Finished section on electric field strength

This commit is contained in:
Wojciech Kozlowski 2016-07-08 19:49:03 +01:00
parent 91bb08ff1a
commit 85bc2f1d0e
2 changed files with 88 additions and 2 deletions

View File

@ -450,7 +450,8 @@ between the two levels, and $c$ is the speed of light in vacuum.
We have already derived an expression for the atomic lowering We have already derived an expression for the atomic lowering
operator, $\sigma^-$, in Eq. \eqref{eq:sigmam} and it is given by operator, $\sigma^-$, in Eq. \eqref{eq:sigmam} and it is given by
\begin{equation} \begin{equation}
\sigma^- = - \frac{i} {\Delta_a} \sum_\b{k} g_\b{k} a_\b{k} u_\b{k}(\b{r}). \sigma^-(\b{r}, t) = - \frac{i} {\Delta_a} \sum_\b{k} g_\b{k}
a_\b{k}(t) u_\b{k}(\b{r}).
\end{equation} \end{equation}
We will want to substitute this expression into Eq. \eqref{eq:Ep}, but We will want to substitute this expression into Eq. \eqref{eq:Ep}, but
first we note that in the setup we consider the coherent probe will be first we note that in the setup we consider the coherent probe will be
@ -458,7 +459,7 @@ much stronger than the scattered modes. This in turn implies that the
expression for $\sigma^-$ will be dominated by this external expression for $\sigma^-$ will be dominated by this external
probe. Therefore, we drop the sum and consider only a single wave probe. Therefore, we drop the sum and consider only a single wave
vector, $\b{k}_0$, of the dominant contribution from the external vector, $\b{k}_0$, of the dominant contribution from the external
beam. beam corresponding to the mode $\a_0$.
We now use the definititon of the atom-light coupling constant We now use the definititon of the atom-light coupling constant
\cite{Scully} to make the substitution \cite{Scully} to make the substitution
@ -567,3 +568,51 @@ Therefore, we can now express the quantity $n_{\Phi}$ as
\begin{equation} \begin{equation}
n_{\Phi} = \frac{1}{8} \left(\frac{\Omega_0}{\Delta_a}\right)^2 \frac{\Gamma}{2} N_K. n_{\Phi} = \frac{1}{8} \left(\frac{\Omega_0}{\Delta_a}\right)^2 \frac{\Gamma}{2} N_K.
\end{equation} \end{equation}
Estimates of the scattering rate using real experimental parameters
are given in Table \ref{tab:photons}.
\begin{table}[!htbp]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Value & Miyake \emph{et al.} & Weitenberg \emph{et al.} \\ \hline
$\omega_a$ & \multicolumn{2}{|c|}{$2 \pi \cdot 384$ THz}\\ \hline
$\Gamma$ & \multicolumn{2}{|c|}{$2 \pi \cdot 6.07$ MHz} \\ \hline
$\Delta_a$ & $2\pi \cdot 30$ MHz & $2 \pi \cdot 85$ MHz \\ \hline
$I$ & $4250$ Wm$^{-2}$ & N/A \\ \hline
$\Omega_0$ & 293$\times 10^6$ s$^{-1}$ & 42.5$\times 10^6$ s$^{-1}$ \\ \hline
$N_K$ & 10$^5$ & 147 \\ \hline \hline
$n_{\Phi}$ & $6 \times 10^{11}$ s$^{-1}$ & $2 \times 10^6$ s$^{-1}$ \\ \hline
\end{tabular}
\end{center}
\caption{ Rubidium data taken from Ref. \cite{steck}; Miyake
\emph{et al.}: based on Ref. \cite{miyake2011}. The $5^2S_{1/2}$,
$F=2 \rightarrow 5^2P_{3/2}$, $F^\prime = 3$ transition of
$^{87}$Rb is considered. For this transition the Rabi frequency is
actually larger than the detuning and and effects of saturation
should be taken into account in a more complete analysis. However,
it is included for discussion. The detuning is said to be a few
natural linewidths. Note that it is much smaller than
$\Omega_0$. The Rabi fequency is $\Omega_0 =
(d_\mathrm{eff}/\hbar)\sqrt{2 I / c \epsilon_0}$ which is obtained
from definition of Rabi frequency, $\Omega = \mathbf{d} \cdot
\mathbf{E} / \hbar$, assuming the electric field is parallel to
the dipole, and the relation $I = c \epsilon_0 |E|^2 /2$. We used
$d_\mathrm{eff} = 1.73 \times 10^{-29}$ Cm \cite{steck};
Weitenberg \emph{et al.}: based on Ref. \cite{weitenberg2011,
weitenbergThesis}. The $5^2S_{1/2} \rightarrow 5^2P_{3/2}$
transition of $^{87}$Rb is used. Ref. \cite{weitenberg2011} gives
the free space detuning to be $\Delta_\mathrm{free} = - 2 \pi
\cdot 45$ MHz. Ref. \cite{weitenbergThesis} clarifies that the
relevant detuning is $\Delta = \Delta_\mathrm{free} +
\Delta_\mathrm{lat}$, where $\Delta_\mathrm{lat} = - 2 \pi \cdot
40$ MHz. Ref. \cite{weitenbergThesis} uses a saturation parameter
$s_\mathrm{tot}$ to quantify the intensity of the beams which is
related to the Rabi frequency, $s_\mathrm{tot} = 2 \Omega^2 /
\Gamma^2$ \cite{steck,foot}. We can extract $s_\mathrm{tot}$ for
the experiment from the total scattering rate by
$\Gamma_\mathrm{sc} = (\Gamma/2) (s_\mathrm{tot}) /
(1+s_\mathrm{tot}+(2 \Delta / \Gamma)^2)$. A scattering rate of 60
kHz per atom \cite{weitenberg2011} gives $s_\mathrm{tot} =
2.5$.\label{tab:photons}}
\end{table}

View File

@ -1,3 +1,40 @@
@book{foot,
author = {Foot, C. J.},
title = {{Atomic Physics}},
publisher = {Oxford University Press},
year = {2005}
}
@phdthesis{weitenbergThesis,
author = {Weitenberg, Christof},
number = {April},
title = {{Single-Atom Resolved Imaging and Manipulation in an Atomic Mott Insulator}},
year = {2011}
}
@article{steck,
author = {Steck, Daniel Adam},
title = {{Rubidium 87 D Line Data Author contact information :}},
url = {http://steck.us/alkalidata}
}
@article{weitenberg2011,
title={Coherent light scattering from a two-dimensional Mott insulator},
author={Weitenberg, Christof and Schau{\ss}, Peter and Fukuhara, Takeshi and Cheneau, Marc and Endres, Manuel and Bloch, Immanuel and Kuhr, Stefan},
journal={Physical review letters},
volume={106},
number={21},
pages={215301},
year={2011},
publisher={APS}
}
@article{miyake2011,
title={Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices},
author={Miyake, Hirokazu and Siviloglou, Georgios A and Puentes, Graciana and Pritchard, David E and Ketterle, Wolfgang and Weld, David M},
journal={Physical review letters},
volume={107},
number={17},
pages={175302},
year={2011},
publisher={APS}
}
@article{mekhov2012, @article{mekhov2012,
title={Quantum optics with ultracold quantum gases: towards the full quantum regime of the light--matter interaction}, title={Quantum optics with ultracold quantum gases: towards the full quantum regime of the light--matter interaction},
author={Mekhov, Igor B and Ritsch, Helmut}, author={Mekhov, Igor B and Ritsch, Helmut},