkCZy6+7bcNwz/bMTAHQYb1E +xSGDkWE4o2pmDeZ0WLBYmaA6PwzKJeq6xGs6/BCJfCmwdgRehW6+VEHS4dD5 +ItUIwxH4wTtf3HaKAevjl8W/Mh+BSRETCVMrBizMnvvP2m4EjNe1Lza8ZsCP +z3+Zqv4j0Ks6kfkDGfCZud1ENnwEhrVV8zc1MOCZxoNKgZQR2JUhk/1yjAEH +e/hi6ugjwKsndWmrFAmSKqdW5TWPAPdBT4e7SiTMvf7gHDE4AhPyJ1xjjpLQ +3NQ2/Gp2BDyPny2rvkRC3vbNl6yXjMJYzovocSsSQpxsygxWj4Jez08nXicS +nvzK2qsmPwpRRHeRoA/lLftjy5dojYIc+6bdwFcqX6nf09GzozBqGN1bmEXl +W904UHd1FA589fzjXUTluyN7Ic92FNRpe9p0SCpf3p3iCOdRqG+nR4zVU/mE +03a/9hkFXdso0qODymf2L9T68yjAVinJVf0kXP52RMgwcRSizxfreIySoMrj +5aCWNwpeXOprmZMkSBjW9spWjkJZ7aVbmjOUP2MlDZY0jsL1UEFB9zkSGmeu +F4z2jQIt8Hp3JuW7HN3Enb9ZoxCjG9/9m/IbneGgZ8LNBMN96pzdVJzPWv/i +lyATJGSz97ct/P/7w8JczZVMoEnSAsqo8T4duzmeuYYJmipGCmFUPq97S7ds +lWHC+aGbIjemqPkHJ5t+3syEJ4qb7kgwKW8XnQ1YocgEOe3em/n/X88wi+a2 +jwnFSrJwqpOEE/+FcLMPMSGJZb2zqoGqL6gfsNBmQqLxaxf1KhK23eq2aT3J +hPCPmu5hxVS9/V7FnjFgwqKHfzAzm4RlOdtaiy4z4UG8o+yuRKr+nVWiKteZ +kPdd8vXVUBKGltrrfrVgwsdVkVovfKn9UFrzfP19qj/96J8gZ8rzxvlZfg5M +OGt8uiTMmtqfl1dGeZ4zIWgNR9RHY2p/6uMvD/oyYYn+zU+3lSk/Lj7o4Ahi +wiShkXSDOm8ZmzRv/BfOBNXFv+IK/CQw7FqtD6cygVXXUM1fw4Cm4K+ThtlM +cM/y27UxkwF9BY8eW/5kQvKpSu6lHxnAuWKV64dfTAgTGohUu8wAYZV2/sQG +JvQFpbS/VmWAhGmiV0EHE+5LR96NWcMApUSdgOExaj45q9v1q+lw49iT+CMr +x2DzpNaV8L10uGdzbIeRxBjkneRZ67eUDk4f/ku7KzsGQeFG6y630yDwb0pe +0O4x2G60WOvxkgYVLn/JUf0xkHK/9OxpcSXszNGbDn47BkvdjhRYi1SAWsda +x9TgMTi/KJzIrqHeNwL9iyWRVHt2yImnH8rhqqHrkvG0MQgVP37AdW05vBvP +lDxaOwZyMzumSsTLgK0gc2RSdBzWzOwSeNhVDDz6I6VL1o1Dt8vaxyOBxbDi +ce4JKblxUKV9Pux1shgUSg0Mj+8dB7cPPwnt9CIwvuZxO8xgHPQGtT4te1QI +BcETPicCxsF5e69waBMBRpOJdn8+jcNN00jdYg8CmCduGV2NHoer5ndvXdxP +wLqFZtlH6eNQd+R6e9YWhEdmJRmR1ePA2Wa9bL1nHuyQC2qaFZ4Aq+m+krvS +mRCUdEg+3n0CPGP7Tnx6FguK/DNLlXwmoPqL4spXS2KgxDSN+SNgAhZoAy6p +b6NgcvnmnNroCeh7nRM9ER0OevdXnOQomoBCZwudA+4fgEel+955jkkIrLJv +iN0qgzY/X//gfTwJxP3yGyZhsbhxtdXYbpdJiK1oiPq1Jx7/3D290ez1JHy/ +slfocMkXPCQp7pETNAl5PeFva3oTcenDKAPrnEl4osmvxSX8DWO24VD9v0n4 +3Gy/1HBdFl50jZDi45mCjuTdnHuaslCo8YX+nmVT8F68+5tIYDbauZ/I8pac +Ap7rW/rihXPxcGeDq8bBKTBcfHraZyQfmz9MSiQ8m4K2uFU3jbJ/ou/In5MN +L6fA4epxMQ/hAjyilevM5zMF+l2uQRzXCvDLuEuPWegUKF+75Zu6pBAfnhT5 +JkZMwbblzI7ik0W4klvhmBPnNFg+2qPdl1iCJUZCTxKWTFPvjZKy0akSfJzC +TGpYMQ0S6/T9BQ+WYrtxpqiS7DRUNEb53C0rxcQszfY+jWkIPyNpEVFThkfv +mj7Ud5sGlVnFt5bZFfhyeqfglOc0PFpjcTJnuAILn3F8+vB2GsofcUyKyVTi +IZ/wguaIabjwWLh+1K0SlVK6hG7+nIYlJY+D59VpeE8lPWxJ+TQY/tyzzsOK +hsmE256EqmmQffNvuTh1X1T4JWc01jYN6Juzf9swDaXHb0Y5LkzDMrm3MxKv +6WjioLJvPR8Ltsg3Kj9PpGMw15IKQogFUY9p8a1VdPxv1ZdR3nUs2CYWoHFP +lIHngh2ex21kwSXbMYFYJQb6bdAV093GgkNBYtq0swxcpjR0wFeVBesULzG6 +3jDweF4effcRFgx81uar/cJAd01vs7rjLHjkHP4mpZiBXAY7XkpcZMH0uke1 +CmwGqrcsrM6/woKVO3fQSkRIfGpOfjW9zQKLE/WvdDeRyLa3+RX1iAV5Ixt2 +LTtNovKC+nUdZxbc5rOO1r5G4v2XK1j97izoeyrMvGFP+UK487WXDwvMJJff +tXxJ4kjAN8mdH1hwvtf6pWEAidukXJN/fWbB0efrvmyMJvF27FkNuxgWZCpx +nvv9jcSYnRvr/ktiQWgAxxILJLE7c/JmdgYLZLu4LnRWkCirXjx7KZ8FW8cm +G1TrSDQte++9UMSCZdW0XQ8p/4ScviEdTqPWL+a97B3lo8Z65bQjtSzIztCR +8R8mcfUVfu2eJha0R0jvsp0g0aD/T/2rLhbozp3i30X5y982zmLrILWevg2P +f1Heq5p5tEAfZ4G1ONcNfcpvws+P+dnMssC561bm////TVdQYuMqLjaMSjHN +pqj4lf/A94wlbNB/ecxMnIpLJHKPXVjBhsxK9fw18yTyRHo2z65mg8/F3Ndz +MyQe3nrZ+pM0G2pSMztwivJn2jYu9c1sMLx9YvAak/Kz6vy7zp1suNoU87uv +n8TZQrr8i31sCL+/pFWvk8R9Jz7nyAMbTCPLtQIaSLSrvXuyQpsNxxxPXkaS +xG+Xod1Sjw2BAwIOFUWUx7pF7osYsmE20oEzK4vys1U77zdjNkjEbTZ9RXk7 +/qnLVpYlG2o7TFxqvEmMcIyzum/HhuZZxaGopyR+fEwmjzqyYXdR4sEbliR6 +2K9T6vNgg93+P2M52iQ+v6/54Lo/G46GLwad2k2io61FVnsQG7qVMO23JImW +VtlqDXFsqHykshVHGHjdov2ZQQob1i7bKy77m4HGt/l//spkw5DUYT+HPAbq +mRtoVZSwIcl7a7LISwYqGo+dzO1mw6qVXDx/lzFw86XVvvuG2ODqsuAvPERH +GSOoTptgg3phYMDeCjquNPA2TOCageNiuwKcXek4eWKL6SfpGXD/Nf9u2wAN +h46fDl+zeQaSXN/EX/tJw79HH3a93zkDki03dCI+0PC3ZvHNN4dm4MIV6wrV +wzTMUrti43R5BlaLBd9dQvkv5cCrb/+uzcDAKZFVMRcqMV4lefKhxQxsKKdb +GcpX4kel+Uc2DjMg7HVtmv2zAp9sC3K5EjgDtM3FLfaU/9Qlf/kfqZ2B3MwL +z4bEy1BFgl2LTTMw6flz06eGUty1WkpcrWsGHFtFc50+lqKsqFWw0vgMyL0r +3NO1phR5li2Jkls+C6HSYVlmIiVY9k89g//ELHRmLjug/KcQW1i+WpvOzYKB +yb7XRS8LcXyivU7z8iwY6kUbeO0tRMkh52kXy1k44vjnXJ1vAdo2E/vmvGZB +7T+bdfGHfqJEvnoOkz4LNp+eLoZP5qHlM3VsOPUPHr+7NmIjloorONXLv56d +g8XmJzsPXA2DlB1Ps+HSHGx7GH4moykcTl/Oia+5Ogf1F1RO+Z+LhDeZSh7/ +bOfgyTOH/IOaMbDs7hZdXd85uNGizRxZkwB8TSvpA7Q5UJMpOZFXngaz6X+r +tmjPQ+O8T2lY2g8I6pT9mX9yHjJb1T7suYigstws9YzBPBiEqxemLCI8tGj0 +e3x9HkJNxL/ERxIwKUPqlz+fB5HzlwpOdv+EkTdZtbdwHsytlsor6xSBd95U +0VwJ1d6ud+WlbxFsG9id4cuYh611pJN0QxFYaCW+z2qZh83Cqtc33yr+Xw1n +Hk3VGv7x4+zt7MpNNwehDCG5UabKDXmfkJSEKBUaFBUVN0IlIaTJ0E+pxC1j +IQrJ2Jv54JyzVZQKFQ2mRvN4fvuu9fv9+axnr3c9z/fZw/ez1n5f1DN5d/us +qWmk/mtsntmZOtR16FJb5t8z6ORzO6MroTyUHP9LthNmkHCRZdDhah7a9cxp +m/TGGVSnu2eNBdmAXixQfxGycwbtEjSn94U1oKq68qadp2bQPm8NtULfRhT8 +W3VObNgMOrJc9bnJg0ZkpHTBqu7iDIrOPCH98HMjyj+xrVY/cQY5vd1pZOPQ +hO6qf38qUT6D9l4ZSFZfzEcudo7T62pmUEqg9voaez6SCyo1DuTPIGt8w2tt +KB/Fvows/tQ+gwJOWkQXtvPRZtHAiMLnGTTI3fkyd5YAzdJyWGX/bQapTHou +O20gQCFhyvkV00z+WoLGuQgBMsmN+DkoLkItsqn+ZTkCNPamf8UySRGarfFw +BWb8pY9ecfZ1JRGiA5WLVBcK0d4PduneSIR0T+9j6ycJ0aI/nnSnbxChXR2q +C5NKhajNUFG13VaEzm/ckc57JUR2Mb3JVntFSF7O9byLBOPXy2w7gg+JUJbr +ofIqNRrxvjxe+NhHhELvn1D8bEQjMA27sThUhB75B+Tucmf8/OGeV04XREhG +7qN6TiCNiq9tkYmOE6GoH1aORRdp5FdZ6FBzU4TGImRCAxNppPtN4erEXRHi ++rCmf2Ux/l8utFk3S4QS3BSXqjK8cM/iq+TBfBHil33wmlVHowM+NjZJpSLU +FbpkfdpzGinfLrj0skqE+lr1jYbfMfxUL984u0mE1r979n7iE42uD56dBS9F +aAN3+nXhAI22Kn+x9H8nQh3a0S9UB2kkab05IqdbhJZYJVy2GKNRo39+dVe/ +COEHpc3yDD9Fpsix5YeYeHxhQArDV2bCYLCdEiGj0n3u//0/KQo6js3YLLAI +LYoWMHHH1fROVw4L3D0bBr2Z68vutU0HzmFBGFeYUjtJo5tPJRTjJVmwdHbQ +E+EojQJaTE3ypFhgmzHX+dLv//bX/ePcKMuCtIOmNZP9NDJgpZ/6rMCCnflW +hipMP/Nl226ylFlwW7JbfPwtjX5oSZQsVGPBu1aTmEiGv7KCevPUlrLA+Kvx +JJvhLw9BfYaWFgv2xusMA8O7i5Uykgx0WJClPT4FjN7tx8LjjQ1Y8Hl4IJlg +5nEDu10yN2TBvQd83wvMvBz+XBdmbcz0F12p8pKZZ+OjaW9ncyZ+c7S10J7R +h93usX8DC+jz4L7FhEbrHEpdvaxZYHDFtiN3CTP/IX/r0w4siJ7wUuQNCZHf ++m1m55xY4LwljQ57K0Q61w3WXHJm9PrX2XQWFqIMw58aiftZ4Ci/IDsgXIjc +ooSKqQdZ0NasOrTfXYgU3+RIZ3ux4H5GeozyeiGKP3WYXebLAj2vB69niwlR +WEVXx9tzLNA86jXc7ClAppKVLV3nWeC5pafe1UyAxnf/29R3iQXlK8bsa+WY +54XlUjLxPyxo/z65UKuKj3abt8YrpLEAUqO+hVJ8pBBfcEn1Hgtmh2fHSb9q +Qq2f4sKW5TD6wyvd2NQmtDlyi49RIQuUF8c6bjJuQkYN9da7alhQUJNlRO5u +RDK2pexbn1hw5VS8aehxHmr+98b43R4WCAptpO7p8tDln/4/7w+wYKh569H2 +b/WIfdWgs2SImRe/5u9A93r0syWn5A0pBpF/j9yv31iH+Lv+9ZFfIgYxl/qP +o95qtNnCb0G7phiYhNv/GEiuRoLlG58ma4uBrDlp9cOhGglZgxLqK8WA3+/D +nyqrQs0ZlpkrzMXAs1J8fnh4JWr5/a3DfJ8YNMfqbFgzWIHaL5pYH0sSA+rH +MQ+/eQXoW+mbJdUybNjdMfuJvXQcDlKrHnwlzwbZRpeD39fH4zmXcyr7FNmw +3X2HXpl/AtZ0PesqpcGGrt8Sxm6tSfiASP3avtVs8JnqdMhal47fmvuQLCc2 +/Imtl7h8fIgP5+x8wXVmg2OyafHjjEd4TNr8ztI9bHg8pm21yysfy36RMbE9 +yAb9ia2fDvwuwPZRZb7JAWzgr/M5kj5ShHl8TrfJDSbve6B54fNy7LTq50O7 +22z4ffljQeT5Cvwl6U3wgTts0PYka6tMnmLSO0fh8j02ZEsHHI9LxRjN37r1 +XTEb5oUWHvqgW4mLtiVVnnzDhq9lH8/9JajG659GxlzpYIOSlp2buWINbtHw +cb37kQ15p30no4/U4F+jZuO8XjY0eMU9yp1Vi7Vv9ejKTbBBZMt1LFldh1M7 +De4UKRDgaifbve8gD4+85ypFKBFQq8OlX6Xx8KaPg4kOqgSMRsMJ7488/Lu7 +IOHnXwRonTkeSuxowGa9BjHL1hBwI2Dc6oxRI77ex507bkLA3PTukFc+jbiv +f/BiPRDQ3+u13zyjEV/9XhB5wIoAjaRLpXaSTbhr0CA42YmAI2bVEdTLJrx6 +mDt1xJmADBfRgyYxPr44MnjSeA8BfjKs0Gs6fKw/XnCizYOA4gVzmgyi+Dh0 +xuColD8Bt9NHd/gsF+AWEbf/w0kC1mz+mzR0FGBNsaFDeWcIML+958LoSQFu +JgoPbI4g4MKtV5/2VgmwyuyVLpHxTN5JzzTfUoj95ki/dbxBQNqJ9Ffq7kLM +kxhyUrtNgKpeSOX5MCH2kSx0eJZKQOoPqzMKpUJcMy/+eXQmAUbGZ1ytWoRY +br6frWs2AWN/FOW6fRNizF1pPZFPwFS2i/ZOxt9KyUg38IoIUK7lPDZg/K+H +7JBlQikBi9JMDo4y/rh0QUuN+1MCNh9yv5C6i+EJ+UKzlVUEbJnK8jI8SmM3 +hfhn7DoCktawDuUH07hooZ/p8wYCnhVqdHFjaLxbaaXRsecEeFcu+DMqh/H3 +ytLFJq0EvAhPLr9ZQmPO4qFVEm8I6FQIbIuppfEu1ZaCN+0E/CgoHTvcTONc +tUK9ex8IOCvwKF/6lsbsJfF5/p8IMLjmyecxPLFdw2/5+h4CJAfT3m3uo3HW +Usds7gAB7UY9GQUMj8xorvyr6wcBKeFTQ1MMr2xdJp35cJAAqZy71zUnGH7T +GlI/O0rAx5FYj9UM70xot6TYTBLwc1/wRg2Gh7asKFRZJCLA5pr8ijEmTtGJ +T+5jkzASLDk3h4lHdP0WlXBIcIwX713H8NYmfcdb5+eQcKY0VVjC8FiSwUq5 +7ZIk6LZeaOEyvCb0xkfnS5Fw50PQK0+G51g5m6r5MiSkdK7el8fwnl5Pq1yU +PAlHUofTPzI86Ka+75i5IgkFslrvxd7TOH7vQPWMCglJa0/b/fmKxrW3A+RL +1UmoGC6xnMtn6mlje5/QJEFqX8+C8Wc01pSJrtHVJmEloa/WUsjoay+vMKBD +wteY3ubkTBpfupLmnWlAQotnxNWdNxl+a9CpdTMkobctsYu8yPCweJmCkjEJ +1t2dFndP0ljFzNLnjSkJfwwssNQ5RGP74Oe18WYkNA6pBuVto3HhyFcfiU0k +BD50lbiwnMZf9H3r6mxIuFXhW9G9gMYLvGcWhtmTsGtg0XYDMRqf+ipdP7aD +BK7CE9vCZiHOVruzqNDlv/7A/muRELfv0TruvZeENc+DT0ndFmLUtk7xy0ES +YjS7vzjuZ+5/acHxu14kWBj5zj+2XohT7HbwXLxJqJ8K0j+nIcRkwzHfl/4k +bLGYfT79swA3liQ2PIsgYfbUZGavkwBPDWsoB10gIST1l7+YvgAv18/3M7xC +wvXdTqeUJAQ4NounnBtPgpq/2J6jpXy8LXH4RGIqs9705KqIuXwc+TqkaXsm +CRfVnYlv75twMfePxVLZJARQzq7uj5qwwmVVflQ+CbevzZq5Yt+EPwTZqvpX +MvFwdtJAZCOWKnkboFdLgu/pCTPO1kZsPuwuGOCRsIeaEq5d1IgzjgYF7m8m +ITT13tu5uQ3Ya/d9od17EjZZJSp71DPvR0Sc1ppm6l++7K/8F3V49WTKqKGY +OGxLDu7tv1iH/YvM/CzExeH7Q7vidWZ1eFg77KjrXHH4mOIibpNbi4fkxfbG +KIqDZN5098qgGoa3ZiwG14rDpb6QgPFflfhb5oRkWbA4iPvsOs0rLsaf5v1O +2cTiwNW2Ws8NtstR7/4oej7JgY4XaSuK4w6j70+UptooDtS0eu8XZASi0T3W +2w7O44Dnmhz9Tp0oNOdhGhWuxAEtPmF943sC0rVzOlJhwoH8r3VSo0WZ6Exs ++Srdkxx4qPq7ahU8QWGftrqNBnEgvdBAr/znExT5d2/00xAOKCfNfe19pxjF +fpDp2RzFgZbzaumW0yUoTdf71uEEDoRr64zPySlHjc2LRSmPOfBd/ErywYFn +iFYv1vIs4UDIC8+ufBPmex64ZYdeBQfkjz5287hciTpUTj/CNRxg+49qTP5V +hX76tOxvf8mBI7w6+1jXaiQ7/zxP5jcH5EJdQlXSalGModo/NiMcKNKpaar4 +VYtm7cbyERMceKLMcfA0rUOTWaOeQ2wKNN1Sp7tb6tAHi0NzX3IpKNp/zpk1 +Uo92epFFc+QoULmb3VFhzEMv4u7sNltEQarB7rP/hPBQTWdb3iN1CsYfvXPP +4zSg+4Ebt8auomDzWNKy1ZxGpPrv54n6NUzeI6rW0bwR3a4NTRWtpSC02cbY +4WwjipYqHTpmSUFK6dipz4ON6HjOsgQbJwrewz/7Fegm1P+iDkU4U/BzUOrG +bzYfHRh36ynfQ0GWx/nAhFV85GSZuEb7EAVLy28lmibwkckHifY5Jymonqf0 +jWctQI8598LNzlAQhg5k8k8I0IrlFstPhVLgnpireSVZgBafCgruvUDBl1tN +cWsHBOjWHbmli6MpOGgAS5bNFyLp+kJ6x1UKXhxe/Jq/Uog40t9UeLco8Irw +j1oRKERnjS40iJIpeL0oNa0vQYjG9i45bphKQba7QM6pSIj6H7hWZ2RTEO+2 +54PxDyE60DLu1ZlHgbJzXPWj2TTqnLgmLVtIQcwWH6WXqjRq3iB0jyinIOHE +xASX8eMbj3lKVjyj4OQ/y0P1PGhUFc95MlTD1F+sHzVykkYmZSl7tBsoaFVT +M3S7TKPHH01nHRBQwA35VO2bRKMVs949THxOwdVV+r7LHjD8tSJg58tWZn3b +9BsRZQw/bOOyJd5SkP6+7Ho4j0a3TudlmXVSkFvxvlOjhUbcFGuHU10UnEg7 +8surk0aXeV8nH32hoOf+Y1eHrzQS/3EurbeP0Ys7p6r9O42CZVRsFv+gIC6i +pIkaptGocfnwjkEKzsQsMGwZp5GP247k2FEK9OKC6XXTNOqLGrLkTVKwcdre +247hrf87vxH+//zG/wWsgzki + "]]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[1, 4], 0}, {0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-1, 4], 0}, {-0.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[3, 4], 0}, {0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-3, 4], 0}, {-0.75, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[5, 4], 0}, {1.25, 0}], 0.05]}}, { + {RGBColor[0, 1., 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.]}, + {RGBColor[0, 0.9935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0005]}, + {RGBColor[0, 0.987, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.001]}, + {RGBColor[0, 0.9805, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0015]}, + {RGBColor[0, 0.974, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.002]}, + {RGBColor[0, 0.9675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0025000000000000005`]}, + {RGBColor[0, 0.961, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.003]}, + {RGBColor[0, 0.9545, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0035000000000000005`]}, + {RGBColor[0, 0.948, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.004]}, + {RGBColor[0, 0.9415, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0045]}, + {RGBColor[0, 0.935, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.005000000000000001]}, + {RGBColor[0, 0.9285, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.0055000000000000005`]}, + {RGBColor[0, 0.922, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.006]}, + {RGBColor[0, 0.9155, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.006500000000000001]}, + {RGBColor[0, 0.909, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.007000000000000001]}, + {RGBColor[0, 0.9025, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0075]}, + {RGBColor[0, 0.896, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.008]}, + {RGBColor[0, 0.8895, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0085]}, + {RGBColor[0, 0.883, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.009]}, + {RGBColor[0, 0.8765, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.009500000000000001]}, + {RGBColor[0, 0.87, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.010000000000000002`]}, + {RGBColor[0, 0.8634999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0105]}, + {RGBColor[0, 0.857, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011000000000000001`]}, + {RGBColor[0, 0.8505, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.011500000000000002`]}, + {RGBColor[0, 0.844, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.012]}, + {RGBColor[0, 0.8375, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0125]}, + {RGBColor[0, 0.831, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013000000000000001`]}, + {RGBColor[0, 0.8245, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.013500000000000002`]}, + {RGBColor[0, 0.818, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014000000000000002`]}, + {RGBColor[0, 0.8115, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.014499999999999999`]}, + {RGBColor[0, 0.8049999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.015]}, + {RGBColor[0, 0.7985, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0155]}, + {RGBColor[0, 0.792, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.016]}, + {RGBColor[0, 0.7855, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0165]}, + {RGBColor[0, 0.7789999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.017]}, + {RGBColor[0, 0.7725, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0175]}, + {RGBColor[0, 0.766, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.018]}, + {RGBColor[0, 0.7595000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0185]}, + {RGBColor[0, 0.753, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019000000000000003`]}, + {RGBColor[0, 0.7464999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.019500000000000003`]}, + {RGBColor[0, 0.74, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020000000000000004`]}, + {RGBColor[0, 0.7335, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.020500000000000004`]}, + {RGBColor[0, 0.727, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.021]}, + {RGBColor[0, 0.7204999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.021500000000000002`]}, + {RGBColor[0, 0.714, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022000000000000002`]}, + {RGBColor[0, 0.7075, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.022500000000000003`]}, + {RGBColor[0, 0.701, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023000000000000003`]}, + {RGBColor[0, 0.6944999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.023500000000000004`]}, + {RGBColor[0, 0.688, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.024]}, + {RGBColor[0, 0.6815, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0245]}, + {RGBColor[0, 0.675, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.025]}, + {RGBColor[0, 0.6685, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.025500000000000002`]}, + {RGBColor[0, 0.6619999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026000000000000002`]}, + {RGBColor[0, 0.6555, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.026500000000000003`]}, + {RGBColor[0, 0.649, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027000000000000003`]}, + {RGBColor[0, 0.6425, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.027500000000000004`]}, + {RGBColor[0, 0.6359999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028000000000000004`]}, + {RGBColor[0, 0.6295, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028500000000000004`]}, + {RGBColor[0, 0.623, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.028999999999999998`]}, + {RGBColor[0, 0.6165, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0295]}, + {RGBColor[0, 0.61, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.03]}, + {RGBColor[0, 0.6034999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0305]}, + {RGBColor[0, 0.597, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.031]}, + {RGBColor[0, 0.5905, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0315]}, + {RGBColor[0, 0.584, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.032]}, + {RGBColor[0, 0.5774999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0325]}, + {RGBColor[0, 0.571, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.033]}, + {RGBColor[0, 0.5645, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0335]}, + {RGBColor[0, 0.5579999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.034]}, + {RGBColor[0, 0.5514999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0345]}, + {RGBColor[0, 0.5449999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.035]}, + {RGBColor[0, 0.5385, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0355]}, + {RGBColor[0, 0.532, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.036]}, + {RGBColor[0, 0.5255000000000001, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0365]}, + {RGBColor[0, 0.519, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.037]}, + {RGBColor[0, 0.5125, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.037500000000000006`]}, + {RGBColor[0, 0.506, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038000000000000006`]}, + {RGBColor[0, 0.49949999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.038500000000000006`]}, + {RGBColor[0, 0.493, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03900000000000001]}, + {RGBColor[0, 0.48649999999999993`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.03950000000000001]}, + {RGBColor[0, 0.48, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04000000000000001]}, + {RGBColor[0, 0.4734999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04050000000000001]}, + {RGBColor[0, 0.46699999999999997`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04100000000000001]}, + {RGBColor[0, 0.4604999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04150000000000001]}, + {RGBColor[0, 0.45399999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.042]}, + {RGBColor[0, 0.4475, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0425]}, + {RGBColor[0, 0.44099999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043000000000000003`]}, + {RGBColor[0, 0.4345, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.043500000000000004`]}, + {RGBColor[0, 0.42799999999999994`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044000000000000004`]}, + {RGBColor[0, 0.4215, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.044500000000000005`]}, + {RGBColor[0, 0.4149999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045000000000000005`]}, + {RGBColor[0, 0.4085, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.045500000000000006`]}, + {RGBColor[0, 0.4019999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.046000000000000006`]}, + {RGBColor[0, 0.39549999999999996`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04650000000000001]}, + {RGBColor[0, 0.3889999999999999, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04700000000000001]}, + {RGBColor[0, 0.38249999999999995`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], + 0.04750000000000001]}, + {RGBColor[0, 0.376, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.048]}, + {RGBColor[0, 0.36950000000000005`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0485]}, + {RGBColor[0, 0.363, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.049]}, + {RGBColor[0, 0.35650000000000004`, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.0495]}, + {RGBColor[0, 0.35, 0], + CircleBox[NCache[{Rational[-5, 4], 0}, {-1.25, 0}], 0.05]}}}, {{{ + 106.66666666666666`, 0.}, {0., 106.66666666666667`}}, {144., + 29.86666666666667}}], + Frame->False, + ImageSize->{288., 59.73333333333334}, + PlotRange->{{0., 288.}, {0., 59.73333333333334}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], + RectangleBox[{-25.2, -30.24}, {295.2, 126.66666666666669`}]}, InsetBox[ + GraphicsBox[{InsetBox[ + FrameBox[ + StyleBox[ + StyleBox[ + TagBox[ + TemplateBox[{"\"(\"","\"b\"","\")\""}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->15, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + StripOnInput->False, + ShowContents->False], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {14., 45.73333333333334}, {0, 0}, Automatic, { + 1, 0}], InsetBox[ + FrameBox[ + StyleBox[ + TagBox[ + TemplateBox[{"\"(\"","\"b\"","\")\""}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->15, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {14., 45.73333333333334}, {0, 0}, Automatic, { + 1, 0}]}, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, + 126.66666666666669`}}], {0, 0}, {0, 0}]}, { + {FaceForm[None], + RectangleBox[{-25.2, -30.24}, {295.2, 126.66666666666669`}]}, InsetBox[ + GraphicsBox[{ + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 0.}, {0., 59.73333333333334}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{1.304, 29.86666666666667}, {0., 29.86666666666667}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{288., 0.}, {288., 59.73333333333334}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{286.696, 29.86666666666667}, {288., + 29.86666666666667}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{0., 0.}, {288., 0.}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], + LineBox[{{0., 59.73333333333334}, {288., 59.73333333333334}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}], LineBox[{{}, {}}]}, + {GrayLevel[0], AbsoluteThickness[1], Dashing[{}], CapForm[None], + JoinForm[{"Miter", 3.25}]}, InsetBox[ + FrameBox[ + StyleBox[ + StyleBox[ + TagBox["\<\"u=0\"\>", + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->12.75, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + StripOnInput->False, + ShowContents->False], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {-1., 29.86666666666667}, {1, 0}, Automatic, { + 1, 0}], InsetBox[ + FrameBox[ + StyleBox[ + TagBox["\<\"u=0\"\>", + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->12.75, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {-1., 29.86666666666667}, {1, 0}, Automatic, { + 1, 0}]}, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, + 126.66666666666669`}}], {0, 0}, {0, 0}]}, InsetBox[ + FrameBox[ + StyleBox[ + StyleBox[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[GridBox[{ + { + GraphicsBox[ + {RGBColor[1, 0, 0], AbsoluteThickness[1], AbsoluteDashing[ + 3], CapForm[None], JoinForm[{"Miter", 3.25}], + LineBox[{{-9, 0}, {9, 0}}]}, + ImageSize->{18, 4.5}, + PlotRange->{{-9, 9}, {-2.25, 2.25}}], + StyleBox[ + TagBox[ + TemplateBox[{SubscriptBox[ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"0\""]}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[1, 8]}}}], + "Grid"], + TagBox[GridBox[{ + { + GraphicsBox[ + {RGBColor[0, 0, 1], AbsoluteThickness[1], AbsoluteDashing[ + 3], CapForm[None], JoinForm[{"Miter", 3.25}], + LineBox[{{-9, 0}, {9, 0}}]}, + ImageSize->{18, 4.5}, + PlotRange->{{-9, 9}, {-2.25, 2.25}}], + StyleBox[ + TagBox[ + TemplateBox[{SubscriptBox[ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"1\""]}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[1, 8]}}}], + "Grid"], + TagBox[GridBox[{ + { + GraphicsBox[ + {RGBColor[1, 0.5, 0], AbsoluteThickness[2.5], Dashing[{}], + CapForm[None], JoinForm[{"Miter", 3.25}], + LineBox[{{-9, 0}, {9, 0}}]}, + ImageSize->{18, 4.5}, + PlotRange->{{-9, 9}, {-2.25, 2.25}}], + StyleBox[ + TagBox[ + TemplateBox[{TemplateBox[{ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"1\"", "\"*\""}, + "Subsuperscript", SyntaxForm -> SubsuperscriptBox], + SubscriptBox[ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"0\""]}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[1, 8]}}}], + "Grid"]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[5, 8]}}, "Rows" -> {{ + Rational[1, 8]}}}], + "Grid"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + StripOnInput->False, + ShowContents->False], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {53.28, -2.3893333333333335`}, {-1, 1}, + Automatic, {1, 0}], InsetBox[ + FrameBox[ + StyleBox[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[GridBox[{ + { + GraphicsBox[ + {RGBColor[1, 0, 0], AbsoluteThickness[1], AbsoluteDashing[3], + CapForm[None], JoinForm[{"Miter", 3.25}], + LineBox[{{-9, 0}, {9, 0}}]}, + ImageSize->{18, 4.5}, + PlotRange->{{-9, 9}, {-2.25, 2.25}}], + StyleBox[ + TagBox[ + TemplateBox[{SubscriptBox[ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"0\""]}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + + + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[1, 8]}}}], + "Grid"], + TagBox[GridBox[{ + { + GraphicsBox[ + {RGBColor[0, 0, 1], AbsoluteThickness[1], AbsoluteDashing[3], + CapForm[None], JoinForm[{"Miter", 3.25}], + LineBox[{{-9, 0}, {9, 0}}]}, + ImageSize->{18, 4.5}, + PlotRange->{{-9, 9}, {-2.25, 2.25}}], + StyleBox[ + TagBox[ + TemplateBox[{SubscriptBox[ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"1\""]}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + + + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[1, 8]}}}], + "Grid"], + TagBox[GridBox[{ + { + GraphicsBox[ + {RGBColor[1, 0.5, 0], AbsoluteThickness[2.5], Dashing[{}], + CapForm[None], JoinForm[{"Miter", 3.25}], + LineBox[{{-9, 0}, {9, 0}}]}, + ImageSize->{18, 4.5}, + PlotRange->{{-9, 9}, {-2.25, 2.25}}], + StyleBox[ + TagBox[ + TemplateBox[{TemplateBox[{ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"1\"", "\"*\""}, + "Subsuperscript", SyntaxForm -> SubsuperscriptBox], + SubscriptBox[ + TagBox[ + StyleBox["\"u\"", FontSlant -> "Italic"], + StyleForm[#, FontSlant -> "Italic"]& ], "\"0\""]}, + "RowDefault"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + + + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[1, 8]}}}], + "Grid"]} + }, + AutoDelete->False, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Center}}}, + GridBoxItemSize->{ + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings->{"Columns" -> {{ + Rational[5, 8]}}, "Rows" -> {{ + Rational[1, 8]}}}], + "Grid"], + DisplayForm], + StripOnInput->False, + ShowAutoStyles->False, + SingleLetterItalics->False, + LineColor->GrayLevel[0], + FrontFaceColor->GrayLevel[0], + BackFaceColor->GrayLevel[0], + GraphicsColor->GrayLevel[0], + FontFamily->"Times", + FontSize->16, + FontWeight->Plain, + FontSlant->Plain, + FontTracking->Plain, + FontColor->GrayLevel[0]], + Background->None, + ContentPadding->False, + FrameMargins->{{0, 0}, {0, 0}}, + FrameStyle->None, + RoundingRadius->{0, 0}, + StripOnInput->False], {53.28, -2.3893333333333335`}, {-1, 1}, + Automatic, {1, 0}]}, {}}, + AspectRatio->0.48972118185601343`, + Background->None, + DisplayFunction->Identity, + Frame->False, + ImageSize->{320.4, 156.9066666666667}, + PlotRange->{{-25.2, 295.2}, {-30.24, 126.66666666666669`}}]], "Output", + CellChangeTimes->{{3.666358718213048*^9, 3.666358768158291*^9}, { + 3.666358810452011*^9, 3.666358825360564*^9}, 3.6663588973591547`*^9, { + 3.666358934318409*^9, 3.6663589656011744`*^9}, {3.666359052187414*^9, + 3.666359121870716*^9}, {3.666359168661285*^9, 3.666359200878593*^9}, { + 3.6663592695086613`*^9, 3.6663592763079033`*^9}, {3.666359353927099*^9, + 3.666359461047533*^9}, {3.6663595032485533`*^9, 3.666359561983602*^9}, { + 3.666359677598049*^9, 3.6663597814840937`*^9}, {3.666359842632576*^9, + 3.666359910068149*^9}, {3.666360082359399*^9, 3.666360109990715*^9}, { + 3.666360807594933*^9, 3.666360909079568*^9}, {3.666360944411613*^9, + 3.6663609648345547`*^9}, {3.666360995393683*^9, 3.6663610374179688`*^9}, + 3.66642821440382*^9, 3.66730577195452*^9, {3.667305841206977*^9, + 3.667305876023591*^9}, {3.6673059725071907`*^9, 3.667306052964779*^9}, + 3.6694686732064238`*^9, {3.669468733820057*^9, 3.6694688110239067`*^9}, + 3.669469025815393*^9, {3.669469073140366*^9, 3.669469108438883*^9}, { + 3.669469209584367*^9, 3.669469218871655*^9}, {3.66946927017406*^9, + 3.669469291119177*^9}, 3.6774163689105253`*^9, {3.67741645300871*^9, + 3.67741650887309*^9}, + 3.677416577110878*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJzVfQd0VcXz/4NUeujSQVAEBBTsBbH3XlBRASkiKCpFQEU6giBFUBBpooAC +0qSLdKR3kNASShICoaSQnrz5zWd3Z+99IUBe4Ps/53/PeZC3797d2dnZ2en3 ++VZd27f9uFXXD1u3qv5k51aftv+wdZfqT3zSmZsCCng8BZp6PJ6J1T34m/hP +84+6HsY/5stV/j6k/gvhfzIodvFY6tOmIRUPLk0PdBxIE9acpUz+tYW+9Yj6 +L4DSjw6n+uXvpukxWZ5WOX6KGEkN+KffT2V5Sqq2YP4nmxJ3jqG2r7eiTp+0 +pjdaDaV/L2Q/o5/scuW7GuQBvAaXHZyfS95N3epUo9eWnqVsbzyta12Tan2w +kRK95HnaDcGVb22Yy9Rvu8Kwybs+ohrlHqKFcV6F7Pg1z1OFym/TxsRLhr3S +rQ1zGeJG1VaYyJtIW7+4jyqGVaLbn+lEv+xNYhSm0H9fNabSZWrTUz3nU1Q6 +BebSRaB/XRRUt4eqJTr1+91UusbHtDtZU1paeF+qU/o2+iEyw8yrc97uvvzU +ivB9h+ibeoWocP2hFB53kJYM+5QGrTlGG5pVoNCq79PK1cOp9Tc7KMmLHi43 +vzL+9GOudDoyrD6VuqUPhafqlozI0XRbqZup5/5UM8F2+cXeFTuvce3LatHn +jaOFD5ek0JpdaG8KqS63jfyMhg67m8KK30VTo5Lo0C/DaGu810Hf0RGXoi/v +/VwFfTdRjxzou56Lo3qvcZ1ox24vZjiRo2+jIkVupx+PZajhvBf30vBmT1OF +QmXo6eXniCHTqxukbj+zYgIN/PAeKhmWY5v50xUIJctsnE6XbJwxdpu9pP7j +ITKZBf79t/6sWlXQr+bgfK/0FUEsYkbzHYwK+tUcfC3U7FrQoqaN0uKJ+njw +8ZRQ/3LbNyWEuDwajEKUsrcL1QotSU3nneGNhyubzi5+jW4IDKIq72+lJBLC +CSRv+jmK3LmK5k7/kw4le4P87iJ39n+D70lhl/riRaLHHtOfF18s6FdzsH/E +mBfwZJl9B7LrmbdmP+GyfM/Fr/xdYUpYT29UCKYKzTZQgvzKh3/nmiEUqrmL +6TNv9wqutABRnV43AsT6S2WND/JBIVfq9kY/+rsSq7IozEojWj8YH6CQ/+W2 +jSMuRWH2aZr7UBiF1uqqN6W6UvmUqk2hRe+giScyHRTm4V49V9CCl5J2/Ujt +32xLnbu0o7fafEeb4kVWFOzlfVEu22NNv7u6ZLfXlI3GB9Phb2+lwkUa0ujI +DKHzlD2dqWZoKXp80VkQbhG/7n4lx4TzgMJb/bi3jrqXQcpOoO3ff0TP3VyM +AgqEUZM5pw358JW0hd6vEkqV3tlEiWaL+vuMzzTyOvd6ft1dV6bNR1Ly6Qg6 +GJ1KVmLgvzISY+jokbNM864dkHaYRjZrT/MPLKfPXulHuy7qfZHXfsy02uUD +I3Xz8cydAraXxcARj1HV2lXp4W93KRGmpQalvR/Q3+rHvXeoe6F+ZVLUr4/T +7U1eoAdq3U0vPXYHNRl+hFfoEu2QLm6nto1fpQ0JJNqh6tgPnTQvf1cwwy1e +vJheffVVev311/l3/req+jOAevToQenp6ZaYXM/UqVOHhg0bRjNnzuRn+N+q +6s8AuvHGG2nPnj25PVO/fn37k4Kjai4/XOGZ1wTr8SeI/vuTRZyvif5gShrD +m3HRh5rLnliPFfC8L6g8z0hd3o1o0gOg3b/aoe13Fgfmt8Jvnjf8A0GTbTEe +ZgPRxPvlrCQaxKx6ZHWigbzHR7Eg3S9Qt/fl4Ra0YeZx3vOugJTNGN05iWjc +7QCJz1i+t18AvvOHVeL+IQXl6J1wL9Ge33hC2Z5X/YP0JSG7+OOMpFc1NN9V +JPrlEaKTGxSS7PGYycrAzslE39fUkGM2G4aqe95W9/AhsGc6Qxak+5nCFLTr +F6KUs4Hyc1IM0bafGCn36Vt+rE90ZPkr/gH9ovqXB9n3B9Hgklr0QK88/0Ly +WwKv/px3eJQCvKoP8gSPeZrJb1npGt2A4NuyRNvHG6bLvx1ZRvRDXf0bkJCV +ZpCUZ/Cet8PwEb+gte5qGp+sSadAE/rho8uJhpYjGlKa6Nia1+WRpFNEPzVm +9PLf/w5TMyoqv2WwPDfhHj0jrDgTy4v+QfacdIWVxCoCstW91QqWkIcBAobp +z8u1f+ar0nxmH9GIqhpfx9eGSfPhJbwE/G30zUTnDr/gHzzPyg2Y2q9PaspZ +9lkpaQYCsQsx4wVtX5bmmO0abyNrgG7t3XH/EQ2vosk37sDz/oHyjB2TaeOX +R/X0Dy0sI83Yjdi5AGX3ry9arOzXyzjmFqLEaHv3+aOMrGoMSiVg5Tn/QHna +3sCHxZ/NNShHlpWTZm8W0ey3dHPEP89Lc/QWvRG+r8WgRJVzgzK8sm5Ojns2 +P6AwA1jRQ099z2+eG3ww9YgeNHa3XUvoBph3X2ZPx9fZu0/v0YSi9lT6M3mA +4+Zq9qenBI4dEzXRrujhqegecGwDTZkXYy32gKZfn9C89vjaitJDxD8ac3Pe +9Vgg6t1yWSDKF6Q9K2eqb0/KDTg80MUsHAveStJ87jDDUEbztqx0C/Lfn2vU +7Z/lqSxtu6boaWwb50wtM4XqVyoEQIyI5ABRMZT29OC9l57keUJGS47T1P4j +SxkZyVWklyNL9WhLPzXwctvBBbptVW+PnKU0n/nSgFCiUzuc+5hd1i9fIFcI +6txEezqFKqw97ibPac/qYyDuQDU73+56bgfmOrfidAGjnvo41qWqNGck65UD +babF27u3jlU91K9VEbD4gBKoKWbGV3qMXVP0eoXQ1q1bIY5Q69at6eOPP6b2 +7dtTu3bt6NSpUx4xbcfFxdGAAQPUb8888wx9+OGH6t5du3Z5RN2l9UN013um +earbzc8S2uQmeqcnndLnYShlZmbStGnTqGPHjvTCCy+oodHlb7/9RllZWQ1c +kHXu3Jmee+45+uijj6hDhw7UtWtXio6OtgqPItYpTfVOTYy2A58NZ/TymTET +Qo1XDuLY2Fhq2bIlNW/e3Pb4yiuvYCQz11AlkAEQ/P7ss88qIDHXP/74g7Kz +s3VXjNrTe5kOCqkRzF70XfvCzhYFJ8Zmij+GX+j8+fMKk0OHDqXk5GSxCP37 +779qoF9++cUjCobX66VevXrR22+/TceOHRME8lM0aNAgBftFWCtwndqpT7+F +7W80t6mjXKjHCNCzZs2i9957j5YuXSort2jRInrxxRfpn3/+sQNfuHCBOnXq +RCNGjHDDyLco4pg6dapRVfiX1X31LolcaZR9bts7XRPDplH2vvHjx9Mnn3xC +R48etct39uxZ+vbbb9UyJyYm1jO3/v3339SiRQv8b24tolAxd+5cevzxx2nv +3r16zuCkYxuySMhHcuqF3Bci1FmIlHNEwyoo+Soy4ii98cYbdPLkyRAz6u+/ +/65EciZBzy2mLSMjQ02YZXiPvi+Ytm/frh6NPhGphcrvb8KOrGl+5g2g584S +Hrps06YNpaSkBJsek5KSFE0tW7bMKLkBtHPnTnr66acBjBklSC0UqD07aqsW +c5kx1RLiM0woI3oXtW3blv766y+PzCIyMpLefPNNtUuk/zlz5tBbb72F2Xg0 +HIUUnaP/efPmaYETx07UJoXWXPEY4j5zWH5ZrFZ9eqc7KT4+3oiPmkJAOLxc +nptNGyNUEfyWLVvMfYF4hhZ2vk1P7eTGm4RwZr9J2X0Dafp3XWyXWPmvvvqK +Zs+e7antmiXIOCYmxna59p+ldKZXmJZCM1NqCS9IT1QC2PEvy9CmDWulV+xC +QwC2V956SuvSGNJt0/q+q5fz57ssKV/28PXFEea4oF1FfV6c2WdE5QBasWIF +ff311+qbTLxLly60ceNG19CBwIvCz7xOt6Kvm0zzmmXzKL5PCa0DZGdIr927 +d1fYx7dapg0QAE28he3otOQT8jKKx/X90K7Q2M9f15Oc/KC978yZMwpBCQkJ +FkrmGmopfKCEGMH4jf66PG1ev/KqOHL2I0jw3XffpZjjh/VR9lMjbGkBAFz4 +119/Vd9qmrZx48bR/PnzXQAEayEYj/NejDoeQa1atQLN1DSb5cCBA4rRK+IG +ta0dYOcIysTtIIKarjZsebT5KDfgcWsH0vTp0xX/k83Yp08fTTQ/1NP9n9pp +++c+1GHDB4ftHzMHT8AOKWwwojd0IcqO3at4/YkTJ9wb8TL8DDS0aZPesnTy +Xz36yl5FXCTFW059q2Ha1q1bR3379lXfCgv+lnUWElU9MWeiIUOG3GgomnmX +oiFjqdDqPqQ4loBknkwjCo9gnXIG9O/fX6AzSxUCQUxrH9DDs7UJHbyfGaBH +xtu8ebPsDr200JCg2mVn2vEmTJhAAwcO9JkaaB0HokPrhZx12zTS7sh33nlH +rXGuTE7T7U8//YTT2VHgecuoKUdvVdxoXfg66jC5A+2I2OFx8/VHH31UDV89 +x/YDWoLM4uV4Xk8zarNevPVD5KTt16+f5Qe6u6L02Wef0aFDh8hewCa0JYPN +HF0LZJCjevfu7eoqgJYsWUI//PCDkPflIVvSSUsVp3bKxgYdPPbYY5Sammq7 +g7gAIZJ/M0wyBDqMxj0LhjmRJocVhBghUekLswwPD78yaDj4ceiDLrxZYngF +wphyc902AVS3bl166aWX1MYTNEOS9rJ6WqFVEA/meQtWofv63icItvcBIMgG ++FbNtH3wwQfqHHLfB0ArdKygegqU/toXxukBQO19EIFxSrP0ZvtbuHChojx3 +fyBgLyOxQttiV4Tvm2++UXsb30RVOXfunJKiMN/AK8HXpoC29bn6g4SVc74Q +0Y8cOeJzn3dRB6rQooBvf7nAl5aWpjYnMxPbHw6T0aNHm7W7Cnyxu336++67 +78QUKhuYW+8PC6ZyD7ej0UdSjcEomDJOLaLe775G73/Smdq/9QZ9MuUAJXtJ +OipdurQ6j53OC4NbU4G3PRiePO/xpy1/Opj/39Xtge8GBpmHMIcNGzaob6JO +gkF98cUXuXRb4CrdBki3+/btU/Kyu1ssKRQYZ0nzDK1gGKwPLJD5laUUqB0s +L+YDWosEKDOrVq3ygRYi7JQpU64Ft0CC0KEbCb50nWdoBQm4vUSJEjnIJyy4 +Ar25OUl9F27nTY2mg/v2YkPobcGqyN69/9HR+EyyV8YJmvhwear50Sa4PCk9 +4nu6q2wd6r4r2RJspUqVrDgkKk2pD0ppgNvwpzt/BvLnW/4M4E83/ryvAW86 +sKnHDTkogDeUtYoAIZAonI3kX9+C7OHDh9PKlSvVN+kbmx5STH77FrhxbnXr +1s2n7wULFlj6uJa+cSKBsYOZSt8Q7yGRXCtOwGiErqVvqG/XAyc33XRTThGZ +W+8Mq0hv56DCizvbU43QAAoICPDof4vyv2F0z7RoyjJEqOINilehVluTDFVG +0PcNS1Dl9zbDR5ebXK7bilJaRpqzcwD8SP5M5s808/9w/nThzztqEoKb3bt3 +W8GikmmDNHfs2DEXnee7e3AqSE8QNKT7H3/8UQncDsry3T0EBdhc8E2MnBDY +cKxfh+63bdumJHA3ciDaREREXC/kQHeCuCndg1bHjBlzLdALaeaivXHr3SUd +0tTelVC6sPIJKl2sMU04IQwxgTa8WI6KNhxFERlXILtiNGrpKA3bB/wZxJ8p +/FnOn/X8WcKfSfzp5+ydmAsxdv5QYqAp4JsIeDjHR40a5QL62saAEAQ53D0G +NB0QJQ6foGsYQxANQRAaIvi5UCHIJCoq6rrNA9oUlAD3PFavXm0VgOsxBrRs +0chkDGiO0Aqg/V4LruQMvTpRXv7ULprj1M6i6N/uomIl7qf5ZyS04CJtb1OV +itTsTHtSLOEWLVqUQkNDqXHjxtw9/i1G9brVIw+EmI/4M4w/v/NnI3+O82ct +f37lz2D+tNeTqPhkRe4JzwbR4cOH1WBYeEiwjRo1Mr8F2t9wNWvWLPBKzYVy +NqOVbr/9diXS4m/+3SCkpP29yKtF/IK875y+0r9HwPn0009p//79eYLyMs1B +Ps21a9emW2+91aChpM9vJd8u6S+qXRMPthNHQEXFihUFMbK68rOzuv5NJFCZ +g77//nvf5utDIjA+V6tW7f9DEoFhWYz014VEmDyoQYMGBg1lrweJqGe//PJL +KlOmTA5F4K58iWB5Zik1a9ZUlg8WEbh7/FuMBswZ4PDFbwxfXMGfDfxZeilf +XLhqoRYyGGzwWblmzpwJscP8FujzG2/awCs1F8rZrIQY2COhyeFvqO9CL/L7 +x+M+9gvy42ePS/8eAQf2I3gBof5fDcqrNsMOwgSom0v63N15Qmd/seyac7Cd +Mz6AF9jm32VhXT+bhc3rHGQpIZBCt4V454uk60cicEp16NDhOpIIIJ4xY8b/ +lEQgmkPJBWaumUTgwuOtr5vLXg8SUc9Ctsdh5stNSoVcR6m5KKWkpzgSfQ/+ +fG+AnOFxJPquHjF7hJquYI0S611Z0wZqEwUu+Nq6x6YTeVK6Z8VNuR1Z1DEW +X7+7D3F1BTEZlvRypg2MCfah6wB9z549lQTrhh40Iq6Sa+wedmmxdEr3MFq8 +//77akb5RM6VlbW086fodJrXh+wuayNosRkB+LmRnRirircprmGDRe0KBo57 ++txj5w2fiJgry7jmDbcifNGh+ehb/LLow4gYtm/Q8o4dO8xk8w83OCSUMHff +oDSx6F5L38AJKNmNE1jHQc3YKNeCE9gbjGRj+4a1BPEF+YX7CkSmIx9DHPvn +x5uN/XM03V2uDn3usn9eSlKFKTMrUwtuQvJguR09Pkbbgu8UFKcffFYwUeJb +adfsxAwQmr9usSBiTpZucWiJh75Q/roF/chalDJtEOjFaJPPbuE0yYkEcC/R +7/OJBJiQARlUdekW5j3Ix/lAglgFciEaHQALv8xi6tuiGbXt/Dl1fOdN+nRq +uNsvc+mTQZTtzXbsrPi87eFTUTuJGrYuoH3gRB73Ehw8eFB9K+la2c8//9x1 +H/d7YC6Ves+Te789VRqwT78IT4Ktzd0vtjDOOnhAi+QF3nbBOpqYnFATUKLx +TluSQdjdrl27fOGd+TrDWyDP8CIex/iNLbw43YTCC+cF3tZ8OCzq6NMvHJaI +3nL3C1EIrAz2LBtxknqesodVoFItA01/gQ4R8YdhFl91HsNrgw2tZ2Vn0bQN +0+jZoc/SvG3zyAu/MMJidEiWAIAYOQEqzNUGldcJF+Ctk5agQ3B/vpsXId23 +a6+3uHkUDik5eqQ7ROmBtvBNux5DLoVOQvRW9PRIkMaaNWuU89bdF8QyibKx +oIXP1xE6G4df2q/XW8w8CikZfmWcJNKdhNmgrdjlEMeKl8qqg8P+2GqBDpQj +IpZ0By+OMf840M1rqSMNE6Nz61qkuDyuroxOp/go71sAmSC2DdECwDW+lTBt +2OfyrKU5pCkgZCN2t2VoECJBBlhyeRb+LgQ5kouf0j9f6DyN6C12XIwpB43Q +ASKkJLyjsEwK0WYIRkUmgDdLugR7Bpt2gw3XmoBtY/GzM3UYFIIbMi7mJGA3 +5Nh9InHbWauoPKaSHRM8QhJ5RLrNr5z0gI5Fid5qJw+vi7Fx2W4RwDtp0iTf +4SNX6jjCtQOtnAuxGmTkfhZRE1CfcdrY0H/kLGDrItsoM1W6BPGCJzKu7eNQ +AXFinz592qEV8CYE2Z47ZIdGsNjs2bN9hp44caLdWyIiKTrDei/rbPsDf3zi +iSd8noXPz1gpnPVG9BvWe+pj3OC9KtJDfaMocWXF0ZLWt9L93x0iRkGIuQ1h +7Sr0CcE9WTr0Ku3gULq3XmtaejZLthREyZz7BnTqyz8CFQ9WYe+aLkWHQiyd +sHB5HNHFQC8C/+Q+FV2M7bT0M3sfyB/DgyiFesAcJAjRIcolEoTlKW/aENgg +wWFusMXXb8dd+ZWmxqhN9j7ALG4eN8zgcRcuXHBIAixgIH+7EGG3bB4jN5Gc +fG5FK6p504f0b4LXnNChOlcEHHx5N32bl9X29jdRrbar6EI2ySkGOQ8Br+Hh +4RYLcLggkh3MwkI4+00N4bnDJjskgMaOHaviUPFNBANZkWPHjtn7aE1/vdeO +rbH9Qd6EvgUhRMYFpqZOnepLDAiERraPIoZsWRTstaeeegoyk30c6pSoqeXl +cQm7RvJOZooavSD9/PPP8hCEAGwUhFDauZqAYdo4wrKwvK5Gajj1r1+Wbht+ +VKVzFjb30LpvDApWq9syIr6nxuVuo8GH0qzhAKDgQIQPyG2rAE+BqcqCJ1Hb +W8daPxyiOsH6zGiqDXEF0p9kViimjQAvRDamJ0qX4PkIJEWkjQwNcQ5syU27 +KkkBqQRxB3xcZxiGZXD7LPYLor2hOct9FLtL78tFHeweBKcWa4OAjcwHRJgz +N7ZFESjlrA2HZyq46qIE+yxK4sZWVKXknfTziUx9F55Ppf/6P0PNu7SnFx98 +nF5r1YE6tnmTnni2I/24OorSJz+k4xVTLzANRdOv95Wmau22qNT/EDMetg68 +B8gW4OMh0DQj7AVzgujOcoydgsqPYcnkN2QvecURjig6RJudPXvWOiix6A8/ +/LCKi5f7VJpI/xBkhVnsYQ898sgjxm6q2yDuYBMsWLDAOSe3jdMEs328RzKZ +sIHgHcMhw4eEAA9XH3Q2qOc8Pzs6yBc7Iny+7RWWB0RjMZnZ0bHuOPwRJGtH +//1lLXAlnLCCWZ4WLom2tKhMxW8dSkekRA8WLoX2dq1FIUGVqcXf50yadwad +nP4ClS9Sizou2U9ejKYSt3QVjBJVWtGWJLKsEVHDiH+FYgReh6wShKRDQGKF +qaiAhYQdpAQNKYWkVh3TVUgFPINjAkU4sqHmQroAF8G6Q3a1qVrI7zSZRlLB +AerX4MGDlYUYpPPXX3+pbBGcM9jqYGkWd4hzhqgw5x0TAReqQgcQQgRREtAj +5AfwQENYvnx5FR/oH9JZlPHHZHQIBnga1ImREQ0IBw+ggXAJ5mlHX91HQ793 +hlWa8rJyaeHUt05RqthcWeoC7b1m5cKa0PJzZItfJG6k9yoHUYkHZlDM7uk2 +H+XiNt60xepQ3/A0ywYgjIHsINBt3LixuIXTpPUc/MuE5gYpNw1cQZAY1q9f +r1almoXE66QNxh0oZh7BxgUy8QgMONiSNpcXIo4S+W5BLLMkb8FKDccKPrxu +Nqcr4aSmGiQle7NkAIjG6Hjy5MlqxSGciRSmstgx9Qn3WIU6L7hOWE/PlilC +t357GOfNpbhuSqvjHVxnRNCohkUosHJL2oZcLMTyM0tO39SVGhQpQ0+vjXfy +F5FE2VflNjoJiRdPa6VTC3o20XBBW43L03vNrdx2aJFek9V9PDYXEPmMyC+G +EHrxtD/TPLeUHixRlBqNP44idVecJsOReZzGNypKARWa0aZE0jmILKtnfl2S +GhcpTg8sigMF2ORStVqltTqRnXFpCihyyr0WL0hCN6evk//ZXeNq/2yDP8lN +fVLz/HOHS/sxWaxp2SJU/7ujua5p8fto3hmvrKk3fi01rxhIhW/9lg6btAek +qaZ3K0T1QwLp6dWxvmm0oGIswsXTNvN36496SusGOecNUlBw3sx510lWxpR+ +ul2v676Z9taln+mmA3OtnpInNnGQBtQtRlXe30YXZZqFnWkWLEL1PviTjiYz +i888w9J1QyoaUILuGx0JrEgcfdLcR6licAHqO/pNrNINblCRjw+yjNokKdG0 +8EOb42xFIpXTW1bnx2Uk2yRxZCQiGRRiR8JJK8Vs/1njamUvq7zl8TTb1roq +hd3+Ix3LMJMt5CLgB2neyqn0+etNqVH1MAqr2IBe6rWYYjLclYbS6fDgelSs +3D205QuGYFkXR8zFOYhKCCDC8PnPubEw4wVJI7d3Yx+Orq2FwIST9m4UyFCI +uA2UYu+GOQf94kT1Zvk1aZ721vZUvcz99Ft01mV2reQqUsYxGtsojKq02kiJ +K3uZHPCeVr0af6du2jLa84L0hI0NxQDp6dFbykozdAZMApnacQfs3SBpqDCo +1pEWb+9GmQaQic5aL3e1+eUQ+NMO07e3l6c7mCwzNKCXn2QopR/+lhqUvpX6 +HjBF95Z+KhMF+VrbChYOzFlVqHjU1iyDZoxkaizH5tGlpRkVN9CMI+fUzpdy +TgzyfuoFezfSx5FDpdFQ3s/5MqVdWNWWat3UXqmbMl9vZiwtbVaRAvV8bSEy +1jrXt6tFNVoso3O2JI9XJ3JhcnPexdlqS01gQUGwUJU2Dn9FmuNY+P2muGZI +e6eXlGYoU6Nu1EQbs+0VdzMS1mFZPRtu78bOhUKMHOz0RFFOLzvv4pcxf9Sj ++747DPOHudLo+LRB1KXtm/Tc8x1pR5JVrdMOf0f3121BC85I9cJAXZgGdkLM +5mx4cWm+EKn5Dya47w9d3saUA0H6varh0Uel5dhHto/XrAw86tzh16QZBiKw +d9DCwb+KS08wWS3+WPeEehNZ6bma1q5gdbNJ1EwBWdluZ22AotcsvbxGFwjS +Wj/ID5CgpoM320lS9GZrrQQbF9LAyY2m/k6Qpn1FHgU0TmK2WzeF0gNVxReP +rooQH+k8h6ImoGnQzvg7UBvIeQ7uFtwP0xngIq9VnfM4fX17sLIb2zWB+XP/ +TEgNwfIzBMU1/TTkuAUac+r5twQQSFWgS0xu6qM4Rm2yNl2MRf0GTbtA3KZR +QNSb8jNUd+EJ4GywgSefkSRsJPwppo6e8f+JDVaWy+MUKxu6V7IbpqbKFhVE +qi1rMt9pOWEZH/YbhjARva0tAbgH2I5c+Y56vIT2FaHEglQ+Qrbpsi7ayIVa +Qrt/RfklrRSCk2GIea1Q0cRj+4jdqQUvbFh8UHADGxfSFzA+9z39O+RxjIH9 +hOIFWWlW+crjrK0Ue2ih5qIjq3kCpRgT8rPnv69nTt4W0lfyGd2ExR1SKsCW +bgrWk0I5kKSYlnJ3YhREK1kdezd4MGh53+8goGr+QV1DboCBK+6ALpiTmfqB +TAYnBYrlXIw15cwC9AZBqZiUszbDN4+jqZ2dhxpdDRo0oAIFCuDDz/C/VdWf +AVS4cGHrncnxTL169ZRWFBER4VFxSVXVn7qw2P+ofpiIPLt3M/9kikQeRa9e +1qObYIsXitGAKRAxN6+/TvTmm0gE5v11wiM1rVKZ4Bfxnjl2TNhkICEtujur +BahZkJxMNgWddW6Cp/otZgldurycP7jR8cfMzceOJfrnH5JD+DaWee5nDghH +AiuzNjOTdWHqz1xv9WpHmoyLQwQm0XRWueHUi4lxOHyaPd1M+aYgSmJNvj1T +Uhgf1fA17NrlSKanTunun+Wbi7FC+99/4tznqcAoOWAA0W+/IV3bgvTww0Qf +fUR0/LjHz3pFonT9+aeuykrkjIZQxDlzEIPLnGGMVRIIZswyzDLf560cGSm2 +akLczNOs3URFWSDgXIS/PCbGbUgl1U7uUxCNIBsmVbu2/BAh7qYk7E+zpPRQ +7dqXnxdS7d7gEyzJqfoDTKOpbl1FUPoIC1ZTc9aF1PwY09a8mMHS5yBmMqVK +YV2l3o/O4NGgO3YOopfvP03ryjL1ffqpGtwaeEG2WE9yCkPVqXMZ+AOpPu/d +PS+wvMb7noF93DzxCEvSKGPAMFmTH6ojyHJZsQEcwQRBybOgyQoVQBjkyDoM +8rx7B1O5khk0fjxJlwZQn8cvS0SmqhB2PNZ30iR54vRpB0UaMF531G0ASZNe ++XdZSr37brXotvoe+EaNGpraxTqGIJq77lKby/pxCBGXuHHMGM8jZjHj41W5 +XtJxfLkXT8it4mGA5h/Az8aNHtlMiBFp1Eij24569qxeg/R0z8OmDVtd5+o4 +jkIy2RH4Zp3KR/mQqFaNj7YhnqYGI4D4vvv0njUBv1cqS3CJ0Agsxsaqbw+a +NiwFuvQBG1uoShVQhTUq69ICbrDhu+Zj720WQR59FH9LjTw1Y+xor9dWOwDk +vusboDYWIWGZ73vItMHl/eGH5AO2v6Ix0toB/cmTngdMG+JYb7gBoczOXnDB +ZI0ICqvNmuFssRjCzA2yHQyBwfDY3IdlUGC82otCHinPB34gz/o5HcukUSoE +ZJ+c7LnftAHfOp7ISZ7CMMiN5TV26AoLhMXkb/IsnK3M8MBjnOmAG2HVGGXi +PUK+KsiPj85cUdbUv+kEShfgdSxo4Nt9VyIOPq4J0bQ2ViJA7eHGjVm6G0y2 +pBx4azlWvtavd9ImEWoDjDFKnCnixurV1TFzr2nDas2apce9QgTa5Stjmi0F +3vvBBxZ0YA7ExsKI9VwqmEwQzN2mbSGLusxI1TdRErKteu4CHWjAHmUuIs+i +fADGYF5n91geQW9i2sBddQCSaygcXmYoISJsJ8hPPvdNZFWSJUMQpTU2gwKx +7deudcR5oAc8dto0z12mDWc2FmLpUudw9yuMSx9Fqa++Ssf//Rc+tEamGU7Q +OXN2U+nS2ZiZxT1mYOpuVDO3elu0oPOvvKJSj71ebyNz6yk+zI4y44VD3D6O +qDfDzqQNq/nzzxonxVxAwa2EoP64uDgBCs48REaeOHGSRT9vaC7Tuuq2CVVe +C3iI4G5fwdLlsVq1qFvXrqq62aJFi6QYHUId4ETq2vULxkIE86S/1PeRI0cC +O/XNbfBZIsamQ8uWtJrFtL7MzuCHhCeRMSK3IYwAsWZwLD/3XE+WoY5yz93o +ySefhGvTblVgA8R46pTlFGDt2Ja8DDaYHJ4uqQYI3xvCCR966CFVCoIRJ6P+ +x2c56i8Bbrjz4AKHGxte3k2bNvlJ7RKOjjgwxFua2Ej92ggwCeaj8DmhrgBK ++MHHX9cQG3z3yEdF5jfugVA4apSNeoe/Hh5i+Flt7IpLahfXysss4ekqCY6M +jPg5JI4j/Z2HEe6I+nZwgDJ6TGm9IsqdixXAjKDjQCSdPFmPAah+ZkIE5Khm +YMHAvjOJ4yIWgdPdcotirEZYLoIaeupZlM7yGula7WPwJf4fUU0I2UFijZT6 +g8sTa4HMZubcovYgARleZ/jSrS/b78MbHjngBJ5C3XOInoiOSFcXQnSllpvU +3cPoWN4TrBAKU8FmBOGsXLnSnmqEyJbXtBwnktayZVpegFwpzwKx8C0vXLjQ +PouMJUT0w2N4iyERtCGzALscF5JjuHuZPXgBAnFiY2MtT8QhnZhIMjmzXY4p +SjvOmpidNtYBGppOuFHBAsA9yi7eYu5BZBvaTACQ6vfmm4lJ0zlxsbaSlyJC +RR79BrhQUa13797uKm+v8QxRw+9mVxuW3l3XD9SEYHBAK1tWyb0lSmAxrcQF +Jb59ezKD6zYgXiotBMkvELl5H8oFY0WPHj2kEh+iB8BPsDZCSyCbc+fINckA +VZkUPnqAasGCDKwPXmu2QnUb0BhvEANCiAYfCqwOnVdTRPzZunXrTEXAYBWz +uXbtWgtmx45K35Whli9fbqNRryoPBvmsBRgXUmZtFTuXqIB4AsSbMInUMr1K +AhRiHmUkyNpa9HJwjUmA2zoqRICWgCEJkCMZg/eZHFh7HzizFNezyIQmB9Vo ++3Y7LkqhDtFrZysNYlpS7kL0XkwDSEfYtZUXIb7icDl40C4OFvH5559XMZ4h +sjg8hogpsjg4aPg0MdUIQ1RMAWLx5UKIO5+j4GLW/otgEpMvoa7clEJnYRAm +5ZuIY4RpGIF277YYQFSchCrWNNDgwHWnJUMchFzEmLZ9Yc9jFUGuFiMwGmWo +WnhWbETBTilEaeFg1qQOC5bRBA4cu4ggxzepuyflZRF0IvcZ/uTTH5KCwPeJ +cmiULA0wg7GBhtioosIJv8FZjtca4JuIDZAuEDgFChVLKOJKJEZZnnXZW2yx +U1f1qNwVYG1ogNyFoflYlcpwKs7gwFz9QZAqHB2wTN1zD1ZOJoaYO9+CgUUV +YCY8WF3QUEA+qxFNCL8Aym/+3Y3ov9lw9ckuwRpDjsG3qgZ+l8ajeD/Sa4Nl +hvAAw62w/Scdr4YLdrbsbKdeBeMda4aASalniLMAk+Xd4ZEXbwE0mELU0Y6Z +bx4Fh5QOA/RmC2dD/BlQai8WwdTRk5FhlxUM4EammRUrnOWH6DFLa1CGPFHy +Plk7/zAMSvolRlmGgZMbJ7KDVX1EfqjpxdwXqMGDE+bAHDwvYj94A/b+5Q01 +4CgoAmzjGFA2fubr5O3joXXdPYxnD+3o4dFeEbyq4nFWY3/4QUgNR7XU26lm +2iCOQi52yL6w2uEbl0UrZ553SKlLu0ac7pl94m8E0aDAm7qioyubuUL6ZHFH +LRw2OQQ4DQl4vFf7JH6oeynw8Grt+90yBN5Aivvj7NPBTyXUapqNri4Y/UCr +GxfsUw4T1Ai8BGrECGY5rBcwmcKiHoEZle9ABegPrgRmCOb+IjqV4R+Wj/oG ++PYt3qnj2zVnYGYpFASdwKDGYlzwgThYwThsdAkJXkTBKf/QJTiBe+vv7oJx +iIMI786dUqpWvVkF2pKLy8An7O0fTBVaBTiFE1FIcAQTauRmex8kZvQMbikS +HTiZpAbZ/qK3kHdAKIodOv21CzKvWGhnfdE4BeJgiAD/8doa95B+KlcGXx2J +yDkb0AB+MOwGNf0K7wc7gHp0Bkh6kgUAmEVsOJHjXYMMITmpYpYfMMBLszoP +JS9TAE/eZ+5IJ4jZbrvESSG1jCTCEeakixdTlBDMMoedftRm8o6s4Zp+oJ4+ +/G2tGsKuK7ciBYDlXheghdRZJvxdyLdpw6OUNqiSzN3jM/nfX4Sf3kKKSnEV +WAq5xnKPpahgwToMyDYLiDou/mpH2QzEVcsSNjcvojm8WOBCqoOEWlcxQ0Bk +hIQkl5LrwudTdv+QvA2hX9MgQyRFRtKFwoXJywKYCEyvvHKO7r9/pWvdi2uH +6JhbKJvXPU/D9OfeBveRYaB1SHkAkUKkNhUKsNlhmJF5xzbMO8LgQz6yVIbZ +wIQwCZ4rcmRzlNiSIrB2mIMLKHtAoasP8U4BjbAX+HDYs0fYEDIppcayDAP5 +znezFKd+XaMo9stalN23QN5mA7Z38bTMxlSOkc1M/+sykqWpePE6rBe7omcQ +jMwsqFTrwnkrP/hRSR24tneB3Vw4DaWcoZhcEfHuq9iUoV++XkZZfYKpVMug +vI3VrYZeG8SdyPu7+vSh46xusoQiVKYLArTkNRMqC9OxAOBW35alUm1L5G24 +D3gJPubPgZ2O2JtoGZweroISmY0yKizARjCWahmcRyyW0FFFEf/oLuAXKl+e +Bj7zjHKzVzYYg5qAmHCwAC3hk44U6x+c97E+N1ic0UIWDMHqIlXLgl26V8Mo ++dRJOtHtJsoeWolKScp/XrCIaNa0eMFiLiEDnv9xmcoyrOjUZ0l3jxJTVflt +RkHanPf8qWXIglVjoi+4x//WCoQwyEG2wjeJVYJ8gqypZKtYlaOIdVso5avC +lPhTU/+GlOh+eSMlJHUmcNjAoqOjK5nuwW1ROMzZ+skq6RihW2lRW/wbsi9v +509LImglNylMZumuYK3vK0sX5vfXiF07yL8hDagqGAZFVj/5REmtsGfIFGFx +gxAFSzecviofcd8MJTGkTWzi33hrB2is/vud7AFoBlIjsaLZ2uD4bnuAChtD +hXBgNXqbf0NiekiMunBWhZbk0Eo911AMs4KqRA6D18XNkxTfSf/jLRqxZIRf +hRHDD2wgb++S5O1ehC7EnrAVo/A+D5YTeacihyjQtitgEhL8ay6omsurMhsw +ydmfk+MotkdVOtu/Hg2e1dvPio7ROlqS1YqknbM9BU2yE/w0pvaqDJ+vSQT5 +NMOozweclnYZ9QkT39DxccfX0pB5Q/yC/NC6iTpuDvHFekglQ8MagDRn/O22 +usjvGLlgPmZSWXF1KNjYRNLboUUzKas3H25/tM0H0aynbNaAsodXp4zHm1CW +CcqC0j9+/PjrSjOwzv3555/qZxgRb61xhoXTUHVwDp7Zy98qoDohhjdL8j8D +LM2gqoWxxVxHmoHw06lTJ0MzZck7+20T7b/Cf5pZM1bTW/db6SLrmQjMuzwf +ue71S8up2qUFCxag+J4FaE3rQCpTqiTV6+JfccrQu0LpsZuLk7eXh6I6FQSC +BFLU1AwLC6OSJUsy9Pg30BYHxXX//fcHXqm5as5mtLKYW5xCQkLU3+p3kzWY +9GUQ3VYtjAKeC/C/RmV2Bh39pDCd7V6A6lQuIcBCNTU2r6sCe5nmINuMQ69s +2bLAiMFGRfqsSRl1eEXPVxIbFX2tqN/Ij53TWd6FZ3EErLtwJAsiP+d3QSoo +5xKyOWVB6lUpydRTlNa3qUTly+SPepow9aR+VYD2fgTdYp8l9PIsNV9/8kFp +fx/yYRk/ZuhTlMizeKpe8fyRT3oSJX8ZQBk9PVS3iiUfeOLhkbsu5AMz8A03 +3OAin3LUpckNkmecb/I590Nz1UfbVx6V1x78Pyp2Wo4Fp1tpT5/6ysy1fe0Z +5aQZ8peLifpRD5JmNhfpWiCFx0bMzTrrpqIUgrCY1oVt+LFw7U/K1/AoVlH7 +BvMqzkexWAICxM5z2jFp6lZUVFUXIDDZCznHfPBFDG2m4nGgEeYLDDDCqY9p +8TThhIAAf7F47gQE+CFgjbQX87+E4ffQmZ6VyZt0Ov+YwIV6P8Do2oECAkJt +2mvPr63eAXqG+IKkX6EHFDDCo7Er/7g2EOIiWbnjg3VoffdiAATfxQhRqpDx +VplHD1D614Vo/4D3DFil8gfGMlblhzdU2UL169Xx3Vb5rvpZkurfWI72fFhA +mRcQkAzPTXKaX6UhHbs18jfwJswLET5vYhTvXVmDIyTbyzGoLji9kHqxoI3F +kZ/lKXXwDMs7ypcr9au2/ihgwOYklYHKmgWDt8aY8vUFekeq3Yiq5E1LVFHy +sCP7CYqNWUdSH8sQ9F1DN9HARhRrAmkFIahlYAhJX8iHZ0EuI/zv/CMEodli +Bke6E3bxhQgBA6E2UN3dYIB2zc7Wl2EktLB9fivCWtKYN1AvyapvLWkgTkLc ++GUN1aJNvUBPLmYkcd/cSVGf30hZFy/kEwqfJcEGqlzEdwPlu35pSf0y3nHv +aGCzdQQkSlX5U/cywAyp8npRK2csYjX1UQe+hkMmKSmpjLkN7M+8g8cgKZPS ++4VRZm+eUdoF3VsxfyDQlPLqq45zfm4L7X84f9S2Yf+gVgaRE/8E6OC+QTiF +zUxB9hwEyIgVghXzm3/VQC3tzNaWI1o/wsKCqhew+BBJaa0QFciAOg72klJb +iz8ytsRyeR+/N6/AvffqpcQFI/HQ8jo/0bUymHtiYqKsTExMjI9dQb13EHZ8 +XWJNyBcufD8wYaM3xj2lF8XFX1EzCJFBbkTAwAhft72YnWT3CaCjq9ZZh2u+ +FuLgAiZ3j1unzHtZ1jCqXzGY9uzcaqECg8Ih7medT5prJKw1DitBnIS8v6y0 +AQm6+mlXbkjK8m+ULSNi/nTr4/dr6FCdlIfyGa6XHIMKcIrEx8fLyJCQJkuY +Ja6IlVqnZ0IMys/IPGlEq/UORiCGz9IvMeHwpQyEmLCRjPTFZ9rFEXeQd6Qi +QD3vYnkdXUdyNW2q4pcta0D0iz5dbRuUCiP/WfzD9G0OOn2BLShr2DqPRNYi +/GfK1DzB4vFdhIo63d+bZRcBARgsicvwKDGD2BR7qapyIerdxkFmH+YZDdjS +Z87YCMiKIfmtNHvLjf5VmnVVWLWk0O1GJoUgHy6AkCPUaCSSmN0QVYgNIab2 +ivuPMvuE0JqenUy8UD7GlrXfNcWODdlf9l5Js0ZYdx8+iHTxQUW0Cz8tXgIY +4HCBe8yAcZV6rXQ6klUipvTpz/sEM2HhYTwrZSYO+j/lZJZR4rLhlN27oGJ/ +V594oDNxvEIuPNxyX2Qsw8Ps2oIIkpAShIJ37HwQn4P3A5rw/vnCRm4gkByB +jqdirzRxifAF3835hnNYIyUORbBuosGckbPT9XkBPTI9Mc9zR3oQNr28gZ7p +tm7tvOdYBOVWltUJLYw6yNwMaSBNfVYR7BrhZ2FmMpDYjbItNKTKMXmHV6WU ++KRQc1uuxWVxLViAtFlLO3+8qusYXHRCWhG2LyU7w8ziGQ3SGXTzaC3L/DvM +bIJCKt8RobwmE+/Ks93zm166fb/bcREXJX5BGReiNwzY9jqznzJ6h9KWPh/Z +BOYrjgOmiCoa05/zwSrGiYqK8sGqiaLzwaqqwpGZIjwWvjvBfS7D2vzbIY00 +K0qM8jmVIInhm6S8yNv1UDFT7kv5x1RWWzfQ1nXLdTER5gp0R0T4mRcgt6N8 +p2EHTnbb9om2MprbvAPRCZViJVlJSsKyduYcgKpwhwdVFpykJsSBI3P3xAkn +nBnaBrbebEcPApXLC4eLm7VHDUXzWlh9oXAR1Oi5LWyQPxLOX3yRXM9xj7+x +ODikDKrlWNjA9OW9vsUNVhF8a8qQ2zVP/ekRiutZkTKSEqR+DO01tdv2/Ga7 +Q3S+lHiWYeEfQhYP4ootSrb8oJ89vMROH/mDqak5QI5gxvclb6cfHvIhU3Ay +SJUiTiJMxx2CiLjWtN5FaOPn7zi5VQybioF0LfVlKaPQFUvhftaVkGljgslD +3LVvFbZ4V+kyUqnnLdiI60D4tkNVIaoQLtJenJU8SdkDSyCm0zdfEgF748Y5 +u9dS1EIfh56UYRaqRWjaABPRZFEP3R4lZJgKhFqAeqSUMkE74545rFE/9hFL +jQgfk8q4ElqNqt4I7nBerx2AUmkavv0znf5gXNUZ1ragpsIVooSgKaWedytr +UpBaUIXoKHeUnt0sf77tFByd0NYM+6cFBWYSRH4jzl8KjOMENmixBH5++EN0 +tkc5Sjpz7qoFoQpfqR6vyhw1eVO2GKxvKV5dUgY7dtKLFrd4OSbyX/BNkhRw +4phwPYfrjHyBkr4sQVnxMQ5uERyHWAfL4Q1uUUAFXD4+0q35SF1wGQaygbwK +xS6h7G4+iCRMg8a1MizY0aTAqsGkuA/bn7QhYtz2h5dko+7LhHsdsMGuUTpg +2DCby6OknwGqartFDQ67/oZ0ZAxIsEZqcsZAISnU9bsYa7PTELsnpRx86nx+ +30BrBU4sEVADCcKNGgmo90GNqQj338wZtmZ0XmnFt1qwupBtxussvMRVKFj/ +PqWjOXnmWIQAGUhfIHLqMONU8I0dD6CkzbPUs5F/TnDq/KEyki5lZPvDO4Dw +LGYp/SHkAYSS7ErpUNWYwDtYapDoYYXMXkzjfSBVnJNbEacMtoDEOekShyM4 +NwoHy9DnRj1B3v683mcPOnSBot8PPuiTj63KEakTY7F9FtmEsj1kDKQJSM18 +CzbqB5mirNKfJM6w6u1iefsM7bWyY+BUAcw40WQMEAUOeR/UoNYOaI+VDdsf +4uoeeghO+6tnH1+lgjHU1BQ6NLEt3VOtFJWt/yS9+cEg+n3B19S0Ulmq/dQn +9P3aczaQLUcFY61P9WBi7VUMFG9nh4xbCcYSCIE9eYOIM7sYSu1Xmvb0es0p +dYvqTtpsZ/tDIWOoV062lC6dDuujk3IQoPIkjJvIHiTwM2qadoldB5foylhz +37PP4sCBgZMPVDsGPGpo27Jli73vwuopmvjnTnJkAOi3JpLYFhwHbiDSjqwO +R6o8Dk+zSEZu1Eicu8+ewFn/21N2KhDuoK751D1AISxViXKeBREyAcAGamQM +7EXY930C/Ge8qLURlpttf4iANanifhFXLlWWWZKOmUFNwgKoZNPxdDjNS97k +cJrwVBkKLFSX+oenWoOzb4FlfR1hhsLqMs1+V8QqOGugVeMVntIGfgJOijrV +NsUAZxSKdjJPyU46Y6eGqHWkBeXk2RPu1ZbRtHjpAdII8rxhZ2buJc2QOfHC +LaTpMju3eESWCxjBzsmWxJDtUbq0Kpjg4HbLGH3fgbkWVmT4woKM0CH+W5oR +VYEcPpRYZn1amr0J0ZT0VUk62ldZ/uyeQVCiOd0EMbC5QAuPjIy0bTiR8YZ4 +npaTiwcigMQTf8wCP3iwrtnh7BmDqf41iL5SDgKBCAH0oDVojS5MoY4BZCGI +ohkZGYKp2CVa3/Fun+BgxVohTllJNL/VoUMp7dA3FBZQiKq3O2hqK2ZR1JQ7 +qGixu2lGTJbM2l0V+hLtgcVL6Q72a6w2poiVR/YgthG2MXMHi0SRnP+b7cwL +NtGbblIFVpxqOge1KWT2W3YIKB4Ip8BxgAXr2LGjonLIDDt27LBDQB1DUbgZ +L1i+g5pYOG2Yhpx1EuF3QBgEQhkF2QY42DAKeobHCywVZqJssbDoVc6Y9Dgl +fV2GMs+d8NEW9OXMxXi16cAcOxfYLND7y6zGAF1In4aShqrozGDtXHaI2jvd +pkxRHBQDnNJ32O6wCyChQwGB6oh0RnSHSezatUu6S4mJpItfFaOIgc87LBnZ +7OaFRf5QVW51sPn5jBjq+ngjCgh8ib6eHUEpXhMMwlT1+ylLVcpXZ+pfW+YA +9Rhn0vkjVidFkH5SknaUi00z9fheyuhblLyzXEoabDvlyyMSwylgs3uqxt22 +cbY/SEUwNTpvHQ/UBf3gJsIhkhwneIHQimz806ddZbFOh/O25q77Is3YKxAh +EhO94uUL1piw6muzR2Y5UOL0e1WXsyrhpkKURtdVq92A5pw47ftDh5jOet1m +VNJyQ1tLPrNDg1MiGNR5Db2eZMSX91LCV2UhKl21FOdlK4HbBHnWuto030RN +7uxLnT/uQG1frkQhepGt1TTz5CRqXLSElP92vLosqg3i6fYJBsLtCZOWQKe+ +vJliv7iRvCnnLdLgZzd5p1LeQlVGhoMmapMjqizqoM/3o8ttujOtNe9hmPCW +cx+8nHBrLP7YWRjIPrBZMfnY6rXwIOKlOKhimp5oocT7KVAMFKdI0imp+wG/ +i06TcQlPeFsRRj+2xmlb/JHKmUzev8oZHdW/DM8Q8Ti/VcsZKG8KHZn/E/28 +MZ72qtCxVAof0YCK5NiBR4ZRfezAdfF2vWgNE1NvBnhoQ/A357VVSRQz6EFK +/qoopR7bU9M2J+psECi454/agnZS29z1nidX/KzrXVLvWreU1NTLOHWQ4plC +L45ERad0iyD46I1qbgs2R23WJPBDHdjNLazYzAjBgtAau0vc3k6pIxf/Bxli +cYfdgJ13CfzrBjkrhKpCZcsiHd9qpvktuB6KNBca3rgYFak/gPaqlwMn067O +NalQ2edp9QVbTyRpc3OqWFSfvHYbLx6qV2gyak57Q92zRg1ipv8zq/+0YDtx +bs6rtJAZDrLGu1YSTthKiqrIfgFdH5W8UlUe7sDatRVp+56bJkafj3Hbw7nD +lNC7Ap3uWZWyEmJ9rH4GBlsQG7W3geLpz0L6d2aRpu3+WNZDCwViMGJWZNWH +/7ZgwIYzlFHerwzkcvs6pE2/acj+bO4sn9Q3Y2lOyM//EvLC+TJOr6IR7Z+l +h55rTq3fepoa1X+E3uh7mLVDcgnWpnR85RaQ020tq9k9NZYReJWeZJtRPh1v +qemPt0d1tWCvX68TgxMTTbhaoH4rDZYPNZz3zxQHjpI5l3TSnaNQMHltoF2f +PrqSGipfSEVKRTDIiQem5rdR91toTm6klIGV6GTXGnTuSERtacabVWBAQuZ4 +RrK9G/wQQYc4mPb9IYMiustEJjmn5+FNRN15wAGlYY4SI6R3+vOKGo70fx6R +MXb20PPMC5b8WjSfEvhCFjDXYwOHh7sWyV3/Xl6uFgRfqSZBuFjW4+2LUosh +SNP+3hmUNbSyFk/D5zlUhtFRvWTFClNIIUi/6uCbYroC+Zq+OOPM8EHaIgdt +CjsBlZW9WbYAw3vvaf2SyLVmiE3pf6MpUf8IrCVOX3AnwdjI6+kddzudjTjh +8UGkSeG0cEGUgI/z+1raOuOeI8bZNVkHTpg51pHfti4j+iRQR//Nfku55ywM +p/fq929A5+/egEks1Saj57O2v6weeD/278GDjt7vKuxv30CrDEhDDIoGl9Bm +DhxRA0JU25YOTWjVrHDLm1Bb08TUibVQ1QRXdbAD9RkPDOGUkMN86A1IWnXy +A232pkF4EV2ZqTnv0d6h+hFwZrBbnEv9TFkAlNfOSHYWCbGcKNoQFWXMvXi7 +yx4d34g+wBqw88Af+wXoNiz4uUNiWAQYqjyJpRkGZTMfXL++om/HjAAC3t+A +tzJwW/aQcvRD+2mqTpgVUbB3tcnW75ex5XhXgdjfYVayhXF9X1DgvCb0a6b3 +Nxi5M5pp7DDi00c1oPearEItqAamK1UxBYmUeJUGTDIQBXdOQiluj1SVU/Fa +jzzAa9tbl1WHbD31cdo9uh8t+CXCLj8Kn6HAxfHjJis3RG9wZBSCpcHcAUjw +SqotY6zhDfULUFXz55/Jiac6vka/+A+RRqNqadM26u1npjhrDLDgp58w4erv +5brcuyDtyxCEJ7pfeqDbglXVTLVhjEgKvw1zAZ/6mPryPGraUGSySROt7oiY +jdJIqFKEgrsWabDeoeIff5Myt2hCvV3U6rR6DSCfOFFVc4iMJNsMx+4ddxC1 +bg3z8lXRkPc3IhyLzKLRY3LURAXb18KnT2ljVX+7YkXs1MdMM1rhcwXW/v3X +1pOcMjaF7qyfCrCdXl06vtQ0xrSk7p8d6cAB2ln9JbqpxGka2CfDYhC7wTgF +r/qSL9+fRDdBgcsHHtC+G14cqViN+i0I4rFVlHQNYFuxGmuBx556CpQhFavh ++zeVly3oWStWUXLpKjq0JCPDMdV6tRKLwO20NKnL6q7pKrciTqNsGS9Nu28M +QhNq+jdRUaswHqjwueec14xDoISfBfoa0Jgujhw8i0b8eOSIdVwgW8mwM6k5 +jrKkRja22jUWFYaoHj1EQgjQ5aLhmG3a1Kk5Dm0NxZ9BxZs3P2uaEdqD+FM4 +uJkTy92gi+MmKYExZgkYRhcDlFXvIWxDUXnqKc9VXaC+P8lLmFCxC6/ixXm5 +c6ctXgk7AlKssbetrgeoUI4dnOz8eaub4zXGCMBAWNKjj75sIERwTvHiOtsA +cklqqlOMHglO6AT4AEfFBrSqjquwv7qwYLgJgX6rV1t0IO4A4mJ2tq24j/VA +cDDUNiZqEdoQpilFWpkyQgWFcEMBipYttUXWesMDtQBUhHcB4mj27/cTt+XN +CDhe0TGq/EEVWbxYmF2QLoEPYQI3IJ7A6/W8bDrGpgNdAWhGjUwZPNOwYccT +gnvAGOFKXrToNYPETFcZEFyI3UOtEoQf8dJawgRXRnUz/J6SYnEL+4mO67i6 +tzR/L3pAyjrcoXgtJsrAbquq/kQh/suGocHDddttt7Fm0tgD/aRxVfVngLKI +xmuOIs8oOB6+vn97CvwfMfVFkw==\ +\>"]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Export", "[", + RowBox[{"\"\\"", ",", "Diagram", ",", + RowBox[{"ImageResolution", "\[Rule]", " ", "600"}]}], "]"}]], "Input", + CellChangeTimes->{{3.666356125208006*^9, 3.6663561307679367`*^9}, { + 3.666359990131036*^9, 3.6663599912659893`*^9}, {3.67741653791409*^9, + 3.67741653822829*^9}, {3.677416610782296*^9, 3.677416611038228*^9}}], + +Cell[BoxData["\<\"Diagram.pdf\"\>"], "Output", + CellChangeTimes->{ + 3.6663561349442673`*^9, 3.66635624051071*^9, 3.666356993927301*^9, + 3.666359221363276*^9, 3.666359286911703*^9, 3.666359479801216*^9, + 3.666359569322835*^9, 3.666359937104721*^9, 3.666359993972056*^9, + 3.6663601173869867`*^9, 3.6663609190188313`*^9, {3.666360970855274*^9, + 3.6663610407100897`*^9}, 3.6664282176979923`*^9, 3.6673060624001837`*^9, + 3.669469144708777*^9, {3.6694692127431087`*^9, 3.669469223131894*^9}, { + 3.669469282461471*^9, 3.669469294880149*^9}, {3.677416583489188*^9, + 3.6774166139771843`*^9}}] +}, Open ]] +}, +WindowSize->{1855, 1176}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"10.1 for Linux x86 (64-bit) (March 23, 2015)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[557, 20, 1272, 33, 32, "Input"], +Cell[1832, 55, 123, 3, 32, "Input"], +Cell[1958, 60, 158, 3, 32, "Input"], +Cell[2119, 65, 191, 4, 32, "Input"], +Cell[2313, 71, 92, 2, 32, "Input"], +Cell[2408, 75, 326, 9, 32, "Input"], +Cell[2737, 86, 330, 9, 32, "Input"], +Cell[3070, 97, 496, 15, 32, "Input"], +Cell[3569, 114, 324, 9, 32, "Input"], +Cell[3896, 125, 492, 15, 32, "Input"], +Cell[4391, 142, 326, 9, 32, "Input"], +Cell[4720, 153, 494, 15, 32, "Input"], +Cell[5217, 170, 170, 4, 32, "Input"], +Cell[5390, 176, 488, 15, 32, "Input"], +Cell[5881, 193, 167, 4, 32, "Input"], +Cell[6051, 199, 486, 15, 32, "Input"], +Cell[6540, 216, 324, 9, 32, "Input"], +Cell[6867, 227, 470, 11, 32, "Input"], +Cell[7340, 240, 517, 16, 32, "Input"], +Cell[7860, 258, 370, 10, 32, "Input"], +Cell[8233, 270, 517, 16, 32, "Input"], +Cell[8753, 288, 185, 4, 32, "Input"], +Cell[8941, 294, 285, 6, 32, "Input"], +Cell[9229, 302, 314, 10, 32, "Input"], +Cell[9546, 314, 978, 25, 32, "Input"], +Cell[10527, 341, 169, 4, 32, "Input"], +Cell[10699, 347, 712, 20, 32, "Input"], +Cell[11414, 369, 312, 6, 32, "Input"], +Cell[CellGroupData[{ +Cell[11751, 379, 555, 14, 32, "Input"], +Cell[12309, 395, 1047, 18, 23, "Message"], +Cell[13359, 415, 657, 9, 34, "Output"] +}, Open ]], +Cell[14031, 427, 588, 18, 32, "Input"], +Cell[14622, 447, 188, 4, 32, "Input"], +Cell[CellGroupData[{ +Cell[14835, 455, 341, 9, 32, "Input"], +Cell[15179, 466, 348, 5, 32, "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[15564, 476, 8742, 194, 152, "Input"], +Cell[24309, 672, 213650, 3911, 90, 197054, 3639, "CachedBoxData", "BoxData", \ +"Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[237996, 4588, 3856, 117, 107, "Input"], +Cell[241855, 4707, 142383, 2740, 90, 131776, 2565, "CachedBoxData", \ +"BoxData", "Output"] +}, Open ]], +Cell[384253, 7450, 242, 7, 32, "Input"], +Cell[CellGroupData[{ +Cell[384520, 7461, 190, 3, 32, "Input"], +Cell[384713, 7466, 42403, 776, 107, "Print"] +}, Open ]], +Cell[427131, 8245, 2056, 51, 77, "Input"], +Cell[CellGroupData[{ +Cell[429212, 8300, 5763, 130, 935, "Input"], +Cell[434978, 8432, 397980, 7285, 172, 373183, 6880, "CachedBoxData", \ +"BoxData", "Output"] +}, Open ]], +Cell[CellGroupData[{ +Cell[832995, 15722, 379, 6, 32, "Input"], +Cell[833377, 15730, 604, 9, 32, "Output"] +}, Open ]] +} +] +*) + +(* End of internal cache information *) diff --git a/Chapter2/Figs/Wanniers.mat b/Chapter2/Figs/Wanniers.mat new file mode 100644 index 0000000..b798206 Binary files /dev/null and b/Chapter2/Figs/Wanniers.mat differ diff --git a/Chapter2/chapter2.tex b/Chapter2/chapter2.tex index 0cf5f5d..976fe73 100644 --- a/Chapter2/chapter2.tex +++ b/Chapter2/chapter2.tex @@ -27,7 +27,11 @@ general Hamiltonian that describes the coupling of atoms with far-detuned optical beams \cite{mekhov2012}. This will serve as the basis from which we explore the system in different parameter regimes, such as nondestructive measurement in free space or quantum -measurement backaction in a cavity. +measurement backaction in a cavity. Another interesting direction for +this field of research are quantum optical lattices where the trapping +potential is treated quantum mechanically. However this is beyond the +scope of this work. +\mynote{insert our paper citations here} We consider $N$ two-level atoms in an optical lattice with $M$ sites. For simplicity we will restrict our attention to spinless @@ -43,14 +47,10 @@ capable of describing a range of different experimental setups ranging from a small number of sites with a large filling factor (e.g.~BECs trapped in a double-well potential) to a an extended multi-site lattice with a low filling factor (e.g.~a system with one atom per -site will exhibit the Mott insulator to superfluid quantum phase +site which will exhibit the Mott insulator to superfluid quantum phase transition). \mynote{extra fermion citations, Piazza? Look up Gabi's AF paper.} -\mynote{Potentially some more crap, but come to think of it the - content will strongly depend on what was included in the preceding - section on plain ultracold bosons} - As we have seen in the previous section, an optical lattice can be formed with classical light beams that form standing waves. Depending on the detuning with respect to the atomic resonance, the nodes or @@ -83,9 +83,9 @@ For simplicity, we will be considering one-dimensional lattices most of the time. However, the model itself is derived for any number of dimensions and since none of our arguments will ever rely on dimensionality our results straightforwardly generalise to 2- and 3-D -systems. This simplification allows us to present a much simpler -picture of the physical setup where we only need to concern ourselves -with a single angle for each optical mode. As shown in +systems. This simplification allows us to present a much more +intuitive picture of the physical setup where we only need to concern +ourselves with a single angle for each optical mode. As shown in Fig. \ref{fig:LatticeDiagram} the angle between the normal to the lattice and the probe and detected beam are denoted by $\theta_0$ and $\theta_1$ respectively. We will consider these angles to be tunable @@ -199,11 +199,11 @@ equation for the lowering operator Therefore, by inserting this expression into the Heisenberg equation for the light mode $m$ given by \begin{equation} - \dot{\a}_m = - \sigma^- g^*_m u^*_m(\b{r}) + \dot{\a}_m = - \sigma^- g_m u^*_m(\b{r}) \end{equation} we get the following equation of motion \begin{equation} - \dot{\a}_m = \frac{i}{\Delta_a} \sum_l g_l g^*_m u_l(\b{r}) + \dot{\a}_m = \frac{i}{\Delta_a} \sum_l g_l g_m u_l(\b{r}) u^*_m(\b{r}) \a_l. \end{equation} An effective Hamiltonian which results in the same optical equations @@ -311,30 +311,49 @@ This contribution can be separated into two parts, one which couples directly to the on-site atomic density and one that couples to the tunnelling operators. We will define the operator \begin{equation} + \label{eq:F} \hat{F}_{l,m} = \hat{D}_{l,m} + \hat{B}_{l,m}, \end{equation} where $\hat{D}_{l,m}$ is the direct coupling to atomic density \begin{equation} + \label{eq:D} \hat{D}_{l,m} = \sum_{i}^K J^{l,m}_{i,i} \hat{n}_i, \end{equation} and $\hat{B}_{l,m}$ couples to the matter-field via the nearest-neighbour tunnelling operators \begin{equation} + \label{eq:B} \hat{B}_{l,m} = \sum_{\langle i, j \rangle}^K J^{l,m}_{i,j} \bd_i b_j, \end{equation} -and we neglect couplings beyond nearest neighbours for the same reason -as before when deriving the matter Hamiltonian. +where $K$ denotes a sum over the illuminated sites and we neglect +couplings beyond nearest neighbours for the same reason as before when +deriving the matter Hamiltonian. + +\mynote{make sure all group papers are cited here} These equations +encapsulate the simplicity and flexibility of the measurement scheme +that we are proposing. The operators given above are entirely +determined by the values of the $J^{l,m}_{i,j}$ coefficients and +despite its simplicity, this is sufficient to give rise to a host of +interesting phenomena via measurement back-action such as the +generation of multipartite entangled spatial modes in an optical +lattice \cite{elliott2015, atoms2015, mekhov2009pra}, the appearance +of long-range correlated tunnelling capable of entangling distant +lattice sites, and in the case of fermions, the break-up and +protection of strongly interacting pairs \cite{mazzucchi2016, + kozlowski2016zeno}. Additionally, these coefficients are easy to +manipulate experimentally by adjusting the optical geometry via the +light mode functions $u_l(\b{r})$. It is important to note that we are considering a situation where the contribution of quantized light is much weaker than that of the classical trapping potential. If that was not the case, it would be -necessary to determine thw Wannier functions in a self-consistent way +necessary to determine the Wannier functions in a self-consistent way which takes into account the depth of the quantum poterntial generated by the quantized light modes. This significantly complicates the treatment, but can lead to interesting physics. Amongst other things, the atomic tunnelling and interaction coefficients will now depend on -the quantum state of light. -\mynote{cite Santiago's papers and Maschler/Igor EPJD} +the quantum state of light. \mynote{cite Santiago's papers and + Maschler/Igor EPJD} Therefore, combining these final simplifications we finally arrive at our quantum light-matter Hamiltonian @@ -346,18 +365,25 @@ our quantum light-matter Hamiltonian \end{equation} where we have phenomologically included the cavity decay rates $\kappa_l$ of the modes $a_l$. A crucial observation about the -structure of this Hamiltonian is that in the last term, the light -modes $a_l$ couple to the matter in a global way. Instead of +structure of this Hamiltonian is that in the interaction term, the +light modes $a_l$ couple to the matter in a global way. Instead of considering individual coupling to each site, the optical field couples to the global state of the atoms within the illuminated region via the operator $\hat{F}_{l,m}$. This will have important implications for the system and is one of the leading factors -responsible for many-body behaviour beyong the Bose-Hubbard -Hamiltonian paradigm. +responsible for many-body behaviour beyond the Bose-Hubbard +Hamiltonian paradigm. + +Furthermore, it is also vital to note that light couples to the matter +via an operator, namely $\hat{F}_{l,m}$, which makes it sensitive to +the quantum state of matter. This is a key element of our treatment of +the ultimate quantum regime of light-matter interaction that goes +beyond previous treatments. \subsection{Scattered light behaviour} +\label{sec:a} -Having derived the full quantum light-matter Hamiltonian we will no +Having derived the full quantum light-matter Hamiltonian we will now look at the behaviour of the scattered light. We begin by looking at the equations of motion in the Heisenberg picture \begin{equation} @@ -391,6 +417,7 @@ pumping $\eta_l$. We also limit ourselves to only a single scattered mode, $a_1$. This leads to a simple linear relationship between the light mode and the atomic operator $\hat{F}_{1,0}$ \begin{equation} + \label{eq:a} \a_1 = \frac{U_{1,0} a_0} {\Delta_{p} + i \kappa} \hat{F} = C \hat{F}, \end{equation} @@ -400,19 +427,45 @@ cavity. Furthermore, since there is no longer any ambiguity in the indices $l$ and $m$, we have dropped indices on $\Delta_{1p} \equiv \Delta_p$, $\kappa_1 \equiv \kappa$, and $\hat{F}_{1,0} \equiv \hat{F}$. We also do the same for the operators $\hat{D}_{1,0} \equiv -\hat{D}$ and $\hat{B}_{1,0} \equiv \hat{B}$. +\hat{D}$, $\hat{B}_{1,0} \equiv \hat{B}$, and the coefficients +$J^{1,0}_{i,j} \equiv J_{i,j}$. -Whilst the light amplitude itself is only linear in atomic operators, -we can easily have access to higher moments by simply simply -considering higher moments of the $\a_1$ such as the photon number -$\ad_1 \a_1$. Additionally, even though we only consider a single -scattered mode, this model can be applied to free space by simply -varying the direction of the scattered light mode if multiple -scattering events can be neglected. This is likely to be the case -since the interactions will be dominated by photons scattering from -the much larger coherent probe. +The operator $\a_1$ itself is not an observable. However, it is +possible to combine the outgoing light field with a stronger local +oscillator beam in order to measure the light quadrature +\begin{equation} + \hat{X}_\phi = \frac{1}{2} \left( \a_1 e^{-i \phi} + \ad_1 e^{i \phi} \right), +\end{equation} +which in turn can expressed via the quadrature of $\hat{F}$, +$\hat{X}^F_\beta$, as +\begin{equation} + \hat{X}_\phi = |C| \hat{X}_\beta^F = \frac{|C|}{2} \left( \hat{F} + e^{-i \beta} + \hat{F}^\dagger e^{i \beta} \right), +\end{equation} +where $\beta = \phi - \phi_C$, $C = |C| \exp(i \phi_C)$, and $\phi$ is +the local oscillator phase. + +Whilst the light amplitude and the quadratures are only linear in +atomic operators, we can easily have access to higher moments via +related quantities such as the photon number +$\ad_1 \a_1 = |C|^2 \hat{F}^\dagger \hat{F}$ or the quadrature +variance +\begin{equation} + \label{eq:Xvar} + ( \Delta X_\phi )^2 = \langle \hat{X}_\phi^2 \rangle - \langle + \hat{X}_\phi \rangle^2 = \frac{1}{4} + |C|^2 (\Delta X^F_\beta)^2, +\end{equation} +which reflect atomic correlations and fluctuations. + +Finally, even though we only consider a single scattered mode, this +model can be applied to free space by simply varying the direction of +the scattered light mode if multiple scattering events can be +neglected. This is likely to be the case since the interactions will +be dominated by photons scattering from the much larger coherent +probe. \subsection{Density and Phase Observables} +\label{sec:B} Light scatters due to its interactions with the dipole moment of the atoms which for off-resonant light, like the type that we consider, @@ -430,21 +483,22 @@ condensates even though the two components have initially well-defined atom numbers which is phase's conjugate variable. In our model light couples to the operator $\hat{F}$ which consists of -a density opertor part, $\hat{D} = \sum_i J_{i,i} \hat{n}_i$, and a -phase operator part, $\hat{B} = \sum_{\langle i, j \rangle} J_{i,j} -\bd_i b_j$. Most of the time the density component dominates, $\hat{D} -\gg \hat{B}$, and thus $\hat{F} \approx \hat{D}$. However, it is -possible to engineer an optical geometry in which $\hat{D} = 0$ +a density component, $\hat{D} = \sum_i J_{i,i} \hat{n}_i$, and a phase +component, $\hat{B} = \sum_{\langle i, j \rangle} J_{i,j} \bd_i +b_j$. In general, the density component dominates, +$\hat{D} \gg \hat{B}$, and thus $\hat{F} \approx \hat{D}$. However, +it is possible to engineer an optical geometry in which $\hat{D} = 0$ leaving $\hat{B}$ as the dominant term in $\hat{F}$. This approach is fundamentally different from the aforementioned double-well proposals as it directly couples to the interference terms caused by atoms tunnelling rather than combining light scattered from different sources. -For clarity we will consider a 1D lattice with lattice spacing $d$ -along the $x$-axis direction, but the results can be applied and -generalised to higher dimensions. Central to engineering the $\hat{F}$ -operator are the coefficients $J_{i,j}$ given by +For clarity we will consider a 1D lattice as shown in +Fig. \ref{fig:LatticeDiagram} with lattice spacing $d$ along the +$x$-axis direction, but the results can be applied and generalised to +higher dimensions. Central to engineering the $\hat{F}$ operator are +the coefficients $J_{i,j}$ given by \begin{equation} \label{eq:Jcoeff} J_{i,j} = \int \mathrm{d} x \,\,\, w(x - x_i) u_1^*(x) u_0(x) w(x - x_j). @@ -453,156 +507,139 @@ The operators $\hat{B}$ and $\hat{D}$ depend on the values of $J_{i,i+1}$ and $J_{i,i}$ respectively. These coefficients are determined by the convolution of the coupling strength between the probe and scattered light modes, $u_1^*(x)u_0(x)$, with the relevant -Wannier function overlap shown in Fig. \ref{fig:WannierOverlaps}. For +Wannier function overlap shown in Fig. \ref{fig:WannierProducts}a. For the $\hat{B}$ operator we calculate the convolution with the nearest -neighbour overlap, $W_1(x) \equiv w(x - d/2) w(x + d/2)$ shown in -Fig. \ref{fig:WannierOverlaps}c, and for the $\hat{D}$ operator we -calculate the convolution with the square of the Wannier function at a -single site, $W_0(x) \equiv w^2(x)$ shown in -Fig. \ref{fig:WannierOverlaps}b. Therefore, in order to enhance the -$\hat{B}$ term we need to maximise the overlap between the light modes -and the nearest neighbour Wannier overlap, $W_1(x)$. This can be -achieved by concentrating the light between the sites rather than at -the positions of the atoms. Ideally, one could measure between two -sites similarly to single-site addressing, which would measure a -single term $\langle \bd_i b_{i+1}+b_i \bd_{i+1}\rangle$, e.g.~by -superposing a deeper optical lattice shifted by $d/2$ with respect to -the original one, catching and measuring the atoms in the new lattice -sites. A single-shot success rate of atom detection will be small. As -single-site addressing is challenging, we proceed with the global -scattering. +neighbour overlap, $W_1(x) \equiv w(x - d/2) w(x + d/2)$, and for the +$\hat{D}$ operator we calculate the convolution with the square of the +Wannier function at a single site, $W_0(x) \equiv w^2(x)$. Therefore, +in order to enhance the $\hat{B}$ term we need to maximise the overlap +between the light modes and the nearest neighbour Wannier overlap, +$W_1(x)$. This can be achieved by concentrating the light between the +sites rather than at the positions of the atoms. Ideally, one could +measure between two sites similarly to single-site addressing +\cite{greiner2009, bloch2011}, which would measure a single term +$\langle \bd_i b_{i+1}+b_i \bd_{i+1}\rangle$. This could be achieved, +for example, by superposing a deeper optical lattice shifted by $d/2$ +with respect to the original one, catching and measuring the atoms in +the new lattice sites. A single-shot success rate of atom detection +will be small. As single-site addressing is challenging, we proceed +with the global scattering. -\mynote{Fix labels in this figure} -\begin{figure}[htbp!] - \centering - \includegraphics[width=1.0\textwidth]{Wannier1} - \includegraphics[width=1.0\textwidth]{Wannier2} - \caption[Wannier Function Overlaps]{(a) The Wannier functions - corresponding to four neighbouring sites in a 1D - lattice. $\lambda$ is the wavelength of the trapping beams, thus - lattice sites occur every $\lambda/2$. (Bottom Left) The square of - a single Wannier function - this quantity is used when evaluating - $\hat{D}$. It's much larger than the overlap between two - neighbouring Wannier functions, but it is localised to the - position of the lattice site it belongs to. (Bottom Right) The - overlap of two neighbouring Wannier functions - this quantity is - used when evaluating $\hat{B}$. It is much smaller than the square - of a Wannier function, but since it's localised in between the - sites, thus $\hat{B}$ can be maximised while $\hat{D}$ minimised - by focusing the light in between the sites.} - \label{fig:WannierOverlaps} -\end{figure} - -\mynote{show the expansion into an FT} +\mynote{Potentially expand details of the derivation of these equations} In order to calculate the $J_{i,j}$ coefficients we perform numerical -calculations using realistic Wannier functions. However, it is -possible to gain some analytic insight into the behaviour of these -values by looking at the Fourier transforms of the Wannier function -overlaps, $\mathcal{F}[W_{0,1}](k)$, shown in Fig. -\ref{fig:WannierFT}b. This is because the light mode product, -$u_1^*(x) u_0(x)$, can be in general decomposed into a sum of -oscillating exponentials of the form $e^{i k x}$ making the integral -in Eq. \eqref{eq:Jcoeff} a sum of Fourier transforms of -$W_{0,1}(x)$. We consider both the detected and probe beam to be -standing waves which gives the following expressions for the $\hat{D}$ -and $\hat{B}$ operators -\begin{eqnarray} +calculations using realistic Wannier functions +\cite{walters2013}. However, it is possible to gain some analytic +insight into the behaviour of these values by looking at the Fourier +transforms of the Wannier function overlaps, +$\mathcal{F}[W_{0,1}](k)$, shown in Fig. +\ref{fig:WannierProducts}b. This is because the for plane and standing +wave light modes the product $u_1^*(x) u_0(x)$ can be in general +decomposed into a sum of oscillating exponentials of the form +$e^{i k x}$ making the integral in Eq. \eqref{eq:Jcoeff} a sum of +Fourier transforms of $W_{0,1}(x)$. We consider both the detected and +probe beam to be standing waves which gives the following expressions +for the $\hat{D}$ and $\hat{B}$ operators +\begin{align} \label{eq:FTs} - \hat{D} = - \frac{1}{2}[\mathcal{F}[W_0](k_-)\sum_m\hat{n}_m\cos(k_- x_m - +\varphi_-) - \nonumber\\ +\mathcal{F}[W_0](k_+)\sum_m\hat{n}_m\cos(k_+ - x_m +\varphi_+)], \nonumber\\ \hat{B} = - \frac{1}{2}[\mathcal{F}[W_1](k_-)\sum_m\hat{B}_m\cos(k_- x_m - +\frac{k_-d}{2}+\varphi_-) - \nonumber\\ +\mathcal{F}[W_1](k_+)\sum_m\hat{B}_m\cos(k_+ - x_m +\frac{k_+d}{2}+\varphi_+)], -\end{eqnarray} -where $k_\pm = k_{0x} \pm k_{1x}$, $k_{(0,1)x} = k_{0,1} -\sin(\theta_{0,1}$), $\hat{B}_m=b^\dag_mb_{m+1}+b_mb^\dag_{m+1}$, and + \hat{D} = & \frac{1}{2}[\mathcal{F}[W_0](k_-)\sum_m\hat{n}_m\cos(k_- + x_m +\varphi_-) \nonumber\\ + & + \mathcal{F}[W_0](k_+)\sum_m\hat{n}_m\cos(k_+ x_m +\varphi_+)], + \nonumber\\ + \hat{B} = & \frac{1}{2}[\mathcal{F}[W_1](k_-)\sum_m\hat{B}_m\cos(k_- x_m + +\frac{k_-d}{2}+\varphi_-) \nonumber\\ + & +\mathcal{F}[W_1](k_+)\sum_m\hat{B}_m\cos(k_+ + x_m +\frac{k_+d}{2}+\varphi_+)], +\end{align} +where $k_\pm = k_{0x} \pm k_{1x}$, +$k_{(0,1)x} = k_{0,1} \sin(\theta_{0,1}$), +$\hat{B}_m=b^\dag_mb_{m+1}+b_mb^\dag_{m+1}$, and $\varphi_\pm=\varphi_0 \pm \varphi_1$. The key result is that the $\hat{B}$ operator is phase shifted by $k_\pm d/2$ with respect to the $\hat{D}$ operator since it depends on the amplitude of light in -between the lattice sites and not at the positions of the atoms, +between the lattice sites and not at the positions of the atoms allowing to decouple them at specific angles. -\begin{figure}[htbp!] - \begin{center} - \includegraphics[width=\linewidth]{WF_S} - \end{center} - \caption[Wannier Function Fourier Transforms]{The Wannier function - products: (a) $W_0(x)$ (solid line, right axis), $W_1(x)$ (dashed - line, left axis) and their (b) Fourier transforms - $\mathcal{F}[W_{0,1}]$. The Density $J_{i,i}$ and - matter-interference $J_{i,i+1}$ coefficients in diffraction - maximum (c) and minimum (d) as are shown as functions of standing - wave shifts $\varphi$ or, if one were to measure the quadrature - variance $(\Delta X^F_\beta)^2$, the local oscillator phase - $\beta$. The black points indicate the positions, where light - measures matter interference $\hat{B} \ne 0$, and the density-term - is suppressed, $\hat{D} = 0$. The trapping potential depth is - approximately 5 recoil energies.} - \label{fig:WannierFT} +\begin{figure}[hbtp!] + \centering + \includegraphics[width=0.8\linewidth]{BDiagram} + \caption[Maximising Light-Matter Coupling between Lattice + Sites]{Light field arrangements which maximise coupling, $u_1^*u_0$, + between lattice sites. The thin black line indicates the trapping + potential (not to scale). (a) Arrangement for the uniform pattern + $J_{i,i+1} = J_1$. (b) Arrangement for spatially varying pattern + $J_{i,i+1}=(-1)^m J_2$; here $u_0=1$ so it is not shown and $u_1$ + is real thus $u_1^*u_0=u_1$. \label{fig:BDiagram}} \end{figure} -The simplest case is to find a diffraction maximum where $J_{i,i+1} = -J_B$. This can be achieved by crossing the light modes such that -$\theta_0 = -\theta_1$ and $k_{0x} = k_{1x} = \pi/d$ and choosing the -light mode phases such that $\varphi_+ = 0$. Fig. \ref{fig:WannierFT}c -shows the value of the $J_{i,j}$ coefficients under these -circumstances. In order to make the $\hat{B}$ contribution to light -scattering dominant we need to set $\hat{D} = 0$ which from -Eq. \eqref{eq:FTs} we see is possible if $\varphi_0 = -\varphi_1 = -\arccos[-\mathcal{F}[W_0](2\pi/d)/\mathcal{F}[W_0](0)]/2$. This -arrangement of light modes maximizes the interference signal, +\begin{figure}[hbtp!] + \centering + \includegraphics[width=\linewidth]{WF_S} + \caption[Wannier Function Products]{The Wannier function products: + (a) $W_0(x)$ (solid line, right axis), $W_1(x)$ (dashed line, left + axis) and their (b) Fourier transforms $\mathcal{F}[W_{0,1}]$. The + Density $J_{i,i}$ and matter-interference $J_{i,i+1}$ coefficients + in diffraction maximum (c) and minimum (d) as are shown as + functions of standing wave shifts $\varphi$ or, if one were to + measure the quadrature variance $(\Delta X^F_\beta)^2$, the local + oscillator phase $\beta$. The black points indicate the positions, + where light measures matter interference $\hat{B} \ne 0$, and the + density-term is suppressed, $\hat{D} = 0$. The trapping potential + depth is approximately 5 recoil energies.} + \label{fig:WannierProducts} +\end{figure} + +The simplest case is to find a diffraction maximum where +$J_{i,i+1} = J_1$, where $J_1$ is a constant. This can be achieved by +crossing the light modes such that $\theta_0 = -\theta_1$ and +$k_{0x} = k_{1x} = \pi/d$ and choosing the light mode phases such that +$\varphi_+ = 0$. Fig. \ref{fig:BDiagram}a shows the resulting light +mode functions and their product along the lattice and +Fig. \ref{fig:WannierProducts}c shows the value of the $J_{i,j}$ +coefficients under these circumstances. In order to make the $\hat{B}$ +contribution to light scattering dominant we need to set $\hat{D} = 0$ +which from Eq. \eqref{eq:FTs} we see is possible if +\begin{equation} + \xi \equiv \varphi_0 = -\varphi_1 = + \frac{1}{2}\arccos[-\mathcal{F}[W_0]\left(\frac{2\pi}{d}\right)/\mathcal{F}[W_0](0)]. +\end{equation} +This arrangement of light modes maximizes the interference signal, $\hat{B}$, by suppressing the density signal, $\hat{D}$, via -interference compensating for the spreading of the Wannier -functions. +interference compensating for the spreading of the Wannier functions. Another possibility is to obtain an alternating pattern similar -corresponding to a classical diffraction minimum. We consider an -arrangement where the beams are arranged such that $k_{0x} = 0$ and +corresponding to a diffraction minimum. We consider an arrangement +where the beams are arranged such that $k_{0x} = 0$ and $k_{1x} = \pi/d$ which gives the following expressions for the density and interference terms -\begin{eqnarray} +\begin{align} \label{eq:DMin} - \hat{D} = \mathcal{F}[W_0](\pi/d) \sum_m (-1)^m \hat{n}_m - \cos(\varphi_0) \cos(\varphi_1) \nonumber \\ \hat{B} = - -\mathcal{F}[W_1](\pi/d) \sum_m (-1)^m \hat{B}_m - \cos(\varphi_0) \sin(\varphi_1). -\end{eqnarray} -The corresponding $J_{i,j}$ coefficients are shown in -Fig. \ref{fig:WannierFT}d for $\varphi_0=0$. It is clear that for -$\varphi_1 = \pm \pi/2$, $\hat{D} = 0$, which is intuitive as this -places the lattice sites at the nodes of the mode $u_1(x)$. This is a -diffraction minimum as the light amplitude is also zero, $\langle -\hat{B} \rangle = 0$, because contributions from alternating -inter-site regions interfere destructively. However, the intensity -$\langle \ad_1 \a \rangle = |C|^2 \langle \hat{B}^2 \rangle$ is -proportional to the variance of $\hat{B}$ and is non-zero. + \hat{D} = & \mathcal{F}[W_0](\pi/d) \sum_m (-1)^m \hat{n}_m + \cos(\varphi_0) \cos(\varphi_1) \nonumber \\ + \hat{B} = & -\mathcal{F}[W_1](\pi/d) \sum_m (-1)^m \hat{B}_m + \cos(\varphi_0) \sin(\varphi_1). +\end{align} +The corresponding $J_{i,j}$ coefficients are given by +$J_{i,i+1} = -(-1)^i J_2$, where $J_2$ is a constant, and are shown in +Fig. \ref{fig:WannierProducts}d for $\varphi_0=0$. The light mode +coupling along the lattice is shown in Fig. \ref{fig:BDiagram}b. It is +clear that for $\varphi_1 = \pm \pi/2$, $\hat{D} = 0$, which is +intuitive as this places the lattice sites at the nodes of the mode +$u_1(x)$. This is a diffraction minimum as the light amplitude is also +zero, $\langle \hat{B} \rangle = 0$, because contributions from +alternating inter-site regions interfere destructively. However, the +intensity $\langle \ad_1 \a \rangle = |C|^2 \langle \hat{B}^2 \rangle$ +is proportional to the variance of $\hat{B}$ and is non-zero. -\mynote{explain quadrature} Alternatively, one can use the arrangement for a diffraction minimum described above, but use travelling instead of standing waves for the -probe and detected beams and measure the light quadrature variance. In -this case $\hat{X}^F_\beta = \hat{D} \cos(\beta) + \hat{B} -\sin(\beta)$ and by varying the local oscillator phase, one can choose -which conjugate operator to measure. - -\mynote{fix labels} -\begin{figure}[hbtp!] - \includegraphics[width=\linewidth]{BDiagram} - \caption[Maximising Light-Matter Coupling between Lattice - Sites]{Light field arrangements which maximise coupling, - $u_1^*u_0$, between lattice sites. The thin black line - indicates the trapping potential (not to scale). (a) - Arrangement for the uniform pattern $J_{m,m+1} = J_1$. (b) - Arrangement for spatially varying pattern $J_{m,m+1}=(-1)^m - J_2$; here $u_0=1$ so it is not shown and $u_1$ is real thus - $u_1^*u_0=u_1$. \label{fig:BDiagram}} -\end{figure} +probe and detected beams and measure the light quadrature variance. +In this case +$\hat{X}^F_\beta = \hat{D} \cos(\beta) + \hat{B} \sin(\beta)$ and by +varying the local oscillator phase, one can choose which conjugate +operator to measure. \subsection{Electric Field Stength} +\label{sec:Efield} The Electric field operator at position $\b{r}$ and at time $t$ is usually written in terms of its positive and negative components: @@ -634,7 +671,7 @@ atom located at $\b{r}^\prime$ at the observation point $\b{r}$ is given by \begin{equation} \label{eq:Ep} - \b{\hat{E}}^{(+)}(\b{r},\b{r}^\prime,t) = \frac{\omega_a^2 d \sin \eta}{4 \pi + \b{\hat{E}}^{(+)}(\b{r},\b{r}^\prime,t) = \frac{\omega_a^2 d_A \sin \eta}{4 \pi \epsilon_0 c^2 |\b{r} - \b{r}^\prime|} \hat{\epsilon} \sigma^- \left( \b{r}^\prime, t - \frac{|\b{r} - \b{r}^\prime|}{c} \right), \end{equation} @@ -644,10 +681,9 @@ in the far field, $\eta$ is the angle the dipole makes with $\b{r} - \b{r}^\prime$, $\hat{\epsilon}$ is the polarization vector which is perpendicular to $\b{r} - \b{r}^\prime$ and lies in the plane defined by $\b{r} - \b{r}^\prime$ and the dipole, $\omega_a$ is the -atomic transition frequency, and $d$ is the dipole matrix element +atomic transition frequency, and $d_A$ is the dipole matrix element between the two levels, and $c$ is the speed of light in vacuum. - We have already derived an expression for the atomic lowering operator, $\sigma^-$, in Eq. \eqref{eq:sigmam} and it is given by \begin{equation} diff --git a/Chapter3/Figs/Ep1.pdf b/Chapter3/Figs/Ep1.pdf new file mode 100644 index 0000000..eecac9a Binary files /dev/null and b/Chapter3/Figs/Ep1.pdf differ diff --git a/Chapter3/Figs/Quads.pdf b/Chapter3/Figs/Quads.pdf new file mode 100644 index 0000000..5e40e5c Binary files /dev/null and b/Chapter3/Figs/Quads.pdf differ diff --git a/Chapter3/Figs/WF_S.pdf b/Chapter3/Figs/WF_S.pdf new file mode 100644 index 0000000..416de5b Binary files /dev/null and b/Chapter3/Figs/WF_S.pdf differ diff --git a/Chapter3/Figs/oph11.pdf b/Chapter3/Figs/oph11.pdf new file mode 100644 index 0000000..c39aa2c Binary files /dev/null and b/Chapter3/Figs/oph11.pdf differ diff --git a/Chapter3/Figs/oph22.pdf b/Chapter3/Figs/oph22.pdf new file mode 100644 index 0000000..a92cbbf Binary files /dev/null and b/Chapter3/Figs/oph22.pdf differ diff --git a/Chapter3/chapter3.tex b/Chapter3/chapter3.tex index 42b2a5e..f65d7ee 100644 --- a/Chapter3/chapter3.tex +++ b/Chapter3/chapter3.tex @@ -2,8 +2,8 @@ %*********************************** Third Chapter ***************************** %******************************************************************************* -\chapter{Probing Matter-Field and Atom-Number Correlations in Optical Lattices - by Global Nondestructive Addressing} %Title of the Third Chapter +\chapter{Probing Correlations by Global +Nondestructive Addressing} %Title of the Third Chapter \ifpdf \graphicspath{{Chapter3/Figs/Raster/}{Chapter3/Figs/PDF/}{Chapter3/Figs/}} @@ -13,3 +13,481 @@ %********************************** %First Section ************************************** + +\section{Introduction} + +Having developed the basic theoretical framework within which we can +treat the fully quantum regime of light-matter interactions we now +consider possible applications. There are three prominent directions +in which we can apply our model: nondestructive probing, quantum +measurement backaction and quantum optical lattices. Here, we deal +with the first of the three options. + +\mynote{adjust for the fact that the derivation of B operator has been moved} +\mynote{update some outdated mentions to previous experiments} +In this chapter we develop a method to measure properties of ultracold +gases in optical lattices by light scattering. We show that such +measurements can reveal not only density correlations, but also +matter-field interference. Recent quantum non-demolition (QND) +schemes \cite{rogers2014, mekhov2007prl, eckert2008} probe density +fluctuations and thus inevitably destroy information about phase, +i.e.~the conjugate variable, and as a consequence destroy matter-field +coherence. In contrast, we focus on probing the atom interference +between lattice sites. Our scheme is nondestructive in contrast to +totally destructive methods such as time-of-flight measurements. It +enables in-situ probing of the matter-field coherence at its shortest +possible distance in an optical lattice, i.e. the lattice period, +which defines key processes such as tunnelling, currents, phase +gradients, etc. This is achieved by concentrating light between the +sites. By contrast, standard destructive time-of-flight measurements +deal with far-field interference and a relatively near-field one was +used in Ref. \cite{miyake2011}. Such a counter-intuitive configuration +may affect works on quantum gases trapped in quantum potentials +\cite{mekhov2012, mekhov2008, larson2008, chen2009, habibian2013, + ivanov2014, caballero2015} and quantum measurement-induced +preparation of many-body atomic states \cite{mazzucchi2016, + mekhov2009prl, pedersen2014, elliott2015}. Within the mean-field +treatment, this enables measurements of the order parameter, +matter-field quadratures and squeezing. This can have an impact on +atom-wave metrology and information processing in areas where quantum +optics already made progress, e.g., quantum imaging with pixellized +sources of non-classical light \cite{golubev2010, kolobov1999}, as an +optical lattice is a natural source of multimode nonclassical matter +waves. + +Furthermore, the scattering angular distribution is nontrivial, even +when classical diffraction is forbidden and we derive generalized +Bragg conditions for this situation. The method works beyond +mean-field, which we demonstrate by distinguishing all three phases in +the Mott insulator - superfluid - Bose glass phase transition in a 1D +disordered optical lattice. We underline that transitions in 1D are +much more visible when changing an atomic density rather than for +fixed-density scattering. It was only recently that an experiment +distinguished a Mott insulator from a Bose glass \cite{derrico2014}. + +\section{Global Nondestructive Measurement} + +As we have seen in section \ref{sec:a} under certain approximations +the scattered light mode, $\a_1$, is linked to the quantum state of +matter via +\begin{equation} + \label{eq:a-3} + \a_1 = C \hat{F} = C \left(\hat{D} + \hat{B} \right), +\end{equation} +where the atomic operators $\hat{D}$ and $\hat{B}$, given by +Eq. \eqref{eq:D} and Eq. \eqref{eq:B}, are responsible for the +coupling to on-site density and inter-site interference +respectively. It crucial to note that light couples to the bosons via +an operator as this makes it sensitive to the quantum state of the +matter. + +Here, we will use this fact that the light is sensitive to the atomic +quantum state due to the coupling of the optical and matter fields via +operators in order to develop a method to probe the properties of an +ultracold gas. Therefore, we neglect the measurement back-action and +we will only consider expectation values of light observables. Since +the scheme is nondestructive (in some cases, it even satisfies the +stricter requirements for a QND measurement \cite{mekhov2007pra, + mekhov2012}) and the measurement only weakly perturbs the system, +many consecutive measurements can be carried out with the same atoms +without preparing a new sample. Again, we will show how the extreme +flexibility of the the measurement operator $\hat{F}$ allows us to +probe a variety of different atomic properties in-situ ranging from +density correlations to matter-field interference. + +\subsection{On-site density measurements} + +Typically, the dominant term in $\hat{F}$ is the density term +$\hat{D}$, rather than inter-site matter-field interference $\hat{B}$ +\cite{mekhov2007pra, rist2010, lakomy2009, ruostekoski2009, + LP2009}. However, before we move onto probing the interference +terms, $\hat{B}$, we will first discuss typical light scattering. We +start with a simpler case when scattering is faster than tunneling and +$\hat{F} = \hat{D}$. This corresponds to a QND scheme +\cite{mekhov2007prl, mekhov2007pra, eckert2008, rogers2014}. The +density-related measurement destroys some matter-phase coherence in +the conjugate variable \cite{mekhov2009pra, LP2010, LP2011} +$\bd_i b_{i+1}$, but this term is neglected. For this purpose we will +define an auxiliary quantity, +\begin{equation} + \label{eq:R} + R = \langle \ad_1 \a_1 \rangle - | \langle \a_1 \rangle |^2, +\end{equation} +which we will call the ``quantum addition'' to light scattering. $R$ +is simply the full light intensity minus the classical field intensity +and thus it faithfully represents the new contribution from the +quantum light-matter interaction to the diffraction pattern. + +\begin{figure}[htbp!] + \centering + \includegraphics[width=\linewidth]{Ep1} + \caption[Light Scattering Angular Distribution]{Light intensity + scattered into a standing wave mode from a superfluid in a 3D + lattice (units of $R/N_K$). Arrows denote incoming travelling wave + probes. The Bragg condition, $\Delta \b{k} = \b{G}$, is not + fulfilled, so there is no classical diffraction, but intensity + still shows multiple peaks, whose heights are tunable by simple + phase shifts of the optical beams: (a) $\varphi_1=0$; (b) + $\varphi_1=\pi/2$. Interestingly, there is also a significant + uniform background level of scattering which does not occur in its + classical counterpart. } + \label{fig:Scattering} +\end{figure} + +In a deep lattice, +\begin{equation} + \hat{D}=\sum_i^K u_1^*({\bf r}_i) u_0({\bf r}_i) \hat{n}_i, +\end{equation} +which for travelling +[$u_l(\b{r})=\exp(i \b{k}_l \cdot \b{r}+i\varphi_l)$] or standing +[$u_l(\b{r})=\cos(\b{k}_l \cdot \b{r}+\varphi_l)$] waves is just a +density Fourier transform at one or several wave vectors +$\pm(\b{k}_1 \pm \b{k}_0)$. The quadrature, as defined in section +\ref{sec:a}, for two travelling waves is reduced to +\begin{equation} + \hat{X}^F_\beta = \sum_i^K \hat{n}_i\cos[(\b{k}_1 - \b{k}_2) \cdot + \b{r}_i - \beta]. +\end{equation} +Note that different light quadratures are differently coupled to the +atom distribution, hence varying local oscillator phase and detection +angle, one scans the coupling from maximal to zero. An identical +expression exists for $\hat{D}$ for a standing wave, where $\beta$ is +replaced by $\varphi_l$, and scanning is achieved by varying the +position of the wave with respect to atoms. Thus, variance +$(\Delta X^F_\beta)^2$ and quantum addition $R$, have a non-trivial +angular dependence, showing more peaks than classical diffraction and +the peaks can be tuned by the light-atom coupling. + +Fig. \ref{fig:Scattering} shows the angular dependence of $R$ for +standing and travelling waves scattering from bosons in a 3D optical +lattice. The isotropic background gives the density fluctuations +[$R = K( \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2 )/2$ in +mean-field with inter-site correlations neglected]. The radius of the +sphere changes from zero, when it is a Mott insulator with suppressed +fluctuations, to half the atom number at $K$ sites, $N_K/2$, in the +deep superfluid. There exist peaks at angles different than the +classical Bragg ones and thus, can be observed without being masked by +classical diffraction. Interestingly, even if 3D diffraction +\cite{miyake2011} is forbidden as seen in Fig. \ref{fig:Scattering}, +the peaks are still present. As $(\Delta X^F_\beta)^2$ and $R$ are +quadratic variables, the generalized Bragg conditions for the peaks +are $2 \Delta \b{k} = \b{G}$ for quadratures of travelling waves, +where $\Delta \b{k} = \b{k}_0 - \b{k}_1$ and $\b{G}$ is the reciprocal +lattice vector, and $2 \b{k}_1 = \b{G}$ for standing wave $\a_1$ and +travelling $\a_0$, which is clearly different from the classical Bragg +condition $\Delta \b{k} = \b{G}$. The peak height is tunable by the +local oscillator phase or standing wave shift as seen in Fig. +\ref{fig:Scattering}b. + +In section \ref{sec:Efield} we have estimated the mean photon +scattering rates integrated over the solid angle for the only two +experiments so far on light diffraction from truly ultracold bosons +where the measurement object was light +\begin{equation} + n_{\Phi}= \left(\frac{\Omega_0}{\Delta_a}\right)^2 \frac{\Gamma K}{8} + (\langle\hat{n}^2\rangle-\langle\hat{n}\rangle^2). +\end{equation} +The background signal should reach $n_\Phi \approx 10^6$ s$^{-1}$ in +Ref. \cite{weitenberg2011} (150 atoms in 2D), and +$n_\Phi \approx 10^{11}$ s$^{-1}$ in Ref. \cite{miyake2011} ($10^5$ +atoms in 3D). These numbers show that the diffraction patterns we have +seen due to the ``quantum addition'' should be visible using currently +available technology, especially since the most prominent features, +such as Bragg diffraction peaks, do not coincide at all with the +classical diffraction pattern. + +\subsection{Matter-field interference measurements} + +We now focus on enhancing the interference term $\hat{B}$ in the +operator $\hat{F}$. + +Firstly, we will use this result to show how one can probe +$\langle \hat{B} \rangle$ which in MF gives information about the +matter-field amplitude, $\Phi = \langle b \rangle$. + +Hence, by measuring the light quadrature we probe the kinetic energy +and, in MF, the matter-field amplitude (order parameter) $\Phi$: +$\langle \hat{X}^F_{\beta=0} \rangle = | \Phi |^2 +\mathcal{F}[W_1](2\pi/d) (K-1)$. + +Secondly, we show that it is also possible to access the fluctuations +of matter-field quadratures $\hat{X}^b_\alpha = (b e^{-i\alpha} + \bd +e^{i\alpha})/2$, which in MF can be probed by measuring the variance +of $\hat{B}$. Across the phase transition, the matter field changes +its state from Fock (in MI) to coherent (deep SF) through an +amplitude-squeezed state as shown in Fig. \ref{Quads}(a,b). + +Assuming $\Phi$ is real in MF: +\begin{equation} + \label{intensity} + \langle \ad_1 \a_1 \rangle = 2 |C|^2(K-1)\mathcal{F}^2[W_1](\frac{\pi}{d}) + \times [ ( \langle b^2 \rangle - \Phi^2 )^2 + ( n - \Phi^2 ) ( 1 +n - \Phi^2 ) ] +\end{equation} +and it is shown as a function of $U/(zJ^\text{cl})$ in +Fig. \ref{Quads}. Thus, since measurement in the diffraction maximum +yields $\Phi^2$ we can deduce $\langle b^2 \rangle - \Phi^2$ from the +intensity. This quantity is of great interest as it gives us access to +the quadrature variances of the matter-field +\begin{equation} + (\Delta X^b_{0,\pi/2})^2 = 1/4 + [(n - \Phi^2) \pm + (\langle b^2 \rangle - \Phi^2)]/2, +\end{equation} +where $n=\langle\hat{n}\rangle$ is the mean on-site atomic density. + +\begin{figure}[htbp!] + \centering + \includegraphics[width=\linewidth]{Quads} + \captionsetup{justification=centerlast,font=small} + \caption[Mean-Field Matter Quadratures]{Photon number scattered in a + diffraction minimum, given by Eq. (\ref{intensity}), where + $\tilde{C} = 2 |C|^2 (K-1) \mathcal{F}^2 [W_1](\pi/d)$. More + light is scattered from a MI than a SF due to the large + uncertainty in phase in the insulator. (a) The variances of + quadratures $\Delta X^b_0$ (solid) and $\Delta X^b_{\pi/2}$ + (dashed) of the matter field across the phase transition. Level + 1/4 is the minimal (Heisenberg) uncertainty. There are three + important points along the phase transition: the coherent state + (SF) at A, the amplitude-squeezed state at B, and the Fock state + (MI) at C. (b) The uncertainties plotted in phase space.} + \label{Quads} +\end{figure} + +Probing $\hat{B}^2$ gives us access to kinetic energy fluctuations +with 4-point correlations ($\bd_i b_j$ combined in pairs). Measuring +the photon number variance, which is standard in quantum optics, will +lead up to 8-point correlations similar to 4-point density +correlations \cite{mekhov2007pra}. These are of significant interest, +because it has been shown that there are quantum entangled states that +manifest themselves only in high-order correlations +\cite{kaszlikowski2008}. + +Surprisingly, inter-site terms scatter more light from a Mott +insulator than a superfluid Eq. \eqref{intensity}, as shown in +Fig. \eqref{Quads}, although the mean inter-site density +$\langle \hat{n}(\b{r})\rangle $ is tiny in a MI. This reflects a +fundamental effect of the boson interference in Fock states. It indeed +happens between two sites, but as the phase is uncertain, it results +in the large variance of $\hat{n}(\b{r})$ captured by light as shown +in Eq. \eqref{intensity}. The interference between two macroscopic +BECs has been observed and studied theoretically +\cite{horak1999}. When two BECs in Fock states interfere a phase +difference is established between them and an interference pattern is +observed which disappears when the results are averaged over a large +number of experimental realizations. This reflects the large +shot-to-shot phase fluctuations corresponding to a large inter-site +variance of $\hat{n}(\b{r})$. By contrast, our method enables the +observation of such phase uncertainty in a Fock state directly between +lattice sites on the microscopic scale in-situ. + +\subsection{Mapping the quantum phase diagram} + +\begin{figure}[htbp!] + \centering + \includegraphics[width=\linewidth]{oph11} + \caption[Mapping the Bose-Hubbard Phase Diagram]{(a) The angular + dependence of scattered light $R$ for a superfluid (thin black, + left scale, $U/2J^\text{cl} = 0$) and Mott insulator (thick green, + right scale, $U/2J^\text{cl} =10$). The two phases differ in both + their value of $R_\text{max}$ as well as $W_R$ showing that + density correlations in the two phases differ in magnitude as well + as extent. Light scattering maximum $R_\text{max}$ is shown in (b, + d) and the width $W_R$ in (c, e). It is very clear that varying + chemical potential $\mu$ or density $\langle n\rangle$ sharply + identifies the superfluid-Mott insulator transition in both + quantities. (b) and (c) are cross-sections of the phase diagrams + (d) and (e) at $U/2J^\text{cl}=2$ (thick blue), 3 (thin purple), + and 4 (dashed blue). Insets show density dependencies for the + $U/(2 J^\text{cl}) = 3$ line. $K=M=N=25$.} + \label{fig:SFMI} +\end{figure} + +We have shown how in mean-field, we can track the order parameter, +$\Phi$, by probing the matter-field interference using the coupling of +light to the $\hat{B}$ operator. In this case, it is very easy to +follow the superfluid to Mott insulator quantum phase transition since +we have direct access to the order parameter which goes to zero in the +insulating phase. In fact, if we're only interested in the critical +point, we only need access to any quantity that yields information +about density fluctuations which also go to zero in the MI phase and +this can be obtained by measuring +$\langle \hat{D}^\dagger \hat{D} \rangle$. However, there are many +situations where the mean-field approximation is not a valid +description of the physics. A prominent example is the Bose-Hubbard +model in 1D \cite{cazalilla2011, ejima2011, kuhner2000, pino2012, + pino2013}. Observing the transition in 1D by light at fixed density +was considered to be difficult \cite{rogers2014} or even impossible +\cite{roth2003}. By contrast, here we propose varying the density or +chemical potential, which sharply identifies the transition. We +perform these calculations numerically by calculating the ground state +using DMRG methods \cite{tnt} from which we can compute all the +necessary atomic observables. Experiments typically use an additional +harmonic confining potential on top of the optical lattice to keep the +atoms in place which means that the chemical potential will vary in +space. However, with careful consideration of the full +($\mu/2J^\text{cl}$, $U/2J^\text{cl}$) phase diagrams in +Fig. \ref{fig:SFMI}(d,e) our analysis can still be applied to the +system \cite{batrouni2002}. + +The 1D phase transition is best understood in terms of two-point +correlations as a function of their separation \cite{giamarchi}. In +the Mott insulating phase, the two-point correlations +$\langle \bd_i b_j \rangle$ and +$\langle \delta \hat{n}_i \delta \hat{n}_j \rangle$ +($\delta \hat{n}_i =\hat{n}_i-\langle \hat{n}_i\rangle$) decay +exponentially with $|i-j|$. On the other hand the superfluid will +exhibit long-range order which in dimensions higher than one, +manifests itself with an infinite correlation length. However, in 1D +only pseudo long-range order happens and both the matter-field and +density fluctuation correlations decay algebraically \cite{giamarchi}. + +The method we propose gives us direct access to the structure factor, +which is a function of the two-point correlation $\langle \delta +\hat{n}_i \delta \hat{n}_j \rangle$, by measuring the light +intensity. For two travelling waves maximally coupled to the density +(atoms are at light intensity maxima so $\hat{F} = \hat{D}$), the +quantum addition is given by +\begin{equation} + R =\sum_{i, j} \exp[i (\mathbf{k}_1 - \mathbf{k}_0) + (\mathbf{r}_i - \mathbf{r}_j)] \langle \delta \hat{n}_i \delta + \hat{n}_j \rangle, +\end{equation} + +The angular dependence of $R$ for a Mott insulator and a superfluid is +shown in Fig. \ref{fig:SFMI}a, and there are two variables +distinguishing the states. Firstly, maximal $R$, +$R_\text{max} \propto \sum_i \langle \delta \hat{n}_i^2 \rangle$, +probes the fluctuations and compressibility $\kappa'$ +($\langle \delta \hat{n}^2_i \rangle \propto \kappa' \langle \hat{n}_i +\rangle$). The Mott insulator is incompressible and thus will have +very small on-site fluctuations and it will scatter little light +leading to a small $R_\text{max}$. The deeper the system is in the MI +phase (i.e. that larger the $U/2J^\text{cl}$ ratio is), the smaller +these values will be until ultimately it will scatter no light at all +in the $U \rightarrow \infty$ limit. In Fig. \ref{fig:SFMI}a this can +be seen in the value of the peak in $R$. The value $R_\text{max}$ in +the SF phase ($U/2J^\text{cl} = 0$) is larger than its value in the MI +phase ($U/2J^\text{cl} = 10$) by a factor of +$\sim$25. Figs. \ref{fig:SFMI}(b,d) show how the value of +$R_\text{max}$ changes across the phase transition. We see that the +transition shows up very sharply as $\mu$ is varied. + +Secondly, being a Fourier transform, the width $W_R$ of the dip in $R$ +is a direct measure of the correlation length $l$, $W_R \propto +1/l$. The Mott insulator being an insulating phase is characterised by +exponentially decaying correlations and as such it will have a very +large $W_R$. However, the superfluid in 1D exhibits pseudo long-range +order which manifests itself in algebraically decaying two-point +correlations \cite{giamarchi} which significantly reduces the dip in +the $R$. This can be seen in Fig. \ref{fig:SFMI}a and we can also see +that this identifies the phase transition very sharply as $\mu$ is +varied in Figs. \ref{fig:SFMI}(c,e). One possible concern with +experimentally measuring $W_R$ is that it might be obstructed by the +classical diffraction maxima which appear at angles corresponding to +the minima in $R$. However, the width of such a peak is much smaller +as its width is proportional to $1/M$. + +It is also possible to analyse the phase transition quantitatively +using our method. Unlike in higher dimensions where an order parameter +can be easily defined within the MF approximation there is no such +quantity in 1D. However, a valid description of the relevant 1D low +energy physics is provided by Luttinger liquid theory +\cite{giamarchi}. In this model correlations in the supefluid phase as +well as the superfluid density itself are characterised by the +Tomonaga-Luttinger parameter, $K_b$. This parameter also identifies +the phase transition in the thermodynamic limit at $K_b = 1/2$. This +quantity can be extracted from various correlation functions and in +our case it can be extracted directly from $R$ \cite{ejima2011}. By +extracting this parameter from $R$ for various lattice lengths from +numerical DMRG calculations it was even possible to give a theoretical +estimate of the critical point for commensurate filling, $N = M$, in +the thermodynamic limit to occur at $U/2J^\text{cl} \approx 1.64$ +\cite{ejima2011}. Our proposal provides a method to directly measure +$R$ in a lab which can then be used to experimentally determine the +location of the critical point in 1D. + +So far both variables we considered, $R_\text{max}$ and $W_R$, provide +similar information. Next, we present a case where it is very +different. The Bose glass is a localized insulating phase with +exponentially decaying correlations but large compressibility and +on-site fluctuations in a disordered optical lattice. Therefore, +measuring both $R_\text{max}$ and $W_R$ will distinguish all the +phases. In a Bose glass we have finite compressibility, but +exponentially decaying correlations. This gives a large $R_\text{max}$ +and a large $W_R$. A Mott insulator will also have exponentially +decaying correlations since it is an insulator, but it will be +incompressible. Thus, it will scatter light with a small +$R_\text{max}$ and large $W_R$. Finally, a superfluid will have long +range correlations and large compressibility which results in a large +$R_\text{max}$ and a small $W_R$. + +\begin{figure}[htbp!] + \centering + \includegraphics[width=\linewidth]{oph22} + \caption[Mapping the Disoredered Phase Diagram]{The + Mott-superfluid-glass phase diagrams for light scattering maximum + $R_\text{max}/N_K$ (a) and width $W_R$ (b). Measurement of both + quantities distinguish all three phases. Transition lines are + shifted due to finite size effects \cite{roux2008}, but it is + possible to apply well known numerical methods to extract these + transition lines from such experimental data extracted from $R$ + \cite{ejima2011}. $K=M=N=35$.} + \label{fig:BG} +\end{figure} + +We confirm this in Fig. \ref{fig:BG} for simulations with the ratio of +superlattice- to trapping lattice-period $r\approx 0.77$ for various +disorder strengths $V$ \cite{roux2008}. Here, we only consider +calculations for a fixed density, because the usual interpretation of +the phase diagram in the ($\mu/2J^\text{cl}$, $U/2J^\text{cl}$) plane +for a fixed ratio $V/U$ becomes complicated due to the presence of +multiple compressible and incompressible phases between successive MI +lobes \cite{roux2008}. This way, we have limited our parameter space +to the three phases we are interested in: superfluid, Mott insulator, +and Bose glass. From Fig. \ref{fig:BG} we see that all three phases +can indeed be distinguished. In the 1D BHM there is no sharp MI-SF +phase transition in 1D at a fixed density \cite{cazalilla2011, + ejima2011, kuhner2000, pino2012, pino2013} just like in +Figs. \ref{fig:SFMI}(d,e) if we follow the transition through the tip +of the lobe which corresponds to a line of unit density. However, +despite the lack of an easily distinguishable critical point it is +possible to quantitatively extract the location of the transition +lines by extracting the Tomonaga-Luttinger parameter from the +scattered light, $R$, in the same way it was done for an unperturbed +BHM \cite{ejima2011}. + +Only recently \cite{derrico2014} a Bose glass phase was studied by +combined measurements of coherence, transport, and excitation spectra, +all of which are destructive techniques. Our method is simpler as it +only requires measurement of the quantity $R$ and additionally, it is +nondestructive. + +\section{Conclusions} + +In summary, we proposed a nondestructive method to probe quantum gases +in an optical lattice. Firstly, we showed that the density-term in +scattering has an angular distribution richer than classical +diffraction, derived generalized Bragg conditions, and estimated +parameters for the only two relevant experiments to date +\cite{weitenberg2011, miyake2011}. Secondly, we proposed how to +measure the matter-field interference by concentrating light between +the sites. This corresponds to interference at the shortest possible +distance in an optical lattice. By contrast, standard destructive +time-of-flight measurements deal with far-field interference and a +relatively near-field one was used in Ref. \cite{miyake2011}. This +defines most processes in optical lattices. E.g. matter-field phase +changes may happen not only due to external gradients, but also due to +intriguing effects such quantum jumps leading to phase flips at +neighbouring sites and sudden cancellation of tunneling +\cite{vukics2007}, which should be accessible by our method. In +mean-field, one can measure the matter-field amplitude (order +parameter), quadratures and squeezing. This can link atom optics to +areas where quantum optics has already made progress, e.g., quantum +imaging \cite{golubev2010, kolobov1999}, using an optical lattice as +an array of multimode nonclassical matter-field sources with a high +degree of entanglement for quantum information processing. Thirdly, we +demonstrated how the method accesses effects beyond mean-field and +distinguishes all the phases in the Mott-superfluid-glass transition, +which is currently a challenge \cite{derrico2014}. Based on +off-resonant scattering, and thus being insensitive to a detailed +atomic level structure, the method can be extended to molecules +\cite{LP2013}, spins, and fermions \cite{ruostekoski2009}. diff --git a/Preamble/preamble.tex b/Preamble/preamble.tex index 8bd434a..c4319ea 100644 --- a/Preamble/preamble.tex +++ b/Preamble/preamble.tex @@ -92,7 +92,7 @@ % Choose linespacing as appropriate. Default is one-half line spacing as per the % University guidelines -% \doublespacing + \doublespacing % \onehalfspacing % \singlespacing diff --git a/References/references.bib b/References/references.bib index 07b8e33..add4bb6 100644 --- a/References/references.bib +++ b/References/references.bib @@ -1,6 +1,258 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Books, theses, reference material +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +@book{foot, + author = {Foot, C. J.}, + title = {{Atomic Physics}}, + publisher = {Oxford University Press}, + year = {2005} +} +@book{giamarchi, + author = {Giamarchi, T.}, + title = {{Quantum Physics in One Dimension}}, + publisher = {Clarendon Press, Oxford}, + year = {2003} +} +@phdthesis{weitenbergThesis, + author = {Weitenberg, Christof}, + number = {April}, + title = {{Single-Atom Resolved Imaging and Manipulation in an Atomic + Mott Insulator}}, + year = {2011} +} +@article{steck, + author = {Steck, Daniel Adam}, + title = {{Rubidium 87 D Line Data Author contact information :}}, + url = {http://steck.us/alkalidata} +} +@inbook{Scully, + author = {Scully, M. and Zubairy, S.}, + title = {{Quantum Optics}}, + publisher = {Cambridge University Press}, + chapter = {10.1}, + pages = {293}, + year = {1997} +} +@misc{tnt, + howpublished="\url{http://ccpforge.cse.rl.ac.uk/gf/project/tntlibrary/}" +} + + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Igor's original papers +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +@article{mekhov2007prl, + title={Cavity-enhanced light scattering in optical lattices to probe + atomic quantum statistics}, + author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut}, + journal={Physical review letters}, + volume={98}, + number={10}, + pages={100402}, + year={2007}, + publisher={APS} +} +@article{mekhov2007pra, + title={Light scattering from ultracold atoms in optical lattices as + an optical probe of quantum statistics}, + author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut}, + journal={Physical Review A}, + volume={76}, + number={5}, + pages={053618}, + year={2007}, + publisher={APS} +} +@article{mekhov2008, + title = {Dicke quantum phase transition with a superfluid gas in an + optical cavity}, + author = {Maschler, C. and Mekhov, I. B. and Ritsch, H.}, + journal = {Eur. Phys. J. D}, + volume = {146}, + pages = {545}, + year = {2008}, +} +@article{mekhov2009prl, + author = {Mekhov, Igor B and Ritsch, Helmut}, + doi = {10.1103/PhysRevLett.102.020403}, + journal = {Phys. Rev. Lett.}, + month = jan, + number = {2}, + pages = {020403}, + title = {{Quantum Nondemolition Measurements and State Preparation + in Quantum Gases by Light Detection}}, + volume = {102}, + year = {2009} +} +@article{mekhov2009pra, + author = {Mekhov, Igor B and Ritsch, Helmut}, + doi = {10.1103/PhysRevA.80.013604}, + journal = {Phys. Rev. A}, + month = jul, + number = {1}, + pages = {013604}, + title = {{Quantum optics with quantum gases: Controlled state + reduction by designed light scattering}}, + volume = {80}, + year = {2009} +} +@article{LP2009, + title={Quantum optics with quantum gases}, + author={Mekhov, Igor B and Ritsch, Helmut}, + journal={Laser physics}, + volume={19}, + number={4}, + pages={610--615}, + year={2009}, + publisher={Springer} +} +@article{LP2010, + author = {Mekhov, Igor B and Ritsch, Helmut}, + doi = {10.1134/S1054660X10050105}, + journal = {Laser Phys.}, + volume = {20}, + pages = {694}, + title = {Quantum Optical Measurements in Ultracold Gases: + Macroscopic Bose–Einstein Condensates}, + year = {2010} +} +@article{LP2011, + author = {Mekhov, Igor B and Ritsch, Helmut}, + doi = {10.1134/S1054660X11150163}, + journal = {Laser Phys.}, + volume = {21}, + pages = {1486}, + title = {Atom State Evolution and Collapse in Ultracold Gases during + Light Scattering into a Cavity}, + year = {2011} +} +@article{LP2013, + author={Igor B Mekhov}, + title={Quantum non-demolition detection of polar molecule complexes: + dimers, trimers, tetramers}, + journal={Laser Phys.}, + volume={23}, + number={1}, + pages={015501}, + year={2013}, +} +@article{mekhov2012, + title={Quantum optics with ultracold quantum gases: towards the full + quantum regime of the light--matter interaction}, + author={Mekhov, Igor B and Ritsch, Helmut}, + journal={Journal of Physics B: Atomic, Molecular and Optical + Physics}, + volume={45}, + number={10}, + pages={102001}, + year={2012}, + publisher={IOP Publishing} +} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Group papers +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +@article{elliott2015, + author = {Elliott, T. J. and Kozlowski, W. and Caballero-Benitez, + S. F. and Mekhov, I. B.}, + doi = {10.1103/PhysRevLett.114.113604}, + journal = {Phys. Rev. Lett.}, + pages = {113604}, + title = {{Multipartite Entangled Spatial Modes of Ultracold Atoms + Generated and Controlled by Quantum Measurement}}, + volume = {114}, + year = {2015} +} +@article{atoms2015, + title={Probing and Manipulating Fermionic and Bosonic Quantum Gases + with Quantum Light}, + author={Elliott, Thomas J and Mazzucchi, Gabriel and Kozlowski, + Wojciech and Caballero-Benitez, Santiago F and + Mekhov, Igor B}, + journal={Atoms}, + volume={3}, + number={3}, + pages={392--406}, + year={2015}, + publisher={Multidisciplinary Digital Publishing Institute} +} +@article{mazzucchi2016, + title = {Quantum measurement-induced dynamics of many-body ultracold + bosonic and fermionic systems in optical lattices}, + author = {Mazzucchi, Gabriel and Kozlowski, Wojciech and + Caballero-Benitez, Santiago F. and Elliott, Thomas + J. and Mekhov, Igor B.}, + journal = {Physical Review A}, + volume = {93}, + issue = {2}, + pages = {023632}, + numpages = {12}, + year = {2016}, + month = {Feb}, + publisher = {American Physical Society} +} +@article{kozlowski2016zeno, + title={Non-hermitian dynamics in the quantum zeno limit}, + author={Kozlowski, Wojciech and Caballero-Benitez, Santiago F and Mekhov, Igor B}, + journal={arXiv preprint arXiv:1510.04857}, + year={2015} +} +@article{mazzucchi2016af, + title={Quantum measurement-induced antiferromagnetic order and + density modulations in ultracold Fermi gases in + optical lattices}, + author={Mazzucchi, Gabriel and Caballero-Benitez, Santiago F and + Mekhov, Igor B}, + journal={arXiv preprint arXiv:1510.04883}, + year={2015} +} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% Other papers +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +@article{walters2013, +title = {Ab initio derivation of Hubbard models for cold atoms in + optical lattices}, +author = {Walters, R. and Cotugno, G. and Johnson, T. H. and Clark, + S. R. and Jaksch, D.}, +journal = {Phys. Rev. A}, +volume = {87}, +pages = {043613}, +year = {2013}, +month = {Apr}, +doi = {10.1103/PhysRevA.87.043613}, +} +@article{bloch2011, + title = {Single-spin addressing in an atomic Mott insulator}, + author = {Weitenberg, C. and Endres, M. and Sherson, J. F. and + Cheneau, M. and Schauss, P. and Fukuhara, T. and + Bloch, I. and Kuhr, S.}, + journal = {Nature}, + volume = {471}, + pages = {319--324}, + year = {2011}, + doi = {10.1038/nature09827}, +} +@article{greiner2009, + title = {A quantum gas microscope for detecting single atoms in a + Hubbard-regime optical lattice}, + author = {Bakr, W. S. and Gillen, J. I. and Peng, A. and Folling, + S. and Greiner, M.}, + journal = {Nature}, + volume = {462}, + pages = {74--77}, + year = {2009}, + doi = {10.1038/nature08482}, +} @article{cirac1996, - title={Continuous observation of interference fringes from Bose condensates}, - author={Cirac, J I and Gardiner, C W and Naraschewski, M and Zoller, P}, + title={Continuous observation of interference fringes from Bose + condensates}, + author={Cirac, J I and Gardiner, C W and Naraschewski, M and Zoller, + P}, journal={Physical Review A}, volume={54}, number={5}, @@ -19,7 +271,8 @@ publisher={APS} } @article{ruostekoski1997, - title={Nondestructive optical measurement of relative phase between two Bose-Einstein condensates}, + title={Nondestructive optical measurement of relative phase between + two Bose-Einstein condensates}, author={Ruostekoski, Janne and Walls, Dan F}, journal={Physical Review A}, volume={56}, @@ -30,7 +283,8 @@ } @article{ruostekoski1998, title={Macroscopic superpositions of Bose-Einstein condensates}, - author={Ruostekoski, Janne and Collett, M J and Graham, Robert and Walls, Dan F}, + author={Ruostekoski, Janne and Collett, M J and Graham, Robert and + Walls, Dan F}, journal={Physical Review A}, volume={57}, number={1}, @@ -39,7 +293,8 @@ publisher={APS} } @article{ashida2015, - title={Diffraction-Unlimited Position Measurement of Ultracold Atoms in an Optical Lattice}, + title={Diffraction-Unlimited Position Measurement of Ultracold Atoms + in an Optical Lattice}, author={Ashida, Yuto and Ueda, Masahito}, journal={Physical review letters}, volume={115}, @@ -49,14 +304,17 @@ publisher={APS} } @article{ashida2015a, - title={Multi-Particle Quantum Dynamics under Continuous Observation}, + title={Multi-Particle Quantum Dynamics under Continuous + Observation}, author={Ashida, Yuto and Ueda, Masahito}, journal={arXiv preprint arXiv:1510.04001}, year={2015} } @article{rogers2014, - title={Characterization of Bose-Hubbard models with quantum nondemolition measurements}, - author={Rogers, B and Paternostro, M and Sherson, J F and De Chiara, G}, + title={Characterization of Bose-Hubbard models with quantum + nondemolition measurements}, + author={Rogers, B and Paternostro, M and Sherson, J F and De Chiara, + G}, journal={Physical Review A}, volume={90}, number={4}, @@ -64,16 +322,6 @@ year={2014}, publisher={APS} } -@article{LP2009, - title={Quantum optics with quantum gases}, - author={Mekhov, Igor B and Ritsch, Helmut}, - journal={Laser physics}, - volume={19}, - number={4}, - pages={610--615}, - year={2009}, - publisher={Springer} -} @article{rist2012, title={Homodyne detection of matter-wave fields}, author={Rist, Stefan and Morigi, Giovanna}, @@ -84,26 +332,12 @@ year={2012}, publisher={APS} } -@book{foot, - author = {Foot, C. J.}, - title = {{Atomic Physics}}, - publisher = {Oxford University Press}, - year = {2005} -} -@phdthesis{weitenbergThesis, -author = {Weitenberg, Christof}, -number = {April}, -title = {{Single-Atom Resolved Imaging and Manipulation in an Atomic Mott Insulator}}, -year = {2011} -} -@article{steck, -author = {Steck, Daniel Adam}, -title = {{Rubidium 87 D Line Data Author contact information :}}, -url = {http://steck.us/alkalidata} -} @article{weitenberg2011, - title={Coherent light scattering from a two-dimensional Mott insulator}, - author={Weitenberg, Christof and Schau{\ss}, Peter and Fukuhara, Takeshi and Cheneau, Marc and Endres, Manuel and Bloch, Immanuel and Kuhr, Stefan}, + title={Coherent light scattering from a two-dimensional Mott + insulator}, + author={Weitenberg, Christof and Schau{\ss}, Peter and Fukuhara, + Takeshi and Cheneau, Marc and Endres, Manuel and + Bloch, Immanuel and Kuhr, Stefan}, journal={Physical review letters}, volume={106}, number={21}, @@ -112,8 +346,11 @@ url = {http://steck.us/alkalidata} publisher={APS} } @article{miyake2011, - title={Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices}, - author={Miyake, Hirokazu and Siviloglou, Georgios A and Puentes, Graciana and Pritchard, David E and Ketterle, Wolfgang and Weld, David M}, + title={Bragg scattering as a probe of atomic wave functions and + quantum phase transitions in optical lattices}, + author={Miyake, Hirokazu and Siviloglou, Georgios A and Puentes, + Graciana and Pritchard, David E and Ketterle, + Wolfgang and Weld, David M}, journal={Physical review letters}, volume={107}, number={17}, @@ -121,69 +358,303 @@ url = {http://steck.us/alkalidata} year={2011}, publisher={APS} } -@article{mekhov2012, - title={Quantum optics with ultracold quantum gases: towards the full quantum regime of the light--matter interaction}, - author={Mekhov, Igor B and Ritsch, Helmut}, - journal={Journal of Physics B: Atomic, Molecular and Optical Physics}, - volume={45}, - number={10}, - pages={102001}, - year={2012}, - publisher={IOP Publishing} +@article{eckert2008, + title = {Dicke quantum phase transition with a superfluid gas in an optical cavity}, + author = {Eckert, K. and Romero-Isart, O. and Rodriguez, M. and + Lewenstein, M. and Polzik, E. S. and Sanpera, A.}, + journal = {Nat. Phys.}, + volume = {4}, + pages = {50}, + year = {2008}, } -@article{mazzucchi2016, - title = {Quantum measurement-induced dynamics of many-body ultracold bosonic and fermionic systems in optical lattices}, - author = {Mazzucchi, Gabriel and Kozlowski, Wojciech and Caballero-Benitez, Santiago F. and Elliott, Thomas J. and Mekhov, Igor B.}, - journal = {Physical Review A}, - volume = {93}, - issue = {2}, - pages = {023632}, - numpages = {12}, - year = {2016}, +@article{larson2008, + title = {Mott-Insulator States of Ultracold Atoms in Optical + Resonators}, + author = {Larson, Jonas and Damski, Bogdan and Morigi, Giovanna and + Lewenstein, Maciej}, + journal = {Phys. Rev. Lett.}, + volume = {100}, + issue = {5}, + pages = {050401}, + numpages = {4}, + year = {2008}, month = {Feb}, - publisher = {American Physical Society} + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.100.050401}, } -@article{atoms2015, - title={Probing and Manipulating Fermionic and Bosonic Quantum Gases with Quantum Light}, - author={Elliott, Thomas J and Mazzucchi, Gabriel and Kozlowski, Wojciech and Caballero-Benitez, Santiago F and Mekhov, Igor B}, - journal={Atoms}, - volume={3}, - number={3}, - pages={392--406}, - year={2015}, - publisher={Multidisciplinary Digital Publishing Institute} +@article{chen2009, + title = {Bistable Mott-insulator\char21{}to\char21{}superfluid phase + transition in cavity optomechanics}, + author = {Chen, W. and Zhang, K. and Goldbaum, D. S. and + Bhattacharya, M. and Meystre, P.}, + journal = {Phys. Rev. A}, + volume = {80}, + issue = {1}, + pages = {011801}, + numpages = {4}, + year = {2009}, + month = {Jul}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.80.011801}, } -@article{mazzucchi2016af, - title={Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices}, - author={Mazzucchi, Gabriel and Caballero-Benitez, Santiago F and Mekhov, Igor B}, - journal={arXiv preprint arXiv:1510.04883}, - year={2015} +@article{habibian2013, + title = {Bose-Glass Phases of Ultracold Atoms due to Cavity + Backaction}, + author = {Habibian, Hessam and Winter, Andr\'e and Paganelli, Simone + and Rieger, Heiko and Morigi, Giovanna}, + journal = {Phys. Rev. Lett.}, + volume = {110}, + issue = {7}, + pages = {075304}, + numpages = {5}, + year = {2013}, + month = {Feb}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.110.075304}, } -@inbook{Scully, -author = {Scully, M. and Zubairy, S.}, -title = {{Quantum Optics}}, -publisher = {Cambridge University Press}, -chapter = {10.1}, -pages = {293}, -year = {1997} +@article{ivanov2014, + title={Feedback-enhanced self-organization of atoms in an optical cavity}, + author={Ivanov, DA and Ivanova, T Yu}, + journal={JETP letters}, + volume={100}, + number={7}, + pages={481--485}, + year={2014}, + publisher={Springer} } -@article{mekhov2007prl, - title={Cavity-enhanced light scattering in optical lattices to probe atomic quantum statistics}, - author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut}, +@article{caballero2015, + title={Quantum optical lattices for emergent many-body phases of + ultracold atoms}, + author={Caballero-Benitez, Santiago F and Mekhov, Igor B}, journal={Physical review letters}, - volume={98}, - number={10}, - pages={100402}, - year={2007}, + volume={115}, + number={24}, + pages={243604}, + year={2015}, publisher={APS} } -@article{mekhov2007pra, - title={Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics}, - author={Mekhov, Igor B and Maschler, Christoph and Ritsch, Helmut}, - journal={Physical Review A}, - volume={76}, - number={5}, - pages={053618}, - year={2007}, - publisher={APS} -} \ No newline at end of file +@article{pedersen2014, + author={Mads Kock Pedersen and Jens Jakob W H Sorensen and Malte C + Tichy and Jacob F Sherson}, + title={{Many-body state engineering using measurements and fixed + unitary dynamics}}, + journal={New J. Phys.}, + volume={16}, + number={11}, + pages={113038}, + year={2014} +} +@article{kolobov1999, + title = {The spatial behavior of nonclassical light}, + author = {Kolobov, Mikhail I.}, + journal = {Rev. Mod. Phys.}, + volume = {71}, + issue = {5}, + pages = {1539--1589}, + numpages = {0}, + year = {1999}, + month = {Oct}, + publisher = {American Physical Society}, + doi = {10.1103/RevModPhys.71.1539}, +} +@article{golubev2010, + title = {Entanglement measurement of the quadrature components + without homodyne detection in the bright, spatially + multimode far field}, + author = {Golubeva, T. and Golubev, Yu. and Samburskaya, K. and + Fabre, C. and Treps, N. and Kolobov, M.}, + journal = {Phys. Rev. A}, + volume = {81}, + issue = {1}, + pages = {013831}, + numpages = {8}, + year = {2010}, + month = {Jan}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.81.013831}, +} +@article{derrico2014, + title = {Observation of a Disordered Bosonic Insulator from Weak to + Strong Interactions}, + author = {D'Errico, Chiara and Lucioni, Eleonora and Tanzi, Luca and + Gori, Lorenzo and Roux, Guillaume and McCulloch, Ian + P. and Giamarchi, Thierry and Inguscio, Massimo and + Modugno, Giovanni}, + journal = {Phys. Rev. Lett.}, + volume = {113}, + issue = {9}, + pages = {095301}, + numpages = {5}, + year = {2014}, + month = {Aug}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.113.095301}, +} +@article{rist2010, + title = {Light scattering by ultracold atoms in an optical lattice}, + author = {Rist, Stefan and Menotti, Chiara and Morigi, Giovanna}, + journal = {Phys. Rev. A}, + volume = {81}, + issue = {1}, + pages = {013404}, + numpages = {12}, + year = {2010}, + month = {Jan}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.81.013404}, +} +@article{lakomy2009, + title = {Thermal effects in light scattering from ultracold bosons + in an optical lattice}, + author = {\L{}akomy, Kazimierz and Idziaszek, Zbigniew and + Trippenbach, Marek}, + journal = {Phys. Rev. A}, + volume = {80}, + issue = {4}, + pages = {043404}, + numpages = {14}, + year = {2009}, + month = {Oct}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.80.043404}, +} +@article{ruostekoski2009, + title = {Light Scattering for Thermometry of Fermionic Atoms in an Optical Lattice}, + author = {Ruostekoski, J. and Foot, C. J. and Deb, A. B.}, + journal = {Phys. Rev. Lett.}, + volume = {103}, + issue = {17}, + pages = {170404}, + numpages = {4}, + year = {2009}, + month = {Oct}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.103.170404}, +} +@article{kaszlikowski2008, + title = {Quantum Correlation without Classical Correlations}, + author = {Kaszlikowski, Dagomir and Sen(De), Aditi and Sen, Ujjwal + and Vedral, Vlatko and Winter, Andreas}, + journal = {Phys. Rev. Lett.}, + volume = {101}, + issue = {7}, + pages = {070502}, + numpages = {4}, + year = {2008}, + month = {Aug}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevLett.101.070502}, +} +@article{horak1999, + title = {{Creation of coherence in Bose-Einstein condensates by atom detection}}, + author = {Horak, Peter and Barnett, Stephen M}, + journal = {J. Phys. B At. Mol. Opt. Phys.}, + number = {14}, + pages = {3421}, + volume = {32}, + year = {1999}, +} +@article{cazalilla2011, + author = {Cazalilla, M. A. and Citro, R. and Giamarchi, T. and Orignac, E. and Rigol, M.}, + doi = {10.1103/RevModPhys.83.1405}, + journal = {Rev. Mod. Phys.}, + month = dec, + number = {4}, + pages = {1405--1466}, + title = {{One dimensional bosons: From condensed matter systems to ultracold gases}}, + volume = {83}, + year = {2011} +} +@article{ejima2011, + author={S. Ejima and H. Fehske and F. Gebhard}, + title={Dynamic properties of the one-dimensional Bose-Hubbard model}, + journal={Europhys. Lett.}, + volume={93}, + number={3}, + pages={30002}, + year={2011}, +} +@article{kuhner2000, + author = {K\"{u}hner, Till D. and White, Steven R. and Monien, H.}, + doi = {10.1103/PhysRevB.61.12474}, + journal = {Phys. Rev. B}, + month = May, + number = {18}, + pages = {12474--12489}, + title = {{One-dimensional Bose-Hubbard model with nearest-neighbor interaction}}, + volume = {61}, + year = {2000} +} +@article{pino2012, + title = {Reentrance and entanglement in the one-dimensional Bose-Hubbard model}, + author = {Pino, M. and Prior, J. and Somoza, A. M. and Jaksch, D. and Clark, S. R.}, + journal = {Phys. Rev. A}, + volume = {86}, + issue = {2}, + pages = {023631}, + numpages = {11}, + year = {2012}, + month = {Aug}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.86.023631}, +} +@article{pino2013, + author = {Pino, M. and Prior, J. and Clark, S. R.}, + doi = {10.1002/pssb.201248308}, + journal = {Physica Status Solidi (B)}, + keywords = {bose,hubbard model,mott insulator,re-entrance,superfluid}, + month = Jan, + number = {1}, + pages = {51--58}, + title = {{Capturing the re-entrant behavior of one-dimensional Bose-Hubbard model}}, + volume = {250}, + year = {2013} +} +@article{roth2003, + title = {Phase diagram of bosonic atoms in two-color superlattices}, + author = {Roth, Robert and Burnett, Keith}, + journal = {Phys. Rev. A}, + volume = {68}, + issue = {2}, + pages = {023604}, + numpages = {17}, + year = {2003}, + month = {Aug}, + publisher = {American Physical Society}, + doi = {10.1103/PhysRevA.68.023604}, +} +@article{batrouni2002, + archivePrefix = {arXiv}, + arxivId = {cond-mat/0203082}, + author = {Batrouni, G G and Rousseau, V and Scalettar, R T and + Rigol, M and Muramatsu, A and Denteneer, P J H and + Troyer, M}, + doi = {10.1103/PhysRevLett.89.117203}, + journal = {Phys. Rev. Lett.}, + pages = {117203}, + pmid = {12225165}, + primaryClass = {cond-mat}, + title = {{Mott domains of bosons confined on optical lattices.}}, + volume = {89}, + year = {2002} +} +@article{roux2008, + author = {Roux, G. and Barthel, T. and McCulloch, I. P. and Kollath, + C. and Schollw\"{o}ck, U. and Giamarchi, T.}, + doi = {10.1103/PhysRevA.78.023628}, + journal = {Phys. Rev. A}, + month = aug, + number = {2}, + pages = {023628}, + title = {{Quasiperiodic Bose-Hubbard model and localization in + one-dimensional cold atomic gases}}, + volume = {78}, + year = {2008} +} +@article{vukics2007, + author = {Vukics, A. and Maschler, C. and Ritsch, H.}, + journal = {New J. Phys}, + volume = {9}, + pages = {255}, + year = {2007}, +} diff --git a/thesis.tex b/thesis.tex index 6648dc4..0e6eb48 100644 --- a/thesis.tex +++ b/thesis.tex @@ -1,7 +1,7 @@ % ******************************* PhD Thesis Template ************************** % Please have a look at the README.md file for info on how to use the template -\documentclass[a4paper,12pt,times,numbered,print,index,draft]{Classes/PhDThesisPSnPDF} +\documentclass[a4paper,12pt,times,numbered,print,index]{Classes/PhDThesisPSnPDF} % ****************************************************************************** % ******************************* Class Options ********************************